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Abstract 
A novel kernel framework for hyperspectral image classification based on relevance vector 

machine (RVM) is presented in this paper. The new feature extraction algorithm based on Mexican hat 
wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is 
proposed. By using the feature of multi-resolution analysis, the new method of nonlinear mapping 
capability based on kernel NMF can be improved. The new classification framework of hyperspectral 
image data combined with the novel WKNMF and RVM. The simulation experimental results on HYDICE 
and AVIRIS data sets are both show that the classification accuracy of proposed method compared with 
other experiment methods even can be improved over 10% in some cases and the classification precision 
of small sample data area can be improved effectively.  
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1. Introduction 

It is well know that each material has its own specific electromagnetic radiation 
spectrum characteristic. Using hyperspectral imagery (HSI) sensors, it is possible to recognize 
materials and their physical states by measuring the spectrum of the electromagnetic energy 
they reflect or emit. The spectral data which consist of hundreds of bands are usually acquired 
by a remote platform, such as a satellite or an aircraft, and all bands are available at increasing 
spatial and spectral resolutions. After 30 years of development, HSI technology has not only 
been widely used in military, but also has been successfully applied in ocean remote sensing, 
vegetation surveys, geological mapping, environmental monitoring and other civilian areas [1, 
2].  

Due to the state of art of sensor technology developed recently, an increasing number 
of spectral bands have become available. Huge volumes of remote sensing images are 
continuously being acquired and archived. This tremendous amount of high spectral resolution 
imagery has dramatically increased the information source and increased the volume of imagery 
stored [2, 3].  

However, the excessive HSI data increase the difficulty of image processing and 
analysis. Such as supervised classification of HSI images is a very challenging task due to the 
generally unfavorable ratio between the large number of spectral bands and the limited number 
of training samples available a priori, which results in the ‘Hughes phenomenon’. Without the 
supports of new scientific concepts and novel technological methods, the existing large volumes 
of data prohibit any systematic exploitation. This has led to great demands to develop new 
concepts and methods to deal with large data sets [2-4].  

Over the last years, many feature extraction techniques have been integrated in 
processing chains intended for reduce the dimensionality of the data, thus mitigating the 
Hughes phenomenon. These methods can be unsupervised or supervised. Classic 
unsupervised techniques include principal component analysis (PCA), or independent 
component analysis (ICA). Supervised approaches comprise discriminate analysis for feature 
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extraction (DAFE), decision boundary feature extraction (DBFE), and non-parametric weighted 
feature extraction (NWFE), among many others [4-7].  

Recently, it was shown by Lee and Seung that positivity or non-negativity of a linear 
expansion is a very powerful constraint that also seems to yield sparse representations [8, 9]. 
Their technique, called non-negative matrix factorization (NMF), was shown to be a useful 
technique in approximating high dimensional data where the data are comprised of nonnegative 
components. However, NMF and many of its variants are essentially linear, and thus can’t 
disclose nonlinear structures hidden in the HSI data. Besides, they can only deal with data with 
attribute values, while in many applications we do not know the detailed attribute values and 
only relationships are available. The NMF cannot be directly applied to such relation data. 
Furthermore, one requirement of NMF is that the values of data should be non-negative, while 
in many real world problems the non-negative constraints cannot be satisfied. Since the mid-
1990s, nuclear method has been successfully applied in the future, there are many scholars 
have proposed Nonlinear feature extraction method based on kernel method [10-13]. 

Support vector machine (SVM) have been found to be particularly promising for 
classification of HSI data because of their lower sensitivity to the curse of dimensionality. 
Despite its widespread success in HSI classification, the SVM suffers from some important 
limitations, one of the most significant being that it makes point predictions rather than 
generating predictive distributions. Recently the Relevance Vector Machine (RVM), a 
probabilistic model whose functional form is equivalent to the SVM has been used in HSI 
classification. RVM may require fewer training cases than a SVM in order to classify a data set. 
It has been suggested that the useful training cases for classification by a RVM are anti-
boundary in nature while those for use in classification by a SVM tend to lie near the boundary 
between classes. It achieves comparable recognition accuracy to the SVM, yet provides a full 
predictive distribution, and also requires substantially fewer kernel functions [14].  

  The novel method which proposed in this paper uses kernel function into the classic 
NMF and improved it by replaced traditional kernel function with Mexican hat wavelet kernel 
function (WKNMF). By the feature of multi-resolution analysis, the nonlinear mapping capability 
of WKNMF method can be improved. The classification framework for HSI image data 
combined with the novel WKNMF and RVM. The simulations results show that, the method of 
WKNMF reflect the nonlinear characteristics of the hyperspectral image.  

The proposed method is applied to HYDICE data and AVIRIS data sets compared with 
the other algorithms, the classification accuracy can be increased even over 10% in some cases 
and the classification precision of small sample data area can be improved effectively. Section 2 
presents the proposed feature extraction based on WKNMF and RVM classification framwork. 
Experimental results are reported in section 3. Finally, conclusions are given in section 4. 
 
 
2. Methodology  
2.1. Non-negative Matrix Factorization  

NMF imposes the non-negativity constraints in learning the basis images. Both the 
values of the basis images and the coefficients for reconstruction are all non-negative. The 
additive property ensures that the components are combined to form a whole in the non-
negative way, which has been shown to be the part based representation of the original data. 
However, the additive parts learned by NMF are not necessarily localized [8, 9]. 

  Given the non-negative mn matrix V and the constant r, the non-negative matrix 
factorization algorithm finds a non-negative rn matrix W and another non-negative mr  
matrix H such that they minimize the following optimality problem: 

 
),(min HWf                                                                                                    (1) 

 
Subject to 0,0  HW  

This can be interpreted as follows: each column of matrix W contains a basis vector 
while each column of H contains the weights needed to approximate the corresponding column 
in V using the basis from W. So the product WH can be regarded as a compressed form of the 
data in V. The rank r is usually chosen ),min( mnr  . ),( HWf  is a loss function. In this 

paper, we set loss function as follow: 



                   ISSN: 1693-6930 

TELKOMNIKA  Vol. 13, No. 3, September 2015 :  976 – 984 

978


 


n

i

m

j
ijij WHVHWf

1 1

2))((
2

1
),(

                                                         (2) 
 

Solving the multiplicative iteration rule function as follows:  
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The convergence of the process is ensured. The initialization is performed using 

positive random initial conditions for matrices W and H. 
 
2.2. Kernel Non-Negative Matrix Factorization 

Given m objects
1 2 3, , , ..., ,m    with attribute values represented as an n  by m  

matrix
1 2[ , , ..., ]m    ,each column of which represent one of the m objects. Define the 

nonlinear map from original input space   to a higher or infinite dimensional feature space   
as follows：  

 
: ( )x x                                                                                       (4) 

 
From the m objects, denote: 
 

1 2( ) [ ( ), ( ), ..., ( )]m                                                                         (5) 

 

Similar as NMF, KNMF finds two non-negative matrix factorsW and H such that:  

 
( ) W H                                                                                                      (6) 

 

W is the bases in feature space  and H is its combining coefficients, each column of 

which denotes now the dimension-reduced representation for the corresponding object. It is 
worth noting that since ( )  is unknown. It is impractical to directly factorize ( )  . From 

Equation (6), we obtain: 
 

   ( ) ( ) ( )
T T

W H                                                                             (7) 

 
A kernel is a function in the input space and at the same time the inner product in the 

feature space through the kernel-induced nonlinear mapping. More specifically, a kernel is 
defined as: 

 

 ( , ) ( ), ( ) ( ) ( )
T

k x y x y x y                                                                (8) 

 
From Equation (8), the left side of Equation (7) can be rewritten as: 
 

     
, 1, 1

( ) ( ) ( ( )) ( ) ( , )
m mT T

i j i j i ji j
k K       


                                (9) 

 
Denote 

 

 ( )
T

Y W                                                                                               (10) 
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From Equation (9) and (10), Equation (7) can be changed as: 
 

K YH                                                                                                        (11) 
 
Comparing Equation (11) with Equation (6), it can be found that the combining 

coefficient H is the same.  SinceW is learned bases of ( )  , similarly we callY in Equation 

(11) as the bases of the kernel matrix K . Equation (11) provides a practical way for obtaining 
the dimension-reduced representation H by performing NMF on kernels. 

For a new data point, the dimension-reduced representation is computed as follows: 
 

   new newH W  


         

        
+

( ) ( )
T T

newW    


   += newY K                                       (12) 

 

Here A  donates the generalized (Moore-Penrose) inverse of matrix A , and 

   ( )
T

new newK     is the kernel matrix between the m training instance and the new 

instance. Equation (11) and (12) construct the key components of KNMF when used for 
classification, it is easy to see that, the computing of KNMF need not to know the attribute 

values of objects, and only the kernel matrix K and newK are required.  

Obviously, KNMF is more general than NMF because the former can deal with not only 
attribute value data but also relational data. Another advantage of KNMF is that it is applicable 
to data with negative values since the kernel matrix in KNMF is always non-negative for some 
specific kernels. 

 
2.3. Wavelet Kernel Non-Negative Matrix Factorization 

The purpose of building kernel function is project hyperspectral observed data from low 
dimensional space to another high dimensional space. This WKNMF method uses the kernel 
function into the NMF and improved it by replaced the traditional kernel function with the wavelet 
kernel function. By the feature of multi-resolution analysis, the nonlinear mapping capability of 
kernel non-negative matrix factorization method can be improved [15, 16]. 

 Assuming ( )h x is a wavelet function, parameter  represent stretch and represent 

pan. If there , ' Nx x R , then we get dot product form of wavelet kernel function: 

 

1
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Meet the reasonable expression product approved under the condition of translation 

invariance, the Equation (13) can be rewritten as: 
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In this paper Mexican hat wavelet function was selected as generating function, 

according to the theory of translation invariance wavelet function, kernel function constructed 
as: 

 
22 ( / 2)( ) (1 ) xh x x e                                                                                     (15) 

 
From Equation (13), (14) and (15) a wavelet kernel function meets the requirements of 

Mercer kernel function build as: 
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  Use Equation (16) in kernel non-negative matrix factorization, we can get Wavelet 

kernel non-negative matrix factorization. 
 

2.4. Relevance Vector Machine Classier Introduction 
The RVM is a possibilistic counterpart to the SVM, based on a Bayesian formulation of 

a linear model with an appropriate prior that results in a sparser representation than that 
achieved by SVM. The key advantages of the RVM over the SVM include a reduced sensitivity 
to the hyper-parameter settings, an ability to use non-Mercer kernels, the provision of a 
probabilistic output, no need to define the parameter, and often a requirement for fewer 
relevance vectors than support vectors for a particular analysis [15]. Using a Bernoulli 
distribution the likelihood function for the analysis would be: 
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Where g is a set of adjustable weights, for multiclass classification (17) can be written 

as: 
 

1 1

( | ) {( ( ))} ij

qn
y

j i
i j

p y g y x
 

                                                                  (18) 

 
1

( ( ))
1 exp( ( ))

x
x

 



 

                                                                            (19) 

 
During training, the hyper-parameter for a large number of training cases will attain very 

large value and the associated weights will be reduced to zero. Thus, the training process 
applied to a typical training set acquired following standard methods will make most of the 
training cases ’irrelevant’ and leave only the useful training cases. As a result only a small 
number of training cases are required for final classification. The assignment of an individual 
hyper-parameter to each weight is the ultimate reason for the sparse property of RVM. For more 
information about RVM see reference [14]， [17-18]. 
 
 
3. Experiment Results and Analysis 
3.1. Experimental on HYDICE Data Set 

The Figure 1 shows a simulated color IR view of an airborne HSI data flight line over the 
Washington DC Mall provided with the permission of Spectral Information Technology 
Application Center of Virginia who was responsible for its collection. The sensor system used in 
this case measured pixel response in 210 bands in the 0.4 to 2.4 µm region of the visible and 
infrared spectrum. Bands in the 0.9 and 1.4 µm region where the atmosphere is opaque have 
been omitted from the data set, leaving 191 bands. The data set contains 1208 scan lines with 
307 pixels in each scan line. It totals approximately 150 Megabytes. The image at left was made 
using bands 60, 27, and 17 for the red, green, and blue colors respectively. The HYDICE data 
set include Roofs, Street, Path (graveled paths down the mall center), Grass, Trees, Water, and 
Shadow.  

For verification the feature extraction algorithm effect to hyperspectral data classification 
application, RVM classifier used in this paper. Given a set of training examples, each marked as 
belonging to one of two categories, an RVM training algorithm builds a model that assigns new 
examples into one category or the other. An RVM model is a representation of the examples as 
points in space, mapped so that the examples of the separate categories are divided by a clear 
gap that is as wide as possible. New examples are then mapped into that same space and 
predicted to belong to a category based on which side of the gap they fall on. 
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Figure 1. False color images of HYDICE 
 
 
  Classification experiments on hyperspectral data with RVM, PCA+RVM, NMF+RVM 

and KPCA+RVM (Gauss kernel, width coefficient is 0.5) respectively, compared with the 
WKNMF+RVM method proposed in this paper. The Overall Accuracy (OA) used as evaluation 
stand in the experiment results.  Experiment randomly select 1%, 3% and 5% samples 
respectively as training data sets on original hyperspectral data and other samples as test data 
sets. The classification experiments were repeated 10 times, taking the statistical average for 
final results. The RVM kernel functions are used RBF (Radial Basis Function) kernel 
function, the width coefficient of 0.5.      

Experiment with feature extraction algorithm, feature dimensions taken before 15 
feature components as input, the energy of the total energy accounted for more than 96%. The 
classification result was shown as Table 1, Table 2 and Table 3. An impact of feature 
dimensionality to the RVM classier for hyperspectral remote sensing image was shown as 
Figure 2 (10% training sample data).  

 
 

Table 1. Classification results use 1% training sample data 
No. Class name Classification methods 

RVM PCA+RVM NMF+RVM KPCA+RVM WKNMF +RVM 
1 
2 
3 
4 
5 
6 
7 

Roofs 
Street 
Path 

Grass 
Trees 
Water 

Shadow 

51.7% 
90.3% 
88.5% 
87.2% 
77.8% 
91.5% 
74.6% 

53.8% 
91.1% 
88.9% 
87.3% 
78.1% 
89.9% 
75.3% 

61.1% 
91.6% 
89.8% 
85.7% 
79.3% 
91.9% 
78.9% 

60.6% 
90.4% 
88.5% 
89.1% 
81.4% 
91.8% 
77.5% 

66.4% 
91.1% 
89.9% 
87.8% 
85.8% 
92.8% 
79.5% 

               （ ）OA  71.8% 72.8% 74.1% 75.3% 81.9% 

 
 

Table 2. Classification results use 3% training sample data 
No. Class name Classification methods 

RVM PCA+RVM NMF+RVM KPCA+RVM WKNMF +RVM 
1 
2 
3 
4 
5 
6 
7 

Roofs 
Street 
Path 

Grass 
Trees 
Water 

Shadow 

55.1% 
91.5% 
89.5% 
87.5% 
78.8% 
91.2% 
78.6% 

56.7% 
91.2% 
88.9% 
88.3% 
80.1% 
91.9% 
79.3% 

62.3% 
92.3% 
94.6% 
89.7% 
85.1% 
93.3% 
81.9% 

62.2% 
92.4% 
95.5% 
92.5% 
86.4% 
93.8% 
81.3% 

68.6% 
93.1% 
95.9% 
94.8% 
86.8% 
95.8% 
83.2% 

               （ ）OA  74.8% 75.8% 77.8% 78.8% 82.3% 

 
 

Table 3. Classification results use 5% training sample data 
No. Class name Classification methods 

RVM PCA+RVM NMF+RVM KPCA+RVM WKNMF +RVM 
1 Roofs 61.1% 63.8% 66.5% 70.1% 76.7% 
2 Street 97.5% 100% 93.4% 96.4% 95.5% 
3 Path 99.5% 99.9% 100% 98.5% 99.9% 
4 Grass 97.2% 97.3% 96.7% 100% 97.2% 
5 Trees 97.8% 97.1% 98.3% 93.4% 93.4% 
6 Water 100% 98.9% 96.9% 95.8% 96.8% 
7 Shadow 81.6% 78.3% 84.9% 87.5% 84.8% 
              （ ）OA  77.8% 79.8% 81.1% 82.8% 88.2% 
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Figure 2. Classification OA with respect to reduced dimensionality in HYDICE  
(10% training sample data) 

 
 
3.2. Experimental on AVIRIS Data Set 

The experiments were carried out on HSI images produced by the AVIRIS. In order to 
simplify the logistics of marking this example analysis available to others, only a small portion of 
data set was chosen for this experiment. It contains 145 lines by 145 pixels (21025 pixels) and 
190 spectral bands selected from a June 1992 AVIRIS data set of a mixed agriculture/forestry 
landscape in the Indian Pine Test Site in Northwestern Indiana. 

  We select corn-min, corn-notil, soybean-min, soybean-notil and woods from AVIRIS 
images for classification experiment. The 3-bands (20, 80, 140 band) false color synthesis 
image used in experiment and the ground truth are shown in Figure 3.  

 
 

 
Figure 3. False color images and ground truth of AVIRIS 

 
 

Classification experiments on hyperspectral data with RVM, PCA+RVM, NMF+RVM 
and KPCA+RVM (Gauss kernel, width coefficient is 0.5) respectively, compared with the 
KNMF+RVM method proposed in this paper. The Overall Accuracy (OA) used as evaluation 
stand in the experiment results. Experiment randomly select 0.5%, 2% and 5% samples 
respectively as training data sets on original hyperspectral data and other samples as test data 
sets. The classification experiments were repeated 10 times as HYDICE experiment, taking the 
statistical average for final results. The RVM kernel functions are used RBF (Radial Basis 
Function) kernel function, the width coefficient of 0.5. 

Experiment with feature extraction algorithm, feature dimensions taken before 20 
feature components as input, the energy of the total energy accounted for more than 97%. The 
classification result was shown as Table 4, Table 5 and Table 6.  
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Table 4. Classification results use 0.5% training sample data 
No. Class name Classification methods 

RVM PCA+RVM NMF+RVM KPCA+RVM WKNMF +RVM 
1 corn-min  73.3% 74.3% 75.1% 76.6% 78.4% 
2 corn-notil 70.9% 71.7% 72.4% 75.4% 81.1% 
3 soybean-min  77.6% 78.3% 80.6% 83.5% 89.9% 
4 soybean-notil  52.5% 54.3% 56.0% 59.1% 63.8% 
5 Woods 85.6% 87.1% 89.6% 89.4% 90.8% 

           （ ）OA  68.6% 70.0% 71.5% 73.3% 76.7% 

 
 

Table 5. Classification results use 2% training sample data 
No. Class name Classification methods 

RVM PCA+RVM NMF+RVM KPCA+RVM WKNMF +RVM 
1 corn-min  77.4% 77.6% 77.7% 80.6% 83.4% 
2 corn-notil 76.3% 75.5% 77.8% 79.4% 82.1% 
3 soybean-min  83.5% 83.7% 83.8% 88.5% 90.1% 
4 soybean-notil  57.9% 58.8% 60.7% 65.1% 67.8% 
5 Woods 91.1% 91.2% 92.3% 93.4% 95.8% 

           （ ）OA  73.2% 74.2% 75.1% 77.3% 80.5% 

 
 

Table 6. Classification results use 5% training sample data 
No. Class name Classification methods 

RVM PCA+RVM NMF+RVM KPCA+RVM WKNMF +RVM 
1 corn-min  77.9% 79.8% 80.1% 82.6% 86.1% 
2 corn-notil 77.3% 78.1% 79.9% 81.4% 85.6% 
3 soybean-min  84.5% 85.9% 87.2% 89.5% 93.9% 
4 soybean-notil  58.2% 60.3% 62.4% 69.1% 73.8% 
5 Woods 92.8% 93.4% 94.0% 94.4% 95.8% 

           （ ）OA  74.6% 75.9% 77.4% 79.3% 84.8% 

 
 
From the classification experimental results, it can be seen that the application of the 

proposed method is better than the other algorithms, and the performance of wavelet kernel 
function is superior to the traditional kernel function. The classification accuracy using 
RVM classifier can achieve higher with fewer samples, hyperspectral image 
classification problems so it is suitable for small sample, high dimension and large amount of 
data. 
 
 
4. Conclusion 

A novel kernel framework for hyperspectral image classification based on RVM is 
presented in this paper. This WKNMF method uses the kernel function into the NMF and 
improved it by Mexican hat wavelet kernel function. By the feature of multi-resolution analysis, 
the nonlinear mapping capability of WKNMF method can be improved. Because of RVM has 
good generalization ability, difficult affected by the classifier parameters selection and in the 
choice of regularization coefficient appropriate, RVM has approximate classification accuracy as 
SVM. So we combine WKNMF and RVM as new classification framework for HSI data. 

The experiment on HYDICE and AVIRIS data sets show that the WKNMF method as 
feature extraction has more ability than the compared algorithms, and the performance of 
wavelet kernel function has better performance than  general kernel function. 
The final processed data is applied to HSI image classification based on RVM classifier. In 
some cases, the classification accuracy can be increased over 10% and the 
classification precision can effectively improve in small sample area. Experiment results 
proved the effectiveness of the classification framework. 
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