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Abstract 
Cooperative multicell precoding is an attractive way of improving the performance in multicell 

downlink scenarios especially for terminals at cell edges. Multiple base stations in a given area serve each 
terminal after precoding, which can coordinate the inter-cell interference and achieve higher performance. 
Most previous work in the area has focus on centralized precoding which requires gathering all 
transmitters’ channel state information (CSI) at central station (CS) through backhaul and then precoding 
at CS. However, the requirements on backhaul signaling and computational power scales rapidly in large 
and dense networks, which usually make such fully centralized approaches impractical. In this paper, we 
study two practical precoding strategies with only local CSI under a relatively realistic scenario. 
Performance is finally illustrated through numerical simulations. 
 
Keywords: cooperative mulicell precoding, distributed precoding, virtual SINR, block diagonalization 
 

Copyright © 2015 Universitas Ahmad Dahlan. All rights reserved. 
 
 
1. Introduction 

In recent years, with multiple-input multiple-output (MIMO) techniques, the performance 
of cellular communication systems can be greatly improved. Many algorithms have been 
proposed for single-cell downlink scenario, where a base station communicates with many 
users. However, in multi-cell downlink scenario, these single-cell algorithms are obliged to treat 
the interference from adjacent cells as noise, which results in a fundamental limitation on the 
system performance. Recently, base station coordination (also known as Network MIMO) has 
been analyzed as a means of handling inter-cell interference. 

 Ideally, all base stations might share their channel state information (CSI) and data 
through backhaul links, which would enable coordinated precoding design that can manage the 
co-user interference as in the single-cell scenario [1-3]. In practice, there are limitations in terms 
of delay and capacity on the backhaul and computational power at the transmitters [4-7], which 
makes it necessary to investigate distributed forms of cooperation that reduce the backhaul 
signaling and precoding complexity, while still benefiting from a robust interference control [8-9]. 
An information theoretic approach was proposed in [10] to determine the dependence of multi-
cell rates on backhaul capacity. A practical iterative message passing procedure was taken in 
[11] to exchange information between neighboring cells.  

Herein, we address the problem of distributed multicell MIMO precoding where the 
cooperating base stations share knowledge of the data symbols but have only local CSI, 
thereby much reducing the feedback load on the uplink and avoiding cell-to-cell CSI exchange. 
In this paper, we provide two practical precoding strategies with only local CSI under virtual 
SINR framework. One is beamforming vectors achieved by Generalized Rayleigh Quotient, the 
other is distributed block diagonalization algorithm with MPR power allocation. Finally, we 
provide simulation results under MISO IC scenarios and multicell precoding scenarios 
respectively and illustrate the performance. 
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2. System Model 
2.1. System Configuration   

We consider a communication scenario with tK  transmitters (e.g., base station in a 

cellular system) which equipped with tN  antennas each and r tK N  single-antenna receivers 

(e.g., mobile station). The transmitters and receivers are denoted jBS  and kMT , respectively, 

for  1, , tj K  and  1, , rk K  . The jBS  only knows the channel between itself and all 

receivers which are within its range, either through user feedback or, in a TDD system, form 
those users’ transmission in the uplink. And there is no exchange of CSI between transmitters. 
We assume that the data symbols intended for all receivers are available at both transmitters, 
which enable joint multicell precoding. 

 
2.2. Channel Model 

In mobile cellular scenarios, the radio propagation can be characterized by three 
independent phenomena: path loss variation with distance, large-scale shadowing, and small-
scale fading. All of them will be incorporated in this paper. Here we assumed that the channel 

between jBS  and kMT  is narrow-band and frequency-flat block fading. Therefore it is can be 

modeled as r tK K  random matrix. 

 

, , , , , 1, , , 1, ,j k j k j k j k t rH cd s W j K k K   
                                              

(1) 

 

Where, － ,j kcd   denotes the path loss. ,j kd  is the distance (in km) between the jBS

and kMT ;   is the path loss exponent, typically taking a value between 3.0 and 5.0; and c  is 

the median of the mean path loss at the reference distance of 1 km. 
－ ,j ks  is a log-normal distributed shadowing variable, i.e., 

 
2

10 ,10 log ( ) (0, )j k shs N  , ,j k  
 
－ ,j kW  represents the small-scale fading. The entries of ,j kW  are . . .i i d  circularly 

symmetric complex Gaussian random variables with zero mean and unit variance. 

The random variables ,j kd , ,j ks  and matrices ,j kW  are assumed to be independent of 

each other and independent for all ,j k . 

 
2.3. Downlink Signal Model 

Let tN
jx C  be the signal transmitted by jBS  and the corresponding received signal 

at kMT  be denoted by ky C . 

 

, ,
1

rK

j j k j k k
k

x p w s
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                                                                                                  (2) 

 

Where (0,1)ks CN  is the data symbol intended for kMT  and is assumed to be available at all 

transmitters. ,j kw is beamforming vectors which have unit norms (i.e., , 1j kw  ) and ,j kp  

represents the power allocated for transmission to kMT  form jBS . Where jBS  is subject to an 

individual average power constraint of jP , that is  2

,
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Where ,j kH  is the channel between jBS and kMT , 2(0, )kn CN   is white additive noise. 

 
 

3. Distributed Precoding Algorithms 
3.1. Virtual SINR Framework 

Reference [12] notes that the same rate region may be achieved in the uplink (for a 
reciprocal channel, in the virtual uplink otherwise) and downlink directions using the same set of 
receive and transmit beamforming respectively, but with different power constraint. This is one 
form of what is referred to as uplink-downlink duality. 

In its most general form, a virtual SINR at jBS  is defined as the ratio between the 

useful signal power received at its served user kMT  and the sum of noise plus the interference 

power which causes at the remaining users 
k

MT . For certain choices of parameters, the virtual 

SINR can be seen as the SINR achieved in the uplink (or virtual uplink) if the same filters were 
used. 

Thus: 
 

2
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 (4) 

 

Here, ,j kw  is used to process the received signal at jBS  from kMT and 
k

MT .  

 
3.2. Beamforming Vectors Achieved by Generalized Rayleigh Quotient  

Consider the virtual uplink channel, virtual SINR is achieved at (4). Where 
2

, , ,j k j k j kp H w  

is the desired signal power transmitted from kMT   and 
2

, ,,j k j kj k
k k

p H w

  is the interference 

generated from 
k

MT at jBS . In general, the goal of beamforming is to maximize the signal power 

at the intended terminal while minimizing the interference caused at other terminals. These 
ambitions are counteracting and represented by maximum ratio transmission (MRT) and zero-
forcing (ZF), respectively. MRT strategy focus on maximizing the useful signal received at one’s 
own receiver and the generated interference is completely ignored, while ZF strategy mainly 
focus on reducing the interference caused to others. Remarkably, both the strategies are 
consistent with the distributed channel state information at transmitter (CSIT).  
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Where 

,j k
H
  is the projection matrix onto the null space of 

,j k
H . 

In [11], the authors stated that rate tuples on the Pareto boundary of two user MISO IC 
can be achieved by beamforming vectors that are linear combinations of distributed MRT and 
ZF.  
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Where 0 1i  are optimization coefficients. [14] has worked out the optimization coefficient i  

and shown to attain the Pareto boundary of MISO interference channels (IC) with this 
beamforming strategy.  

A more generalized method is the generalized Rayleigh quotient whose solution is 
actually a linear combination of the MRT and ZF vectors. 

Strategy 1. The virtual SINR framework can be applied to balance the signal and 
interference powers. As the objective is to have a distributed algorithm which relies only on 
information local to each base station, we propose that each transmitter solve a virtual SINR 
maximization problem, which can be stated as follows [12]: 
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Where , ,
H
j k j kA H H  and 
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Expression (8) is the Generalized Rayleigh Quotient if matrix A and B are Hermitian 
matrix, and B is positive definite. We can find that: 
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At the same time, 
2

,

0
j kp


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Now we can draw a conclusion that expression (6) satisfies the conditions mentioned 

above and is Generalized Rayleigh Quotient. It can be solved by eigen value techniques. The 
widely known solution to this problem is such that: 

 

, , ,j k j k j kAw Bw         (14) 

 
According to this specific solution, the expression (7) is maximized when the column of 

,j kw  are the dominating eigenvectors of 1B A  corresponding to the highest eigen values. 

Strategy 2. Since the signals transmitted from different transmitters experience different 
macroscopic fading, efficient power allocation over the transmitters will enhance significantly the 
SNR at the receivers and increase the capacity or the diversity gain of the cooperative multicell 
system. This paper we introduce the maximal path loss ratio (MPR) approach, which follows the 
intuition of allocating more power to strong terminals, since weak terminals hopefully are served 
more effectively by other base stations. 
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Where jP  is the maximal transmitting power at jBS . 

 
3.3. Distributed Block Diagonalization Algorithm with MPR Power Allocation 

Define�
, 1 , 1 ,

, ,1 j k j k j Kr

H
H H H H

j k jH H H H H
 

     . We can eliminate all multi-user 

interference through forcing ,j kw  to lie in the null space of � ,j kH . Data can be transmitted to 

kMT  if the null space of � ,j kH  has a dimension greater than 0. This is satisfied when

�
,( )j k trank H N . Let �

, ,( )j k j kr rank H , and define the singular value decomposition (SVD).  
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Where �
 0

,j kV  holds the last ,( )t j kN r  right singular vectors, and �
 1

,j kV  holds the first 

,j kr  right singular vectors. �
 0

,j kV forms an orthogonal basis for the null space of � ,j kH , and its 
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columns are candidates for the bamforming vectors ,j kw . Assuming that the independence 

condition is satisfied for all mobile stations, we define the matrix � (0)
,, j ks j kH H V and 

, ( )j k sr rank H , now the system capacity under the zero-interference constraint can be written 

as: 
  

2
,

2 , ,

1
max log

j k

H H
s j k j k s

w
n

C I H w w H


         (17) 

 
The problem is now to find a matrix ,j kw  that maximizes the determinant, and the 

solution is to let ,j kw  be the right singular vectors of sH , weighted by MPR power allocation 

approach on the corresponding singular values. Here we choose MPR rather than water-filling 
because it’s more realistic. Define the SVD: 
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Where ,j k  is , ,j k j kr r  and  1
,j kV  represents the first ,j kr  singular vectors. Then 

�    0 1
,, , ,j kj k j k j kw V V p is the beamforming vectors that can maximize the information rate subject 

to producing zero interference. 
 
 

4. Simulation Results 
4.1. MISO IC Scenarios 

We consider the MISO interference channel where 2tK   transmitters with 2tN   

antennas each and 2rK   single antenna receivers. Each transmitter, which has only the data 

information intended for its own receivers and the CSI between itself and all users, 
communicates with a single receiver [7, 8].  

 

 
 

Figure 1. Illustrates the available channel capacity of the different beamforming strategies which 
are MRT, ZF, Zakhour proposed approach, Rayleigh quotient and distributed BD 
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From the figures, we can see that in this scenario distributed BD equivalent to ZF, and 
Rayleigh quotient acquires identical and best performance with Zakhour Proposed approach. So 
we can draw the conclusion that Rayleigh quotient approach can get the optimal performance 
Since has proved that Zakhour proposed approach arrived the rate tuple on the Pareto 
boundary. 

 
4.2. Multicell Precoding Scenarios 

In this section, we illustrate the precoding performance in a scenario with 2tK   base 

station with 2tN   antennas each and 2rK   single antenna mobile terminals. Each base 

station knows the data information transmitted for all mobile terminals and has CSI that can be 
obtained locally. 

The available capacity of Rayleigh quotient and Distributed BD are given. As a 
comparison, we give the capacity of MRT, ZF and Centralized BD. From Figure 2 we can see 
that the performance of Distributed BD and Rayleigh quotient are similar and better than MRT 
and ZF. Interestingly, the performance loss when compared with Centralized BD which has 
global CSI is only no more than 2 bits/Hz/sec. At the same time, we reduce the computational 
demands since there is no exchange of CSI between base stations. So they are more practical 
schemes.  

 

 
Figure 2. Illustrate the precoding performance in a scenario with 2tN  base station with 2tN 

antennas each and 2rK  single antenna mobile terminals 

 
 

5. Conclusion  
In this paper, we have addressed the problem of distributed multicell MIMO precoding 

where the cooperative base stations do not share knowledge of the data symbols but have only 
local CSI. Under virtual SINR framework, we provided two practical precoding strategies with 
only local CSI. One can be obtained by generalized Rayleigh quotient, and the other was an 
application of block diagonalization with MPR power allocation. The distributed precoding 
algorithms reduced the feedback load on the uplink and avoided cell-to-cell CSI exchange. 
Simulation results show that the proposed two distributed algorithms can achieve similar 
available rate performance which is much better than MRT and ZF. Although there is a limited 
performance loss compared with centralized algorithms, the proposed two distributed algorithms 
are more practical schemes since there is no exchange of CSI between base stations. 
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