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 In this paper, the one-way decode-and-forward (DF) full-duplex relaying 

network system with presence of direct link is investigated. In the analysis 

section, we derived the exact, lower, and upper bound for outage probability 

(OP) with maximal ratio combining (MRC) at the receiver. Furthermore, the 

system performance's analytical expressions are verified by using the Monte 

Carlo simulation. In addition, we investigated the effect of the main 

parameters on the OP of the proposed system. Finally, we can sate that the 

simulation curves overlap the analytical curves to convince the analysis section. 

This research can provide a novel recommendation for the communication 

network. 
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1. INTRODUCTION 

Nowadays, wireless-powered communication networks (WPCN) is the best solution for overcoming 

energy harvesting limitations in wireless‐powered communication with the considerable demand for energy 

in energy‐constrained wireless networks. Because human-made radio frequency (RF) can carry both energy 

and information, WPCN is considered the leading solution at our time [1]-[6]. In this time, many researched 

focus on the efficiency of the WPCN and its solution. Nguyen et al. studied the outage probability between 

some points based on the tradeoff fundamental, and [8] proposed and designed the practical receiver for 

energy and information transmission and its advantages for the communication network. Furthermore,  

Liu et al. [9] presented and demonstrated the practical energy harvesting communication network, and [10] 

proposed and investigated the continuous energy and power transmission in the cognitive relaying 

communication network. Moreover, the time switching and the power splitting protocols design for the 

communication network and the comparison between them are proposed and investigated in [11]-[15]. 

In this paper, the one-way decode-and-forward (DF) full-duplex relaying network system with 

presence of direct link is investigated. In the analysis section, we derived the exact, lower, and upper bound 

https://creativecommons.org/licenses/by-sa/4.0/
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for outage probability (OP) with maximal ratio combining (MRC) at the receiver. Furthermore, the system 

performance's analytical expressions are verified by using the Monte Carlo simulation. In addition, we 

investigated the effect of the main parameters on the OP of the proposed system. Finally, we can sate that the 

simulation curves overlap the analytical curves to convince the analysis section. 

 

 

2. SYSTEM MODEL 

In this section, Figure 1 proposed the system model. The energy harvesting (EH) and information 

transferring (IT) phases are drawn in Figure 2 [16]-[20]. Assume that all of the channels are Rayleigh fading, 

hence the channel gains 
2

SRh , 
2

RD| |h  and 
2

SD| |h  are exponential random variables (RVs) whose cumulative 

distribution function (CDF) are given as; 
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To take path-loss into account, we can model the parameters as follows: 

 

𝜆SR = (𝑑SR)
𝜒 , 𝜆RD = (𝑑RD)

𝜒 , 𝜆SD = (𝑑SD)
𝜒      (2) 

 

The CDF is expressed as; 

 

𝐹|𝑓|2(𝑥) = 1 − 𝑒𝑥𝑝(−𝜆𝑅𝑅𝑥).       (3) 

 

Then, the PDFs of |ℎ𝑆𝑅|
2, |ℎ𝑅𝐷|

2 , |ℎ𝑆𝐷|
2and |𝑓|2 are expressed, respectively as; 
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Figure 1. System model 

 

Figure 2. The EH and IT phases 

 

 

The received signal at the relay can be expressed as; 

 

𝑦𝑅 = √1 − 𝜌ℎ𝑆𝑅𝑥𝑠 + 𝑓𝑥𝑅 + 𝑛𝑅       (5) 

 

The average transmitted power at the relay can be given as; 
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𝑃𝑅 =
𝐸ℎ

𝑇
= 𝜂𝜌𝑃𝑠|ℎ𝑆𝑅|

2        (6) 

 

where 0 1  : energy conversion efficiency (which takes into account the energy loss by harvesting 

circuits and also by decoding and processing circuits). The received signal at the destination in the first phase 

can be given by; 

 

𝑦𝐷 = ℎ𝑅𝐷𝑥𝑅 + 𝑛𝐷        (7) 

 

where Dn is the AWGN with variance N0. 

Here, in our model, we adopt the decode-and-forward (DF) protocol. Hence, the signal to 

interference noise (SINR) at the relay node from (5) can be given by; 

 

𝛾𝑅 =
(1−𝜌)𝑃𝑠|ℎ𝑆𝑅|

2

|𝑓|2𝑃𝑅+𝑁0
         (8) 

 

Substituting (6) into (8) and using the fact that N0<<PS, we have: 

 

𝛾𝑅 =
(1−𝜌)𝑃𝑠|ℎ𝑆𝑅|

2

𝜂𝜌𝑃𝑠|ℎ𝑆𝑅|
2|𝑓|2+𝑁0

≈
1−𝜌

𝜂𝜌|𝑓|2
       (9) 

 

From (7), the SINR at the destination can be obtained by; 

 

𝛾𝐷 =
|ℎ𝑅𝐷|

2𝑃𝑅

𝑁0
=

𝜂𝜌𝑃𝑠|ℎ𝑆𝑅|
2|ℎ𝑅𝐷|

2

𝑁0
= 𝜂𝜌𝛷|ℎ𝑆𝑅|

2|ℎ𝑅𝐷|
2      (10) 

 

where 
0

sP

N
 =   

Next, the destination will also receive the information directly from the source. Therefore, the SINR 

in this phase can be expressed by; 

 

𝛾𝑑𝑖𝑟𝑒𝑐𝑡 = 𝛷|ℎ𝑆𝐷|
2         (11) 

 

Finally, using the MRC technique at the receiver, the overall SINR of the system can be claimed as; 

 

𝛾𝑀𝑅𝐶
𝐷𝐹 = 𝑚𝑖𝑛(𝛾𝑅, 𝛾𝐷) + 𝛾𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑚𝑖𝑛 (

1−𝜌

𝜂𝜌|𝑓|2
, 𝜂𝜌𝛷|ℎ𝑆𝑅|

2|ℎ𝑅𝐷|
2) + 𝛷|ℎ𝑆𝐷|

2 = 𝑋 + 𝑌  (12) 

 

where 𝑋 = 𝑚𝑖𝑛 (
1−𝜌

𝜂𝜌|𝑓|2
, 𝜂𝜌𝛷|ℎ𝑆𝑅|

2|ℎ𝑅𝐷|
2) and 𝑌 = 𝛷|ℎ𝑆𝐷|

2  

 

 

3. OUTAGE PROBABILITY (OP) ANALYSIS 

3.1.  Exact analysis 

The OP of the system at the source destination can be defined as; 

 

𝑂𝑃 = 𝑃𝑟(𝛾𝑀𝑅𝐶
𝐷𝐹 < 𝛾𝑡ℎ) = 𝑃𝑟(𝑋 + 𝑌 < 𝛾𝑡ℎ) = ∫ 𝐹𝑋(𝛾𝑡ℎ − 𝑦)𝑓𝑌(𝑦)𝑑𝑦

𝛾𝑡ℎ
0

  (13) 

 

where th  is the predetermined threshold of the system. To find the probability in (13), we have to calculate 

the cumulative distribution function (CDF) of X and the probability density function (PDF) of Y. So, the 

CDF of X can be found as; 

 

𝐹𝑋(𝑥) = 𝑃𝑟(𝑋 < 𝑥) = 𝑃𝑟 (𝑚𝑖𝑛 (
1−𝜌

𝜂𝜌|𝑓|2
, 𝜂𝜌𝛷|ℎ𝑆𝑅|

2|ℎ𝑅𝐷|
2) < 𝑥)    (14) 

 

By denoting 
2 2

SR RDT h h=  and 
2

Z f= , in (14) can be reformulated by; 
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𝐹𝑋(𝑥) = 𝑃𝑟 (𝑚𝑖𝑛 (
1−𝜌

𝜂𝜌|𝑓|2
, 𝜂𝜌𝛷|ℎ𝑆𝑅|

2|ℎ𝑅𝐷|
2) < 𝑥)  

= 1 − 𝑃𝑟 (
1−𝜌

𝜂𝜌𝑍
≥ 𝑥)

⏟        
𝐼1

𝑃𝑟(𝜂𝜌𝛷|ℎ𝑆𝑅|
2|ℎ𝑅𝐷|

2 ≥ 𝑥)⏟                
𝐼2

     (15) 

 

From (3), 1I  can be calculated as; 

 

𝐼1 = 𝑃𝑟 (
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)    (16) 

 

Next, 2I  can be found by; 
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By applying equation (3.324,1) of [21], in (17) can be reformulated by; 

 

𝐼2 = 2 × √
𝜆𝑆𝑅𝜆𝑅𝐷𝑥

𝜂𝜌𝛷
× 𝐾1 (2√
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)       (18) 

 

where ( )vK •  is the modified Bessel function of the second kind and vth order. Substituting (17) and (18) into 

(15), we obtain: 

 

𝐹𝑋(𝑥) = 1 − 2 {1 − 𝑒𝑥𝑝 (−
𝜆𝑅𝑅(1−𝜌)

𝜂𝜌𝑥
)} × √
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Next, the CDF of Y can be found by; 
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From (20), the PDF of Y can be obtained by; 

 

( )
( ) expSD SDY

Y

yF y
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y
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Substituting (19) and (21) into (13), finally, the OP in exact form can be claimed as; 
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where 𝛬(𝑦) = √
𝜆𝑆𝑅𝜆𝑅𝐷(𝛾𝑡ℎ−𝑦)

𝜂𝜌𝛷
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3.2.  Lower and upper bound analysis 

It is easy to observe that (22) is very difficult to calculate in a closed-form expression. Hence, in this 

section, we will perform the OP of the system in lower and upper bound forms. From (12), we can compute as; 

 

( )2min , 2max( , )X Y X Y X Y +         (23) 

 

Therefore, the OP of the system in lower bound form can be given by; 

 

 𝑂𝑃𝐿𝐵 = 𝑃𝑟 [𝑚𝑖𝑛( 𝑋, 𝑌) <
𝛾𝑡ℎ

2
] = 1 − 𝑃𝑟 (𝑋 ≥

𝛾𝑡ℎ

2
)⏟        

𝑃1

𝑃𝑟 (𝑌 ≥
𝛾𝑡ℎ

2
)⏟        

𝑃2

    (24) 

 

From (19), P1 can be calculated as; 

 

𝑃1 = 1 − 𝑃𝑟 (𝑋 <
𝛾𝑡ℎ

2
) = {1 − 𝑒𝑥𝑝 (−

2𝜆𝑅𝑅(1−𝜌)

𝜂𝜌𝛾𝑡ℎ
)} × √

2𝜆𝑆𝑅𝜆𝑅𝐷𝛾𝑡ℎ

𝜂𝜌𝛷
× 𝐾1 (√
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𝜂𝜌𝛷
)  (25) 

 

Next, P2 can be found by; 

 

2 1 Pr exp
2 2
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Substituting (25) and (26) into (24), we claim: 

 

𝑂𝑃𝐿𝐵 = 1 − 𝑒𝑥𝑝 (−
𝜆𝑆𝐷𝛾𝑡ℎ

2𝛷
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)  (27) 

 

Similar to the above, the upper bound OP of the system can be computed as; 

 

1
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  

  (28) 

 

 

4. NUMERICAL RESULTS AND DISCUSSION 

The model system's system performance is investigated using Monte Carlo simulation, as shown  

in [22]-[27]. The OP as a function of the energy coefficient η is drawn in Figure 3 with the main system 

parameters as γth=1, ψ= 3dB, and ρ=0.3. In this figure, we considered the exact, upper, and lower bound 

analysis of the system OP. The results show that the system OP decrease with the increase of the energy 

coefficient. In the same way, the system OP versus γth is illustrated in Figure 4, and we set η=0.8, Φ=7dB, 

and ρ=0.8. The system OP has a significant rise while γth varies from 0 to 6 as shown in Figure 4 for all cases 

with exact, lower, and upper bound. From Figures 3 and 4, the simulation and the analytical values agree 

well. Moreover, the system OP versus Φ and ρ are presented in Figures 5 and 6, respectively. We set γth=1, 

η=1, and ρ-0.5 for Figure 4, Φ=5 dB for Figure 5, respectively. From Figure 6, it can be stated that the 

system OP falls while ψ rises from 0 dB to 20 dB. The system OP has a slight fall with ρ varies from 0 to 0.5 

and then has a rise with the remaining values of ρ. The maximum value of the system OP can be obtained 

with ρ=0.5, as shown in Figure 6. Once again, the simulation results agree with the mathematical, analytical 

results, as in Figures 5 and 6. 
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Figure 3. OP versus η 

 
 

Figure 4. OP versus γth 

 

 

 
 

Figure 5. OP versus Φ 

 
 

Figure 6. OP versus ρ 
 

 

5. CONCLUSION 

In this paper, the one-way DF full-duplex relaying network system with presence of direct link is 

investigated. In the analysis section, we derived the exact, lower, and upper bound for outage probability 

(OP) with maximal ratio combining (MRC) at the receiver. Furthermore, the system performance's analytical 

expressions are verified by using the Monte Carlo simulation. In addition, we investigated the effect of the 

main parameters on the OP of the proposed system. Finally, we can sate that the simulation curves overlap 

the analytical curves to convince the analysis section. This research can provide a novel recommendation for 

the communication network. 
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