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 Rice is a staple food for around 3.5 billion people in eastern, southern and 

south-east Asia. Prior to being rice, the rice-grain (grain) is previously 

husked and/or milled by the milling machine. Relevantly, the grain quality 

depends on its pureness of particular grain specie (without the mixing 

between different grain species). For the demand of grain purity inspection 

by an image, many researchers have proposed the grain classification 

(sometimes with localization) methods based on convolutional neural 

network (CNN). However, those papers are necessary to have a large number 

of labeling that was too expensive to be manually collected. In this paper, the 

image augmentation (rotation, brightness adjustment and horizontal flipping) 

is appiled to generate more number of grain images from the less data. From 

the results, image augmentation improves the performance in CNN and bag-

of-words model. For the future moving forward, the grain recognition can be 

easily done by less number of images. 

Keywords: 

Feature transformation 

Grain classification 

Grain localization 

Image augmentation 

Transfer adaptation learning 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Pakpoom Mookdarsanit  

Computer Science, Faculty of Science 

Chandrakasem Rajabhat University 

39/1 Rachadapisek Road, Chan Kasem District, Chatuchak, Bangkok, 10900, Thailand 

Email: pakpoom.m@chandra.ac.th 

 

 

1. INTRODUCTION 

A bowl/dish of cooked rice is easily seen as the cultural gastronomy in many Asian countries, e.g., 

Japan, China, India, Bangladesh, Pakistan and other ASEAN countries. From the oldest historical evidence, 

rice-grain (or grain) was grown in [1] Yangtze river, China; longer than 10,000 years ago. A folk wisdom on 

grain agriculture was originally farmed on volcanic soil in Kyushu, Japan [1] during Yayoi period. And the 

flow of Mekong river [1] (shared by Vietnam, Laos, Thailand, Myanmar and Cambodia) was also one of the 

most important grain-cultivated-lands in a long time ago. It is not surprise that most winners of world’s best 

rice conferences within the last 4 years were from the Mekong river shared region: Jasmine [2] (Thailand, 

2016-2017), Malys Angkor [2] (Cambodia, 2018) and ST25 [2] (Vietnam, 2019). Traditionally, rice was 

linked to the goddess belief in Japan [1] who sowed grain in the fields of heaven. In Indian culture as  

Pongal [1], rice was an offering to the god as a thanksgiving. As well as Thai, Cambodian and Balinese had 

the similar cultural worship of rice’s mother [3, 4] as Mae Phosop, Po Ino Nogar and Dewi Sri, respectively. 

Economically, rice is not only a staple food but also an important agricultural production for 3.5 billion 

people in Asia (half of the world population). Prior to being rice, the grain is previously husked and/or milled 

by the milling machine. There are so many grain taxonomies; one of the world’s widest diversity is 

absolutely Asian grain varieties (both paddy and glutinous grain). In the real market, the diversity of grain 

https://creativecommons.org/licenses/by-sa/4.0/
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species looks different physically genetic features (like size, texture and shape) that make them have the 

different prices. The most well-known trick in grain (and rice) trading is mixing the pure grain specie product 

with other species [5] for making the higher price by the heavier ton of product. The faulty impurity by 

mixing absolutely violates the product quality. As to TAS 4004-2017– one of Thai agriculture standard [6] 

that is defined for the grain purity inspection by randomnizing some samples the 5% of ton. Generally, the 

validation of many physical grains is still based on human vision as a manual labor. 

Many researchers leveraged computer vision as an inspection solution since the beginning of 

“Japanese rice grading problem” in 2002 [7]. From the literature, all papers could be categorized by  

methods [8] into 2 groups: bag of words [9-23] and convolutional neural network (CNN) [24-29]. The former 

was used by early researches [30] (which require less number of labeled data [31]) that were still useful in 

some open-world industry [20-22] such as iRSVPred [23]. The latter was exponentially increased by current 

researches (which required large volume of labeled data [32, 33]) that had already been proven to be higher 

performance than bag-of-words methods [34]. The significant limitation in previous works in both groups is 

that they need a large number of labeled data that is really expensive for the high-quality manual labeling too 

many small grains by human labor.  

To expand those previous works (in both bag of words [9-23] and CNN [24-29]), this paper 

proposes PhosopNet to do more with less labeled data by image augmentation, as shown in Figure 1. The 

augmentation is proposed to increase the size and variety of training rice-grain (or grain) data by grain 

rotation in different angels, brightness adjustment in power law distribution and horizontal flipping in x-axis, 

respectively. For testing, all grains are localized/detected by mask region convolutional neural network 

(Mask R-CNN). Each grain is classified by densely connected convolutional neural network (DenseNet). 

Note that the name “Phosop” is dedicated to the rice’s mother [3, 4] in antique Thai culture who produced the 

rain over the land; in order to grow those grain seeds.  

 

 

 
 

Figure 1. Overview of the improved grain localization and classification by image augmentation 

 

 

The contribution of PhosopNet can be summarized as follows: 

− The proposed augmentation operations can generate ten-thoundsand or thoundsand training grains from a 

little thoundsand or hundred raw labeled grain data, respectively. 
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− To do more with less data, the PhosopNet achieved the high localization and classification performance 

using only the less number of labeled grain data. 

− For the grain recognition performance enhancement, not only convolutional neural network but also bag 

of words can be improved by image augmentation. 

This paper is organized as follows. Related works are in section 2. Image augmentation and learning model 

are described in section 3 and 4. Section 5 talks about experimental settings and results. And the conclusion 

is in section 6. 

 

 

2. RELATED WORKS 

The history began from “Japanese rice grading problem” [7] that the authors firstly introduced the 

way to use computer vision as the main solution in 2002. Later, there were many papers concerning rice 

recognition. Those papers can be categorized by methods [8] into 2 groups: bag of words and convolutional 

neural network. 

 

2.1. Bag of words 
For traditional bag of words, Japanese grain grading was originally introduced by handcrafted 

feature with neural network [7] as a supervised model. Neural network [19] was the main classfier for shape 

feature [17] and the principal component analysis (PCA) was used for dimensional reduction on the  

features [9] in both morphology and multi-color channel. The result showed that neural network with PCA 

provided a better recognition rate. Not only was the grain recognition, neural network also found to be high 

correctness in germination prediction [18]. In contrast, the complexity of neural network was found to be a 

main problem in speed and resource consumption. Instead of the long time and resource processing in neural 

learning, many statistical with image processing techniques were also proposed [12-13, 15] as the alternative 

ways. Zernike polynomials were also orthogonally computed to quickly extract features [10] and the 

threshold-based segmentation [11] from the physical grain images. By the way, neural network was still the 

highest accuracy. Until 2004, a novel support vector machine (SVM) was proven to be higher performance 

(in speed and time) than MLP [35], especially in a larger number of target classes. Moreover, SVM also  

had [36] transfer adaptation learning (TAL) mechanism as well as convolutional neural network (CNN), 

called adaptive-SVM (Ada-SVM) [37]. SVM for grain recognition was used to learn features from colors, 

morphology and texture with sparse coding [16]. One highlight in bag of words was based on SVM [14]: the 

saturation channel from hue-saturation-value (HSV) model as a threshold for segmentation, the color 

histogram of the green (−) to red (+) and blue (−) to yellow (+) from international commission on 

illumination lab (CIELAB) model, the shape description by histogram of curvature and the texture was 

described by scale invariant feature (SIFT) [38], speed up robust features (SURF) [39] and root-SIFT [40], 

respectively. In 2012, a convolutional neural network (CNN) in AlexNet architecture [41] was the winner of 

ImageNet large scale visual recognition challenge (ILSVRC) that outperformed those bag-of-words models, 

especially in larger data volume [32, 33]. Many computer vision papers have been gradually shifted from 

traditional bag of words to CNN paradigm [8] to solve object localization and classification problems in big 

data. Argubly, the industrial requirements concern user experience, environmental implementation and 

software maintenance friendliness; it was sometimes better to be implemented by histogram of gradients 

(HoG) [42] with traditional machine learning as a bag of words model [20-22], for the open-world grain 

inspection [23]. 

 

2.2. Convolutional neural network 
For convolutional neural network (CNN), grains were calibaratedly acquisted by hyperspectral 

camera and sent to CNN [24-25] that totally needed the cost for data acquistion. CNN was proven to be 

higher performance than traditional machine learning like k-NN and SVM [25] based on those hyperspectral 

images. For a digital image, GoogLeNet [43] (as Inception v.4 [44]) was used as the CNN architecture for 

germ integrity [26]. Later, the comparison between CNN architectures under the same environment [34] were 

done for grain image classification and densely connected convolutional networks (DenseNet) [45] showed 

the highest accuracy; higher than ResNet [46], GoogLeNet [43], Neural architecture search network  

(NasNet) [47] and visual geometry group (VGG) [48]. Moreover, the deeper model did not guarantee the 

more correctness of grain image classification (such VGG-16 higher correctness than VGG-19 [49]). Not 

only classification but also localization was necessary for grain quality inspection. As the highlight, Mask R-

CNN [50] with ResNet [46] was used for grain localization and classification (called MIMR [29]). But a 

large number of manual labeling on too many small grains [51] was still necassary. To do more with less 

data, this paper named PhosopNet proposes the image augmentation that generates the thoundsand grain data 

from hundred one, instead of manually labeling those ten-thoundsand small grain images. For the expansion 
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of previous works, the computer vision applied to rice or grain problems (both bag of words [9-23] and  

CNN [24-29]) can achieve high performance by training the less labeled grain data. 

 

 

3. IMAGE AUGMENTATION  

Since the previous papers on grain (or rice-grain) recognition (in both bag of words [9-23] and 

convolutional neural network [24-29]) require a large number of human-annotated labels (labeled data), the 

proposed PhosopNet leverages the image augmentation by feature transformation to artificially generate a 

variety of grain instances as a larger dataset and train them to the model. Practically, a grain object that is 

performed by image processing operations: rotation, brightness adjustment and horizontal flipping, in order 

to increase a number of data, as shown in Figure 2. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 2. To increase training labeled data, the augmented examples by a RD79 grain image;  

(a) an original RD79 grain, (b) rotation, (c) brightness adjustment, and (d) horizontal flipping 

 

 

3.1. Rotation 

For rotation of a grain object, the pivot point is at the top-left pixel of an image as (𝑥, 𝑦) = (0,0). 
The rotation 𝑅𝑜𝑡𝑎𝑡𝑒𝐺𝑟𝑎𝑖𝑛(𝑥, 𝑦, 𝜃) steps are measured in degree that moves in counter clockwise direction (𝜃) 
from 0 to 360. Each object pixel is moved to the new position (𝑢, 𝑣) by (1). 

 

𝑅𝑜𝑡𝑎𝑡𝑒(𝐺𝑟𝑎𝑖𝑛)(𝑥, 𝑦, 𝜃) = (𝑢, 𝑣); 𝑤ℎ𝑒𝑟𝑒 {
𝑢 = (𝑥 ⋅ 𝑐𝑜𝑠 𝜃) − (𝑦 ⋅ 𝑠𝑖𝑛 𝜃)
𝑣 = (𝑥 ⋅ 𝑠𝑖𝑛 𝜃) + (𝑦 ⋅ 𝑐𝑜𝑠 𝜃)

   (1) 

 

3.2. Brightness adjustment 

For brightness adjustment (𝐴𝑑𝑗𝑢𝑠𝑡𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 (𝐺𝑟𝑎𝑖𝑛)(𝑥, 𝑦)), power law distribution is used to tune a 

pixel (𝑃𝑖𝑥𝑒𝑙(𝑥, 𝑦)) into image brightness values by gamma threshold (𝛾) and a constant (𝑐). The lower 𝛾 

value provides more darkness and the higher one provides more lightness, vice and versa. And the 𝑐 is 

normally set to 1. 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 (𝐺𝑟𝑎𝑖𝑛)(𝑥, 𝑦) = 𝑐 ⋅ (𝑃𝑖𝑥𝑒𝑙(𝑥, 𝑦))𝛾     (2) 

 

3.3. Horizontal flipping 

For horizontal flipping (𝐹𝑙𝑖𝑝𝐻𝑜𝑟𝑖𝑧𝑜𝑛 (𝐺𝑟𝑎𝑖𝑛)([𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛−1,, 𝑥𝑛])), the grain object is 

flipped horizontally by (3). The flipped grain seems to be a new grain object. Practically, the horizontal 

flipping is done by the descending order of pixels in x-positions of entire image. 

 

𝐹𝑙𝑖𝑝𝐻𝑜𝑟𝑖𝑧𝑜𝑛 (𝐺𝑟𝑎𝑖𝑛)([𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛−1,, 𝑥𝑛]) = [𝑥𝑛 , 𝑥𝑛−1, . . . , 𝑥2, 𝑥1, 𝑥0] (3) 

 

 

4. LEARNING MODEL  

Convolutional neural network (CNN) achieves performance over conventional bag of  

words [32, 33], especially in large volume of data. For bag of words, the positions of all grains are localized 

and transformed into the numerical values by handcrafted feature extraction [52] (e.g., SIFT [38], SURF [39] 

or HoG [42]) those values are used to classify using traditional supervised machine learning  

(e.g., MLP [7, 35] or SVM [14, 35]). For the CNN, all grains within an image are localized by CNN 

detection (e.g., Faster R-CNN or Mask R-CNN); each grain object is directly represented in term of features 

and classified by CNN classification (e.g., ResNet [46] or DenseNet [45]). Moreover, CNN conveys the role 
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of transfer adaptation learning [36] with pre-trained weights of COCO dataset that model representation can 

be retrained in many times.  

 

4.1. Localization 

To localize the grains (or rice-grains) within an image, mask region convolutional network (Mask 

R-CNN [50]) based on DenseNet [45] was used to detect all grains with their positions in the proposed 

PhosopNet. Mask R-CNN is one of region-proposal based (two-stage) [53] detection pipeline that was 

designed to preserve the lowest instance (or pixel) level spatial correspondence. Although two-stage pipeline 

was shown to be higher average precision (AP) than one-stage pipeline [33], (e.g., you only look once 

(YOLO), and single shot multibox detector (SSD), one-stage detection was better in speed; and mostly used 

in real-time applications. For the grain recognition, texture within a grain object was small and very similar 

between species; the localization accuracy was necessary to use two-stage detection. Originally, the  

two-stage detection pipeline inherited from R-CNN [54] that firstly introduced to use the regions as CNN 

features. However, R-CNN had the expensive and slow problem on training support vector machine (SVM) 

for localization of all grains. For the improvement, Fast R-CNN [55] used region of interest (RoI) pooling, 

instead of unorganized RoI; and also used soft-max loss, instead of the full SVM classifier. Later, region 

proposal network (RPN) and multi-reference detection were the main contribution in Faster R-CNN [56] that 

completely solved the redundancy and bottleneck of Fast R-CNN. Since the flat Faster R-CNN cannot tackle 

pixel-wise instance in grain localization, Mask R-CNN [50] was extended from both Faster R-CNN and Fast 

R-CNN that achieved results by including feature pyramid network (FPN) [57] for feature fusion, RoI 

alignment and bi-linear upsampling. To identify the boundary of grain, Mask R-CNN uses RPN to generate 

the bounding box of each object as the first stage and the class parallel prediction in the second stage, 

respectively.  

 

4.2. Classification 

For the grain (or rice-grain) classification, densely connected convolutional network  

(DenseNet) [45] is a main architecture in the proposed PhosopNet which enables transfer domain learning. 

Originally, visual geometry group network (VGGNet) [48] used only 3x3 convolutional kernels. Unlike 

AlexNet [41], the larger kernel size (such as 5x5 or 7x7) caused the larger model and too many parameters. 

Moreover, too larger stride made the network lost the useful features from the lower layers. Although 

VGGNet was proven that the deeper networks obtained better performance, it was later found to spawn the 

problem as gradient vanishing and explosion that were finally solved by skip connection in residual network 

(ResNet) [46]. Unfortunately, most architectures are neither hierarchical (e.g., AlexNet [41], VGGNet [48], 

ResNet [46]) nor parallel (e.g., GoogLeNet [43]) architectures that make the low-level grain features to be 

disable for reusing in the high-level layers. For the solution by DenseNet, the feature maps from previous 

layers were also sent to the next convolutional blocks. Moreover, the transition layers after dense layer were 

proposed to reduce the number of feature maps in grain features that completely made the shallow layers 

focus on low-level features and the deeper layers focus on high-level features. The DenseNet architectures 

were shown in Table 1. 

 

 

Table 1. DenseNet configuration 
Layer  Detail Output size 

Convolution 7×7 CONV, stride 2 112×112 

Pooling 3×3 Max Pool, stride 3 56×56 

DenseBlock 

(1) 
6

33

11














CONV

CONV  
56×56 

Transition layer 

(1) 

1×1 CONV 56×56 

2×2 Average Pool, stride 2 28×28 

DenseBlock 
(2) 

12
33

11














CONV

CONV  
28×28 

Transition layer 

(2) 

1×1 CONV 28×28 

2×2 Average Pool, stride 2 14×14 

DenseBlock 

(3) 
24

33

11














CONV

CONV  
14×14 

Transition layer 

(3) 

1×1 CONV 14×14 

2×2 Average Pool, stride 2 7×7 

DenseBlock 
(4) 

6
33

11














CONV

CONV  
7×7 
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4.3. Transfer adaptation learning 

Transfer adaptation learning [58] enables to transfer knowledge from one training task into another 

one. For the first training, the pre-trained weights are set as the initial network. The source domain contains 

some useful grain features that are used for retraining the second time. Technically, all weights from the 

source domain can be reused and retrained with the new labeled grain data (and sometimes with their target 

classes). The usefulness of transfer adaptation learning in grain recognition is that the retraining task can be 

performed in many times. This makes a less number of small labeled grain data to be iteratively trained to the 

model, instead of one time (or big-bang) training from the large-scale data. Furthermore, transfer adaptation 

learning [36] can be divided into transfer learning (TL) and domain adaptation (DA), as shown in Figure 3. 

For transfer learning (𝑇𝑟𝑎𝑖𝑛𝑇𝐿(•)), the pair of grain feature and class in source 

(𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛)) and target domain (𝐼𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛)) are different, by (4).  

 

𝑇𝑟𝑎𝑖𝑛𝑇𝐿(𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛)) ≠ 𝑇𝑟𝑎𝑖𝑛𝑇𝐿(𝐼𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛));  (4) 

 

where 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛) ≠ 𝐼𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛) ≠ 𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛). For domain adaptation 

(𝑇𝑟𝑎𝑖𝑛𝐷𝐴(•)), the grain feature from the source domain (𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛)) is different from the target domain 

(𝐼𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛)) but they are members in the same class, by (5).  

 

𝑇𝑟𝑎𝑖𝑛𝐷𝐴(𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛)) = 𝑇𝑟𝑎𝑖𝑛𝐷𝐴(𝐼𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛));  (5) 

 

where 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛) ≠ 𝐼𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛), 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺𝑟𝑎𝑖𝑛) = 𝐶𝑡 𝑎𝑟𝑔 𝑒𝑡 (𝐺𝑟𝑎𝑖𝑛) 

 

 

  
(a)  (b)  

 

Figure 3. The difference between transfer learning and domain adaptation; (a) transfer learning (more 

samples with the new target classes) and (b) domain adaptation (more samples with the same target classes) 

 

 

5. EXPERIMENTAL SETTINGS AND RESULTS 

According to the real-world inspection problems in the industry [5, 6], this section talked about the 

experimental results and discussion in PhosopNet. Image augmentation with transfer adaptation learning was 

used to increase the data volume and variety. The detail could be categorized into 6 the main issues. 

 

Knowledge1

Knowledgen

Training 1#

Training 2#

Training n#

Knowledge2

Learning model

transfer

transfer

RD79

Phitsanulok 80

Pathum

Thani 1

Leb Nok

Pattani

Sang Yod

Phattalung

RD41
RD61

Dawk Mali 105

Knowledge1

Knowledgen

Training 1#

Training 2#

Training n#

Knowledge2

Learning model

adaptation

adaptation

Glutinous grain

Glutinous grain

Glutinous grain

Long

grain

Long

grain

Long

grain

Short

grain

Short

grain

Short

grain



TELKOMNIKA Telecommun Comput El Control   

 

PhosopNet: An improved grain localization and classification by image… (Pakpoom Mookdarsanit) 

485 

5.1.  Datasets 

The raw grains with their target classes in this experiment could be divided into 3 different paradigm 

settings according to the rice-grain standard inspection [5, 6], named “Phosop i-th” (in Table 2). These raw 

samples were classified and sent from a grain inspection laboratory. Those physical grains were trained to the 

supervised model in a format of digital image as the primary dataset. The grains were put on the black scene. 

Within an image, each row contained 10 grains which were the same target class. The distance between 

image and camera positions was 25 cm.  

 

5.2.  Experimental settings 

For the experimental settings, PhosopNet was such a supervised learning (or supervision). Mask  

R-CNN [50] and DenseNet [45] were applied for localization and classification, respectively. The supervised 

model generally consisted of training and testing. 

 

5.2.1.  Training  

All grains in each row were laid on the same orientation. The image and camera positions were 

vertical; and the distance between them was 25 cm. Each row refered to one target class that had 10 grain 

samples, as shown in Figure 4. For the labeling, all cropped grains in each row were labeled one by one in 

text file and trained by CNN-based supervised model, where the grain same row was the same target class. 

To do more with less data, each grain was further augmented to increase the dataset size by rotation, 

brightness adjustment and horizontal flipping.  

 

 

Table 2. Grain datasets with the experimental settings 
Problem Target classes # training 

grains by 

manual 
labeled 

grain 

Augmentation 

operations 

Transfer 

adaptation 

learning 

# training grains, the 

labeled grains 

increased by 
augmentation 

# 

testing 

grains 

Phosop-

1 

2 classes: glutinous grain and paddy 

grain 

300 (1) Rotation, 

(2) Brightness 
Adjustment and 

(3) Horizontal 

Flipping 

Domain 

Adaptation 
 

2,400 500 

Phosop-

2 

3 classes: glutinous grain, long- 

paddy grain and short-paddy grain 

450 3,600 700 

Phosop-
3 

11 classes: Dawk Mali 105, Pathum 
Thani 1, Chiang Phatthalung, Leb 

Nok Pattani, Sang Yod Phattalung, 

Phitsanulok 80, RD41, RD61, RD 
79, RD 6 and San Pah Tawng 1 

1,320 Domain 
Adaptation 

and 

Transfer 
Learning 

11,880 1,500 

 

 

 
 

Figure 4. Such an example of raw grain image in 4 rows (from the first to the last row: Leb Nok Pattani, 

Pathum Thani 1, Phitsanulok 80 and RD79), all grains in each row has the same target class 

 

 

5.2.2.  Testing  

All grains could be laid on any orientations but they should not have been overlapped one another.  

The image and camera positions were either vertical or non-vertical in any background colors. The distance 

between image and camera could be varying according to the real-world inspection. All grains in any 

orientations were detected and generated in the same orientations with new positions, as shown in Figure 5. 
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For testing, Mask R-CNN [50] firstly localized all grains within the image. Each grain was classified by 

DenseNet [45], as shown in Figure 5. With the help of image augmentation, the number of training by 

manual labeled grain could be less than that of testing. For the localization evaluation, the intersection over 

union (IoU) between proposal locations and the associated ground-truth labeling was set to 50%; the 

performance of grain objectiveness localization was evaluated by mean average precision (mAP) metric [53]. 

In the same way, the accuracy metric was used to measure the classification correctness [33]. 

 

5.3.  Phosop-1: Purity between glutinous and paddy grain 

Purity between glutinous and paddy grain was one of the main industrial problem in grain 

inspection. As to the physical appearance, the glutinous grains were both fatter and longer than the paddy 

grains. As related to the Phosop-1 problem, the augmentation could improve both localization for 32% and 

classification for 31%, as shown in Table 3. The augmentation operations (rotation, brightness adjustment 

and horizontal flipping) increased the data size from 300 grains to 2,400 grains that totally boosted the Mask 

R-CNN [50] to localize the grain objects better from an image by larger size and variety of image training 

data. To do more with less data by augmentation, the purity between glutinous and paddy rain in 500 testing 

grains could be correctly classified as 100%, using only 300 manually-labelled grains.  

 

 

Table 3. Phosop-1 – improved by augmentation using 500 testing grains 
Training set (with 2 target classes) # training grains  mAP (IoU=0.5) Accuracy 

Manually labeled training set 300 0.714 0.76 
Labeled training set with augmentation operations  2,400 0.943 1 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 5. Grain testing; (a) raw grains tested in many orienataion, (b) grains generated in the same 

orientation, and (c) localization and classification 
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5.4.  Phosop-2: Paddy grain grading 

According to the paddy grain standard inspection, the grain grading was also visionally checked by 

the grain size that could be divided into high quality (or long-paddy grain) and low quality (short-paddy 

grain). Furthermore, the glutinous grains were fatter than long-paddy grains and short-paddy grains; but the 

glutinous grains were often mixed in paddy grain products. For the physical difference between long-paddy 

and glutinous grain, most length of long-paddy grains were equal or longer than that of glutinonous grains; 

but the glutinous grains were clearly fatter than the long-paddy grains. Both long-paddy and glutinous grains 

were longer than short-paddy grains. For an important limitation, the length of paddy grain species (like 

Phitsanulok 80, Chiang Phattalung and Sang Yod Phattalung) occasionally looked half of short-paddy and 

long-paddy grain grades that made the Phosop-2 model have the overfitting error as 2%. As well as the 

Phosop-1, augmentation also improved both localization and classification (as shown in Table 4), the data 

size was increased from 450 to 3,600 training grains.  

 

Table 4. Phosop-2 – improved by augmentation using 700 testing grains 
Training set (with 3 target classes) # training grains mAP (IoU=0.5) Accuracy 

Manually labeled training set 450 0.733 0.80 

Labeled training set with augmentation operations 3,600 0.972 0.98 

 

 

5.5.  Phosop-3: Grain specie classification 

For the seed growing, grain specie purity was really important for farmers because the different 

grain species affect the different prizes and volumes of productivities. From Tables 3-5, not only the 

augmentation operations but also the higher number of data could improve the Mask R-CNN localization 

performance, almost 100%. Using only 1,320 manually-labeled grains covering 11 species, Phosop-3 

achieved the accuracy at 94% with the help of augmentation. However, some very similar grain appearance 

like Dawk Mali 105, Pathum Thani 1 and RD 79 also could not be classified by experts’ inspection that were 

difficult to be classified by the supervised model. Furthermore, PhosopNet was a transfer learning architecture 

as a source domain that could be transferred to learn more species/samples in the next target domain. 

 

 

Table 5. Phosop-3 – improved by augmentation using 1,500 testing grains 
Training set (with 11 target classes) # training grains mAP (IoU=0.5) Accuracy 

Manually labeled training set 1,320 0.874 0.73 

Labeled training set with augmentation operations 11,880 0.996 0.94 

 

 

5.6.  Experimental comparisons 

The proposed PhosopNet was compared to previous highlight paper MIMR [29] that was based on 

ResNet-50 [46] for classification. Since the PhosopNet classification was DenseNet that also had image 

augmentation to increase the number of grains in training set, instead of the full labeling by human. Both 

MIMR and PhosopNet were localized by Mask R-CNN that already had been proven to be the highest mAP 

for object localization (compared to other two-stage detections, e.g., R-CNN [50], Fast R-CNN [55], Faster 

R-CNN [56]), especially for the small objects (like grains) within an image. From Table 6, MIMR [29] did 

not have the augmentation to increase the size of dataset that made it provide lower accuracy trained by the 

less data. Another reason was ResNet has only skip connection, while DenseNet [45] had with dense block 

between the layers that could easily use the feature maps from the low-level layers.  

 

 

Table 6. Comparisson between MIMR [29] and PhosopNet 

Model 
Grain 

localization 
Classification 

Purity between glutinous 

and paddy grain 

Paddy grain 

grading 

Grain specie 

classification 

MIMR [29] Mask  

R-CNN 

ResNet-50 with transfer learning 0.71 0.74 0.68 

PhosopNet  DenseNet with augmentation and 

transfer adaptation learning 

1 0.98 0.94 

 

 

According to economic condition, the grain inspection based on bag-of-words model (traditional 

machine learning with feature extraction) is still required [20-22] in the open-world industry such as 

iRSVPred [23]. The previous papers [29] has already showed the high correctness (higher than 0.7) in the 

problems: purity between glutinous and paddy grain (Phosop-1); and paddy grain grading (Phosop-2). The 

bag of words models still had a problem on too many target classes, like the 11 classes in grain classification 
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(Phosop-3). Furthermore, some grain species (like Dawk Mali 105 and Pathum Thani 1) were looked very 

similar. For the solution, image augmentation operations could improve the accuracy classification in a large 

number of images with target classes. Most traditional machine learning algorithms were support vector 

machine (SVM) and multi-layer perceptron (MLP) that were frequently used in computer vision. SVM was 

already proven to be stronger than MLP, especially in a larger number of target classes. And SVM also had 

adaptive-SVM (Ada-SVM) [35] as transfer adaptation learning mechnism like CNN. For localization, most 

feature extraction algorithms were originated from scale invariant feature transform (SIFT) [38]. There were 

many versions of SIFTs, e.g., PCA-SIFT (SIFT with dimension reduction by principal component  

analysis) [8], speed-up robust feature (SURF) [39], root-SIFT (SIFT with ℓ1-normalization and square-root) 

and histogram of gradient (HoG) [42]. From Table 7, not only convolutional neural network but also bag-of-

words model could be improved by image augmentation, where HoG with SVM provided the highest 

accuracy as 84%. 

 

 

Table 7. Improvement on traditional machine learning with feature extraction tested by 1,500 testing grains 

Bag of words 
Phosop-3 (11 target classes) 

without augmentation with augmentation 

SIFT + SVM 0.58 0.76 

PCA-SIFT + SVM 0.52 0.71 
SURF + SVM 0.55 0.67 

root-SIFT + SVM 0.64 0.81 

HoG + SVM 0.61 0.84 

 

 

6. CONCLUSION  

As referred to the expensive labeling on too many small grains, the proposed PhosopNet has 

achieved the high performance in terms of grain localization and classification using the less labeled data 

training. The augmentation is the behind technique to generate more grain data by rotation, brightness 

adjustment and horizontal flipping. PhosopNet has Mask R-CNN for grain localization and DenseNet for 

grain classification. DenseNet is a transfer learning architecture that consists of transfer learning–learning 

some data with target classes in one stage and more data with new target classes in the next stage; and 

domain adaptaion–learning some data with target classes in one stage and more data with the same classes in 

the next stage. According to the grain standard inspection in the real-world, the experiments are divided into 

3 groups: Phosop-1 as glutinous grain and paddy grain classification, Phosop-2 as glutinous grain,  

long-grain paddy and short-grain paddy classification and Phosop-3 as 11 grain specie classification. 

Moreover, the augmentation improves not only convolutional neural network but also bag of words. For the 

main finding, the less labeled data is possible to achieve high correctness in both localization and 

classification. The shortcoming like the similar grain appearance may be alleviated by pseudo labeling (or 

self-supervision) that some labeled data is trained in the learning model; another unlabeled data is later 

classified and pseudo-labeled by the model. For the outlook and direction, the seed recognition (both CNN 

and bag of words) like rice-grains, weeds or beans will absolutely not needs the iteratively manual labeling 

process by human labor for training those large-scale small seeds.  
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