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 The field programmable gate array (FPGA) devices are ideal solutions for 

high-speed processing applications, given their flexibility, parallel processing 

capability, and power efficiency. In this review paper, at first, an overview of 

the key applications of FPGA-based platforms in 5G networks/systems is 

presented, exploiting the improved performances offered by such devices. 

FPGA-based implementations of cloud radio access network (C-RAN) 

accelerators, network function virtualization (NFV)-based network slicers, 

cognitive radio systems, and multiple input multiple output (MIMO) channel 

characterizers are the main considered applications that can benefit from the 

high processing rate, power efficiency and flexibility of FPGAs. Furthermore, 

the implementations of encryption/decryption algorithms by employing the 

Xilinx Zynq Ultrascale+MPSoC ZCU102 FPGA platform are discussed, and 

then we introduce our high-speed and lightweight implementation of the well-

known AES-128 algorithm, developed on the same FPGA platform, and 

comparing it with similar solutions already published in the literature. The 

comparison results indicate that our AES-128 implementation enables 

efficient hardware usage for a given data-rate (up to 28.16 Gbit/s), resulting in 

higher efficiency (8.64 Mbps/slice) than other considered solutions. Finally, 

the applications of the ZCU102 platform for high-speed processing are 

explored, such as image and signal processing, visual recognition, and 

hardware resource management. 
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1. INTRODUCTION  

The 5G-based communication technology is revolutionizing several fields of human and industrial 

activities, opening several perspectives for enhancing productivity, connectivity, automation, scalability and the 

interaction between humans and machines or networks, for instance, in health-care provisioning, industry 4.0, and 

internet of things (IoT) fields [1]. The 5G systems/networks are featured by larger network capacity, wider 

bandwidth, higher spectrum efficiency, and throughput, as well as low latency and power consumption, enabling 

high mobility and dense connectivity thanks to software-defined networking (SDN) as well as network function 

virtualization (NFV) approach [2]. These last provide to the network great flexibility and ability to be reconfigured 

for supporting different network functionalities, such as address translation, tunnelling, load balancing, and 

https://creativecommons.org/licenses/by-sa/4.0/
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security tasks. Three different models are employed in the 5G systems’ development, low-energy massive 

machine type communication (mMTC), ultra-reliable low-latency communication (URLLC), and high 

throughput mobile broadband (eMBB). The first one, including smart city and IoT, requires high-density and  

low-frequency packet transmission, whereas, in URLLC systems, such as unmanned aerial vehicle (UAV) and 

tactile internet, low-latency and high-reliability are the main prerogatives. Finally, in mMTC systems, like 3D 

video streams, gigabyte internet, wide capacity and high throughput are crucial. The IoT, unmanned aerial vehicle 

(UAV), vehicle-to-vehicle (V2V), and machine-to-machine (M2M) communication are examples of applications 

that can benefit from the improved performances offered by 5G communication, allowing to wriggle out from 

proprietary interfaces featuring most of the systems above [3]-[7]. 

Furthermore, low power consumption and cost minimization are two key requirements for designing 

the 5G network nodes. The development and design of cloud radio access networks (C-RAN) enables high 

energy efficiency and improved resource allocation, employing a single baseband processing unit (BBU) 

serving several remote radio heads (RRHs) [8], [9]. However, certain reconfigurability is required for the 

hardware infrastructure to support multiple services, waveforms, access methods and easily update/add the 

network functionalities. In this context, the field programmable gate array (FPGA) devices represent the ideal 

platform for obtaining the aforementioned goals. Thanks to their intrinsic capability to parallel and high-speed 

processing and their flexibility both in the design phase and during the task execution, using the dynamic partial 

reconfiguration (DPR), the FPGA devices allow network hardware high performances and reconfigurability. 

Therefore, this approach enables the simple addition of new functionalities and operating modalities related to 

the reconfigurable sections, leaving unchanged the static sections [10]. Furthermore, the functional density of 

implemented computing applications can be improved by the runtime reconfiguration (RTR) techniques and 

compared through suitable methods [11]. Also, the FPGA platforms offer optimal performances in terms of 

development time, power efficiency, and costs. 

In the present review paper, an overview of main FPGA devices’ applications in the 5G 

networks/systems is presented, exploiting their flexibility and advanced performances above described. In 

particular, different FPGA implementations of 5G building blocks, such as C-RAN controller accelerator [12], 

network slicer using network function virtualization (NFV) [13], Cognitive Radio systems [14] and 

characterizers for multiple input multiple output (MIMO) channels [15], are reported in the scientific literature, 

as well as integrated modulators, and encoders/decoders, all benefiting of the improved performances 

guaranteed by the FPGA platforms. Afterwards, innovative architectures of encryption/decryption algorithms 

designed by employing the Xilinx Zynq Ultrascale+ MPSoC ZCU102 platform are discussed. Furthermore, a 

high-speed and lightweight implementation of the AES-128 algorithm is introduced, properly developed for a 

high-frequency short-range communication apparatus, named “wireless connector” [16]. The Xilinx ZCU102 

FPGA platform constitutes the main section of the “wireless connector” system, managing all the baseband 

tasks, including the encryption/decryption of the data packets [17]. The proposed AES-128 implementation 

relies on a pipelined framework, enabling for each clock period the contemporary elaboration of different 

rounds on successive data packets, resulting in higher data throughput. In particular, the designed encryption 

solution can operate up to a 220 MHz clock frequency, obtaining time durations to perform data encryption 

and decryption both equal to just 10 clock periods; also, a data throughput greater than 28 Gbit/s is supported, 

thanks to the employed pipelined approach along with the fast solutions for implementing the Substitute Bytes 

operation. Finally, an in-depth overview of high-speed data processing applications, such as image and signal 

processing, visual recognition, and hardware resource management, based on Xilinx ZCU102 platform, is 

presented. 

Therefore, the paper is arranged as follows: in section 2 are presented the main FPGA devices’ 

applications in 5G networks/systems, whereas, in section 3, the implementations of encryption/decryption 

algorithms by Xilinx Zynq Ultrascale+ MPSoC ZCU102 platform are described in the sub-section 3.1; the 

comparison of our high-speed and resource-efficient AES-128 encryption/decryption system [16] with other 

similar implementations is introduced in the sub-section 3.2. Finally, an overview of the main applications of 

FPGA devices, based on the Xilinx ZCU102 platform, for high-speed processing is reported in section 4. 

 

 

2. APPLICATIONS OF FPGA PLATFORMS IN 5G COMMUNICATION SYSTEMS 

Due to their great flexibility and wide applicability, FPGA platforms are used in various application 

fields, such as video and imaging processing, military applications, automotive, electronics for specific 

processing, and more. These devices are commonly used for prototyping application-specific integrated circuits 

(ASICs) or processors. In this section, the literature analysis concerning the FPGA implementations is 

summarised, covering two major topics: high-throughput data processing applications and 

encrypting/decrypting algorithms, lingering on convenient designs and efficient architectures, and novel ideas. 
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In this paragraph, the main applications of FPGA-based platforms in 5G communication systems are 

investigated, in which high-throughput, low latency and high-security constraints are required for supporting 

new services, such as internet of everything (IoE), providing Internet connection to a myriad of devices [18]. 

These requirements are achievable by employing a robust and reliable hardware infrastructure. In this context, 

the FPGA represents an optimal solution for guaranteeing reconfigurability, high bandwidth, energy efficiency 

and enabling intrinsically parallel architectures to allow multiple computation kernels. The FPGA 

reconfigurability allows dynamically tuning the transmission capacity by changing the implemented services 

according to the capacity requirements. Therefore, the main FPGA producers are proposing on the market new 

FPGA-based platforms, with software programmability, multi-band functionality, and multi-standard hardware 

optimization along with hardware-level security. Several building blocks of a 5G infrastructure can be 

implemented using an FPGA-based platform, improving their overall performances. Specifically, efficient 

FPGA-based implementations of accelerators for cloud radio access network (C-RAN) controllers and network 

slicer using network function virtualization (NFV) are proposed in the literature, thus promoting the resource 

sharing and extending the functionalities of radio access network (RAN) [19]. Since FPGA can change its 

operative modalities in real-time, this allows us to share resources in C-RAN. In particular, in [20], the authors 

proposed a new FPGA-based framework to increase the performance of the data plane of the Edge-to-Core 

segment in the 5G virtualized and softwarized networks, providing a new design approach of 5G-aware traffic 

processing. This method has been implemented on an FPGA platform to test the prototype and evaluate its 

performances, so demonstrating its superior performances. Specifically, empirical tests have shown that the 

developed approach and prototype provides significant improvements in network congestion conditions, 

reducing the packet loss ratio from 49% to 4% in the worst scenario. Also, the FPGA-based prototype allows 

to obtain good scalability in the number of rules, as well as a minimum processing delay (i.e., 4 µs), thus 

complying with the latency required for 5G applications. 

Besides, in [21], the authors presented a reconfigurable architecture of a universal-filtered multicarrier 

(UFMC) system for 5G communications to select the number of sub-carriers in a sub-band, leaving unchanged 

the hardware resources, and the used filter among many available by single selection line. A commercial Virtex 

5 FPGA platform was used to test and analyze the baseband signal. The carried-out tests have revealed that the 

quantization error of the reconfigurable UFMC system was comparable with the error bound (i.e., 3.051 ×
10−5). Ferreira et al. introduced an FPGA-based baseband modulator suitable for non-contiguous carrier 

aggregation, C-RAN elaboration, and 4G/5G waveform coexistence [22]. The proposed design employs 

virtualization techniques for expanding the exploitation of the resources beyond the available ones for the Zynq 

XC7Z020; also, by applying the dynamic frequency scaling (DFS) technique, significant improvements in 

processing latency (-18.4% compared to those reported to [23]) and power consumption (up to 88% less) have 

been obtained. 

Concerning FPGA employment in coding operations, in [24], the authors proposed quasi-cyclic  

low-density parity-check (LDPC) codes that rely on a base matrix comprising several sub-matrices, including 

the cyclically right-shifted identity one and the null one. The Vivado HLS (High-level synthesis) tool has been 

used to synthesize the proposed coding scheme on the Xilinx Kintex-7 FPGA platform. In order to test the 

coding scheme, an IEEE 802.11n compliant decoder has been implemented on the same FPGA chip using a 

highly-parallel framework to achieve higher throughput (i.e., 608 Mb/s). The experimental results revealed that 

the supported throughput is higher by four compared with the corresponding CPU-based implementation. 

Besides, in the scientific literature, several software-defined wireless communication systems 

operating on 5G mmWave are proposed [25], [26]. Specifically, Riberio et al. developed a software-defined 

FPGA implementation of the orthogonal frequency division multiplexing (OFDM) transceiver for the 5G 

physical layer [27]. Some FIFO registers are placed between the functional blocks to mitigate critical path and 

high throughput for complex designs. A COTS Xilinx ML605 platform equipped with an AD-FMCOMMS1-

EBZ RF board is employed to implement the system, covering a frequency range from 400 MHz up to 4 GHz. 

The realized system prototype was featured by scalable bandwidth (20-61.44 MHz), reaching a 500 Mb/s 

throughput value by 256-QAM (Quadrature amplitude modulation) modulation scheme. Also, in [28], the 

authors presented the orchestration and reconfiguration control architecture (ORCA) project, aiming to develop 

an SDR FPGA-based architecture based on low latency and high-performance accelerators, implementing 

multiple virtualized and concurrent instances. A demonstrator was realized using two WiFi, eight Zigbee, and 

one BLE instances, using an FPGA platform (namely, the Xilinx ZC706 evaluation board) over a 40 MHz 

bandwidth. The developed architecture demonstrated rapid development time, as well as, the software-oriented 

approach enables us to create and handle multiple radios. Similarly, Duarte et al., in [29], presented an end-to-

end FPGA-based communication system; it includes a baseband and low-IF (intermediate frequency) 

processing unit, allowing on-the-fly modulation (up to 256-QAM), and a high-frequency RF front-end, both at 

the receiving and transmitting sides. Besides, an OFDM scheme was employed, obtaining 2% error vector 

magnitude (EVM) lower than the current threshold for the 256-QAM. Also, in [30], an FPGA-based wireless 
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communication system was proposed, equipped with Bluetooth connectivity. The system includes an AES 

encryption block for making secure the data transfer between two radio stations; a prototype of the developed 

communication system was realized employing the RC10 FPGA development board. Comparing the developed 

framework with other ones presented in the literature, the first has demonstrated a higher data rate and lower 

power consumption. 

As previously discussed, the NFV is a crucial element for developing the 5G networks; Pinneterre et al. 

developed a new FPGA-based virtualization approach, called vFPGAmanager, that enables orchestrated 

acceleration of resource allocation for virtual machines, uni-kernel, and containers [31]. The proposed framework 

enables dynamic remote orchestration using a set of commands associated with the FPGA accelerators and virtual 

machine status through an innovative communication mechanism’s interface. The experimental results 

demonstrated that the controller could serve the incoming commands from the orchestration with negligible 

overhead (in the worst case, it employed 18079 µs for performing 1000 commands). 

Furthermore, FPGA can be exploited for characterizing massive multiple input multiple output 

(MIMO) channels for both the local data elaboration and the standardization of the technology [32]-[35].  

In this context, Huang et al. discussed the development of an efficient geometry-based complex MIMO channel 

emulator, using an interactive-based method [36]. Besides, they analyzed and studied the trade-off featuring 

the emulator performances between resource utilization and channel accuracy. The proposed emulation 

approach employs an iterative framework for generating the geometry-based channels and optimizing the word 

length and refresh rate to reduce the FPGA’s memory and hardware utilization. Furthermore, the experimental 

results indicated that the developed emulator could be implemented using an FPGA device (Virtex 4 VFX100), 

allowing to process up to 19 TX/RX antennas pairs in real-time. Also, in [37], the authors presented a 2X2 

MIMO Generalized frequency division multiplexing (GFDM) transceiver, using National Instruments  

USRP-RIO platforms, using a Xilinx Kintex-7 FPGA, combined with Labview software, so obtaining a 

communication chain deployed both in hardware and software. A prototype of the developed transceiver, 

operating on 1.2-6 GHz frequency interval with 40 MHz bandwidth, allowed to determine the performances  

of GFDM, namely low latency, out-of-band (OOB) emission, and high reliability. In particular, experimental 

tests demonstrate that -48dBm OOB radiation has been obtained due to pulse-shape filtering applied to  

the sub-carrier, enabling to apply the GFDM in a highly fragmented spectrum scenario or cognitive radios 

framework [38]-[40]. Ayouby et al. introduced a novel combining framework for the optimal generalized 

diversity receiver for 5G MIMO channels, called generalized maximum ratio combining (GMRC), each 

represented by a single input multiple output (SIMO) and binary phase shift keying-spatially modulated 

(BPSK-SM) channel, obtained from a proper combination of diversity channels [41]. This work, derived from 

a previous implementation [42], substituted all operations into addition and multiplication, more efficiently 

hardware implemented by an FPGA platform. Furthermore, a pipelined framework was used in the proposed 

solution, resulting in a higher throughput value. The FPGA-based solution of the proposed combination scheme 

was efficient in terms of resource utilization and speed, reaching an operative frequency higher than 180 MHz 

due to the above-described solutions. Given the superiority of the GMRC scheme with respect to the MRC one 

and the efficient FPGA implementation, the GMRC solution is suitable for future 4G or 5G wireless MIMO 

receivers [43]. 

Finally, in this section, different scientific works involving FPGA devices in communication 

applications, and, mainly in 5G networks, have been analyzed and discussed. All the applications exploit the 

reconfigurability, high operational frequency and attitude to parallel computing offered by the FPGA platforms. 

Table 1 summarizes the scientific works discussed above, highlighting the application typology, employed 

FPGA platform, and benefits of FPGA implementation as shown in Appendix. 

 

 

3. IMPLEMENTATION OF ENCRYPTING/DECRYPTING ALGORITHMS WITH XILINX 

ZYNQ ULTRASCALE+ MPSoC ZCU102 PLATFORM 

In this section, the state-of-art of innovative cypher/decipherer implementations is reported, all hinged 

on the Xilinx Zynq Ultrascale+ MPSoC ZCU102 FPGA platform described in detail in the next sub-section 

3.1. Afterwards, in sub-section 3.2, we presented our novel architecture of the AES-128 algorithm, featured by 

high data throughput (up to 28.16 Gbit/s) and low FPGA utilization of hardware resource (only 3262 slices), 

and comparing it with other similar solutions reported in the literature. 

In [44], the authors introduced a multi-processor architecture to implement the computationally 

expensive fan-vercauteren (FV) homomorphic encryption scheme by employing both an FPGA and an ARM-

based processor for carrying out several homomorphic processes in the cloud. They used the Halevi, Polyakov, 

and Shoup optimization techniques for reducing the computational load due to parallel polynomial 

multiplication algorithm with high-precision arithmetic. Specifically, a Xilinx Zynq UltraScale+ MPSoC 

ZCU102 board has been deployed for developing and testing the proposed programmable architecture. 
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Through parallel computation cores and block-level pipeline methods, a 200 MHz operative frequency was 

reached, thus achieving a data rate of 400 homomorphic multiplications per second, thirteen times faster than 

the heaviest optimized software implementation on the Intel i5 processor. 

A dataset partitioning solution based on the FPGA platform has been presented in [45], to parallel 

execute software programs. To benchmark this architecture, the authors have used four different applications: 

a 256-bit AES encryption algorithm, a hotspot application for thermal simulation, a NBody application to 

measure the particle behaviours under the influence of a force, and a general matrix multiplication (GEMM) 

application multiplying two 1024x1024 floating-point values. The dataset was distributed into fixed-length 

blocks and, at each iteration, several data chunks were entrusted to a computing unit, and only that subset can 

be loaded to the unit. Filter classes and pipeline derived by Intel Threading Building Blocks (Intel TBB) were 

employed to implement parallelism and a two-stage pipeline. A serial filter constitutes the first stage for 

calculating the data chunk size and allocates it to the following idle computing unit. The second stage was a 

parallel filter to simultaneously communicate and process the data chunks in all the computing units. The 

obtained results demonstrated that the developed architecture could provide up to 86.23% of the throughput 

achievable for the AES application, up to 82.50% for hotspot application, up to 94.06% for GEMM application, 

and up to 111.51% for NBody application. 

In [46], the authors presented an AES-GCM architecture with efficient utilization of digital signal 

processor (DSP) slices and block random access memory (BRAM) tiles, implementing Drimer’s round-based 

architecture, for performing both AES and the multiplication in 10 cycles. Furthermore, a fully unrolled 

pipelined architecture, employing the AES Tbox approach, was reported to carry out the AES encryption and 

the multiplication in 1 cycle and append the GCM mode of operation with optimized GF (2128) (Galois field) 

multiplier. In the round-based architecture, the sequence of SubBytes and Shift-Rows steps were exchanged, 

and the 128-bit blocks of data were split into 1-byte chunks, applied to the Shift-rows function. To derive the 

Sbox outputs and multiplied version of SBox outputs, each byte was provided to its corresponding Tbox. Each 

column was constituted by four Tbox adjacent outcomes, combined to obtain the corresponding MixColumns 

output. In the last round, all the Tboxes generated the Sbox output and the MixColums function was skipped. 

In the unrolled pipelined architecture, the operation flow was the same as the round-based, with all the rounds 

implemented in an unrolled pipelined modality for faster execution with more area utilization. The results 

demonstrated that the round-based architecture uses 899 LUT, 1036 FF, 139 BRAM, and 685 DSP. In contrast, 

the unrolled pipelined architecture employs 785 LUT, 1043 FF, 17.5 BRAM, and 72 DSP, resulting in fewer 

resources usage. 

Kim et al. have proposed the SafeDB (spark acceleration on FPGA clouds with Enclaved data 

processing and Bitstream protection), a complete and systematic security framework for the confidential 

bitstream data provided by the on-cloud applications [47]. The framework employed a 256-bit AES algorithm 

for ensuring the bitstream security and two asymmetric key-based security systems, namely the Public-Key 

Infrastructure (PKI) and elliptic-curve cryptography (ECC). The first one was used for sharing the 

authentication key between the FPGA and the user, generated in hard-wired logic using PKI and ECC. The 

AES key protection was guaranteed for each device by a physically unclonable function (PUF) - based scheme, 

where the private key, employed for the bitstream decryption, was derived and stored in the FPGA non-volatile 

memory, whereas the public shared key was generated using the private key. In Figure 1, the data and bitstream 

flow from a client to cloud service provider (CSP) was depicted; this last processed the data and executed the 

client’s application, constituted by two sections, namely the house-keeping and kernel codes. The first one was 

a software application executed on the CSP, whereas the kernel code elaborated the user data employing the 

Xilinx CAD tool carried out in the FPGA on CSP. The FPGA locally decrypted the incoming encrypted (using 

the AES decryption module) data from the bitstream, executed the kernel code, and encrypted (using the AES 

encryption) again the outcoming data. A management tool, named FPGA-as-a-Service (FaaS), carried out the 

initial protection configuration (such as passing metadata) of the end-to-end communication between FPGA 

and CSP. The performances evaluation and the hardware utilization were estimated using three benchmark 

applications, namely word count (WC), sobel filter (SF), and logistic regression (LR). Based on the results 

provided by the last, with 64 GByte computational load, a performance improvement of up to 1.36x was 

obtained compared to the baseline; instead, for the SF application with 192 GB workload, just a 1.12x 

improvement in execution time was demonstrated. 

 

3.1.  Zynq Ultrascale+ MPSoC ZCU102 board: overview 

The Xilinx Zynq Ultrascale+MPSoC ZCU102 board enables the quick prototyping of industrial, 

automotive, communications, and video applications (Figure 2). It relies on the Zynq Ultrascale+ XCZU9EG-

2FFVB1156E multiprocessor system-on-chip (MPSoC), which combines a powerful processing system (PS) 

and the efficient programmable logic (PL) section within a single package. The PS section includes three main 

processing units: 



               ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 4, August 2021:  1291 - 1306 

1296 

- Application processing unit (APU) based on the quad-core ARM Cortex-A53. 

- Real-time processing unit (RPU) based on the dual-core ARM Cortex-R5. 

- Mali-400 graphics processing unit (GPU). 
 
 

 
 

Figure 1. Graphical representation of the SafeDB security framework presented in [47] 
 

 

 
 

Figure 2. Zynq Ultrascale+MPSoC ZCU102 board with highlighted the main components 
 

 

The PS-side contains numerous peripherals, made available through three Multi-use I/O (MIO) banks, 

including 78 pins. Also, on the PL-side, there are five high-density (HD) banks for a total of 120 pins and four 

high-performance (HP) banks corresponding to 208 pins. The board also includes 4GB DDR3 (Double Data 

Rate), small outline dual in-line memory module (SO-DIMM) memory for the PS needs and 512 MB DDR4 
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memory for the PL-section ones. The ZCU102 board offers a PCIe (Peripheral Component Interconnect 

Express) slot, two mezzanine card interfaces for hardware expansion, universal serial bus (USB),  

high-definition multimedia interface (HDMI) interfaces, and RJ45 ports (Registered Jack type 45) for the 

ethernet connection. 

The ZCU102 board provides several clock oscillators using the SI5341B clock generator (PS 

reference clock), the SI570 (manufactured by silicon labs, PL reference clock) I2C (Inter-Integrated Circuit) 

programmable oscillator (300 MHz default), and another SI570 programmable oscillator (156.2 MHz default). 

Furthermore, the board includes the SI5324 clock generator for the HDMI clock recovery and variable clock 

oscillators for the XCZU9EG MPSoC. The board has SMA connectors, named J79 (P-side) and J80 (N-side), 

to provide external clocks for the GTH transceivers. Also, the ZCU102 platform is equipped with an MSP430 

microcontroller that communicates with the onboard programmable devices by the I2C interface. The user 

interface for system control, provided by Xilinx, enables us to check and manage the board’s programmable 

features like the clocks, FMC (FPGA Mezzanine Card) functionalities power systems, and the PS-Side GTR 

(Gigabit Trans-Receiver) transceiver selection. 

The embedded processor is a 64-bit quad-core ARM Cortex-A53, based on ARMv8-A architecture, 

operating with a 1.5 GHz clock frequency and 64-bit or 32-bit operative modalities. Each Cortex-A53 core is 

equipped with a separate 32 KB L1 instruction and data cache memories and a shared 1 MB L2 cache memory. 

The real-time processor is a 32-bit dual-core ARM Cortex-R5 (each equipped with the same previous chance 

memory and a 128 KB Tightly Coupled Memory-TCM), based on the ARMv7-R architecture, and reaching a 

600 MHz maximum clock frequency. The graphics processor is an ARM Mali-400, supporting a single 

geometry processor and a two-pixel type one, supporting 667 MHz clock frequency; also, it has 64 KB L2 

cache read-only memory and 4x/16x anti-aliasing support. The platform management unit (PMU), a dedicated 

user-programmable processor, monitors the board’s power usage, error management, and system initialization 

before the booting stage; it employs a battery power mode to maintain security configuration and an RTC  

(real-time clock) also when the board is powered off. The PMU is equipped with a read-only memory 

containing a set of instructions such as the startup sequence, interrupts, and power-up/power-down requests; 

also, it stores the system-power state at all times PS-level and propagation logic errors. 

There are two memory typologies available in Zynq Ultrascale+ systems, namely a 256 KB RAM  

on-chip memory (OCM) and off-chip DDR memories. The first stage boot loader (FSBL) is loaded by the 

OCM from the boot device; after loading the FSBL in the OCM, either APU or RPU processor executes it. The 

PS is internally divided into three power regions, isolated from each other by the PMU, allowing functional 

isolation between regions; each power region can be associated with a power mode, where only some of the 

components are active. In full-power mode, all sections are fully operating, thus the most energetically 

expensive mode; in low-power mode, the active components include the RPU, OCM, TCMs, and all peripherals 

except serial advanced technology attachment (SATA) and DisplayPort. The battery-power modality is 

featured by the lowest power consumption and includes a battery-backed RAM (BBRAM) to store the 

encryption key and an RTC supported by an external clock generator to keep time also whatever the system is 

turned off. The Zynq UltraScale+ MPSoC PS has four high-speed serials I/O (HSSIO) interfaces that support 

the protocols: PCI Express®; SATA 3; DisplayPort interface (with video resolution up to 4K x 2K-30 (30 Hz 

pixel rate); USB 3.0; Serial GMII (Gigabit Media Independent Interface). 

The input-output processor (IOP) peripherals are interfaced with the external devices through a shared 

bank of up to 78 dedicated multiplexed I/O pins. Each peripheral can be mapped on multiple devices 

concurrently by using pre-set pin groups. The PL section can access most IOP interface signals; if the 78 pins 

are not enough, standard PL I/O pins can be used. Furthermore, extended multiplexed I/O (EMIO) allows 

unmapped PS peripherals to access the PL I/O pins to extend the interfacing capability of the MPSoC. The 

ZU9EG uses a 16nm FinFET technology. The PL section includes 208 HP and 120 HD I/O pins, 24 GTH  

16.3 Gb/s high-speed transceivers, and a monitoring system for detecting the chip temperature as well as 

internal voltages and currents. It also contains new high-performance peripheral interfaces, such as 1G ethernet 

and four Gen2 PCIe interfaces. 

The overall FPGA resources are organized, according to the clock management, in a column-and-grid 

layout; some of the PL resources are dedicated to the processing system for implementing transceivers, memory 

interface logic, clocking circuit, and I/O interfaces. Other blocks included inside the PS, such as the PCIe 

interface, configuration logic, and monitoring system, are integrated into the SoC. Generally, FPGAs have 

dedicated clock routes, known as clock regions, distributed in a chip region. For the UltraScale+ architecture, 

the clock regions are 60 CLBs height, corresponding to a bank of 52 I/O interfaces, 24 DSP slices, 12 block 

RAMs, or four transceiver channels [48]. The clock region width, in terms of CLBs number, affects timing 

repeatability inside them, regardless of the availability of device resources and their distribution. The clock 

region includes vertical and horizontal clock routing to distribute the clock signal within a region; these 
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horizontal and vertical clock routes can be divided at the clock region edge to obtain a flexible,  

high-performance, low-power clock distribution architecture. 

A multi-layered ARM advanced microprocessor bus architecture (AMBA), Advanced eXtensible 

Interface (AXI) bus connects the MPSoC blocks and the PL portion, allowing multiple simultaneous  

master-slave transactions. The AXI bus is designed with the shortest paths to connect the memory blocks and 

support high throughput connections to the slave blocks. The CPU, direct memory access (DMA) controller, 

and a combined entity representing the masters in the IOP generates the AMBA AXI bus data, supervised by 

the interconnection’s quality of service (QoS) block. 

 

3.2.  Comparison of proposed AES-128 encryption/decryption algorithm with other works presented in 

the scientific literature 

As above described, in [16], we proposed a high-speed and resource-efficient implementation of the 

well known AES-128 encryption/decryption algorithm, developed for a custom high-frequency (around 60 

GHz), short-range (1-10 m) communication system, named “wireless connector”. A Xilinx ZCU102 

development board has been employed as the core section of the developed communication apparatus, 

implementing all the baseband tasks, such as modulation/demodulation, coding/decoding, and 

encryption/decryption to ensure communication security. Particularly, the proposed AES-128 

encryption/decryption system employs a pipelined approach, enabling concurrent processing of multiple data 

packets each clock cycle within the 10-rounds elaboration, distinguishing the AES-128 cypher. Also, together 

with the development of the fast implementation of Sub Bytes operation through a 32-bit 16x16 Sbox matrix, 

the processing time of each AES-128 round is reduced to only one clock cycle. The behavioural and post-

implementation simulations, along with onfield tests carried out after the board programming, demonstrated 

that a 220 MHz maximum clock frequency is sustained by both the cypher and decipherer; also, only ten clock 

periods are needed to provide encrypted and plaintext data packets, respectively, and loading new data packets 

every clock cycle, thus resulting in data throughput over 28 Gbit/s (𝑖. 𝑒. 128
𝑏𝑖𝑡

𝑝𝑎𝑐𝑘𝑒𝑡
× 220 𝑀𝐻𝑧 = 28.16 𝐺𝐻𝑧). Also, a 

rapid key expansion algorithm has been developed, combining, by combinatorial operators, the current  

sub-key with those at the previous step treated with the Sbox, thus obtaining the 44 sub-keys involved in the 

ten rounds of AES-128 algorithm in only 174.55 ns. 

The proposed AES-128 cypher and combined encryption/decryption system are compared with 

different high-speed pipelined implementations presented in the scientific literature, supporting similar 

operating frequency and throughput (Table 2). Besides, the FPGA device employed by each considered work 

is indicated because it affects its performances. To compare the different solutions, the efficiency has been 

chosen as a merit figure since it considers the obtained throughput jointly and used hardware resources. 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐷𝑎𝑡𝑎 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 [𝑀𝑏𝑝𝑠]

𝑛° 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑠𝑙𝑖𝑐𝑒𝑠 
 [

𝑀𝑏𝑝𝑠

𝑠𝑙𝑖𝑐𝑒
]  (1) 

 

 

Table 2. Performances comparison of proposed AES-128 pipelined solution with other implementations 

proposed in the literature 
Design Platform Frequency [MHz] Throughput [Gbit/s] Slices Efficiency [Mbps/Slice] 

Wang et al. [49] XC6VLX240T 319.3 40.87 5927 6.90 

Good et al. (Enc/Dec) [50] XC3S2000-5 196.1 23.65 16693 1.42 
Daoud et al. (Enc) [51] XC7Z020 192.0 1.29 431 2.99 

Granado-Criado et al. (Enc) [52] XC2V6000-6 194.7 24.92 3576 6.97 

Zhang et al. (Enc/Dec) [53] XCV1000E-8 168.4 21.56 11022 1.95 

Henzen et al. (Enc) [54] XC5VSX240T 233.00 119.30 14799 8.06 

Our solution (Enc) [16] XCZU9EG 220.0 28.16 3262 8.63 

Our solution (Enc/Dec) [16] XCZU9EG 220 28.16 10278 2.74 

 

 

From the results in Table 2, it is evident that the AES-128 implementation proposed in [16] supports 

a relatively high data throughput (up to 28.16 Gbit/s) but uses fewer hardware resources compared to other 

similar works reported in the literature; therefore, it obtains a higher value of efficiency. By comparing the 

proposed solution with those reported in [52], the first supports a higher data throughput (i.e. +13.0%) but uses 

fewer FPGA slices (i.e. -8.78%), thus obtaining a higher efficiency (i.e. +23.81%). Considering the combined 

encryption and decryption system and comparing it with the solution proposed in [53], the first supports a 

higher data throughput (i.e. +30.6%), but also requires a lower FPGA hardware resources utilization  

(i.e. -6.7%), thus resulting in higher efficiency (i.e. +40.5%). 
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4. HIGH-THROUGHPUT DATA PROCESSING APPLICATIONS USING XILINX ZYNQ 

ULTRASCALE+ MPSoC ZCU102 

This section explores the applications of the Xilinx Zynq Ultrascale+ MPSoC ZCU102 FPGA 

platform for high-speed data processing in several fields, such as image and signal processing, visual 

recognition, and hardware resource management. In [55], the authors proposed a novel architecture for parallel 

multi-view high-efficiency video coding (HEVC) decoder, using the Xilinx Zynq UltraScale+ MPSoC 

ZCU102 board as a hardware accelerator for complex operations. The proposed method can optimally 

decompress in real-time 3 videos with 1920 x 1080 pixels resolution using the low power processor. To 

improve the compression efficiency, the motion prediction between two consecutive frames is needed, so 

increasing the computational load and waiting time of the inter-view parallel implementation. Therefore, the 

authors developed a similar method that relies on the decompression order variation, implementing an inter-

frame parallel approach with no data dependency between the frames. The frame dependence was defined 

based on the waiting time and frame frequency, allowing simultaneous elaborations of independent frames. 

The authors demonstrated that the MV-HEVC algorithm provided a throughput eleven times higher than the 

3D-HTM16 software and a real-time decompression of a 388p 3-views video. 

Huang et al. introduced an expandable FPGA-based digital pre-distortion (DPD) system, guaranteeing 

linear processing in 5G mm-wave transceivers transmitting wideband modulated signals [56]. The DPD engine 

architecture, implemented into FPGA, allows processing multiple samples per each clock cycle, operating at a 

clock rate of 300 MHz, achieving a scalable linearisation bandwidth up to 2.4 GHz. An undersampling 

transmitter observation receiver (TOR) was developed to dynamically update the DPD coefficients and capture 

the power amplifier (PA) distortion. The TOR is equipped with a single analog to digital converter (ADC) and 

an apposite training algorithm to update the DPD coefficients to change PA non-linearity. The authors 

demonstrated that the DPD engine using envelope complexity-reduced volterra-series (ECRV) for linearising 

5G mm-wave wideband OFDM signals, providing performances comparable to CRV methods but consuming 

less power and occupying fewer hardware resources. 

A 3D convolutional neural networks (CNNs) accelerator, suitable for embedded systems, is described 

in [57]. The accelerator employs a pipelined architecture and implements parallel computations using several 

multiply-and-accumulate (MAC) units to accelerate the inference task in CNNs; each vector performs 

simultaneously three vector convolutions. Furthermore, it carried out 3D convolution of feature maps, up to 

256x256 pixels, and 64 AXI channels, working with a kernel size of 3 and 8-bit or 16-bit fixed-point logic. 

The optimization was realized using pragma directives and SDSoC functions. The proposed implementation 

stood out for low power consumption and excellent performances, reaching 32.08 GOP/s and an efficiency of 

3.58 GOPs/W. 

Véstias et al. proposed an optimized and scalable architecture that improves inference execution times 

of CNNs, by using static and dynamic zero-skipping and weight pruning and by applying an 8-bit fixed-point 

representation based on FPGAs [58]. The architecture consists of two separate sections; the first one dedicated 

to convolutional layers and another to fully connected layers, allowing them to apply different optimization 

techniques independently. In the convolutional layers, the complete feature map is stored; then, the data from 

several blocks are loaded, including their weight coefficients, which are multiplied with the weights of kernels, 

avoiding zero activations for calculation. Kernels and memory of activations are partitioned and stored in 

separate memories allowing parallel reading. The convolutional layer module reads eight activations per clock 

cycle, but only one non-zero activation per cycle is sent. Furthermore, in the convolutional layers, to reduce 

the dispersion of weights in the kernels and the overhead due to the index information of the sparse weights’ 

vector, they adopt the block pruning method. The technique prunes weights block instead of single weights, 

reducing the overhead data and enabling parallel MACs efficiently. The fastest solution was the architecture 

with the implementation of zero-skipping, static and dynamic pruning, and dual-rate memories, which shows 

464 GOP/s and 216 GOPs/W in the Zynq XC7Z020, 1344 GOP/s, and 145 GOps/W in the Zynq XC7Z045. 

In [59], the authors proposed hardware implementation of the you only look once (YOLO) object 

detector based on a mixed-precision CNN. The authors used a half-precision (16-bit) CNN in parallel for both 

the classification and the localization, as well as the binary (1-bit) precision CNN for the feature extraction. A 

half-precision weight cache is used for the former convolutional circuit, whereas the binary one is used for the 

2D convolutional binarised neural network. All weights are stored on the off-chip DDR memory. The authors 

trained the mixed-precision YOLOv2 with their designed training system by using chainer deep learning 

framework. The results showed that the proposed framework was featured by an 85.2% recognition accuracy, 

35.71 Frames Per Second (FPS), and power usage of 4.5 W, thus ensuring an efficiency performance per power 

unit of 7.93 FPS/W. 

Janus et al. presented two hardware implementations of the Gaussian mixture model (GMM) 

algorithm for foreground object segmentation and background modelling, capable of processing real-time 

video streams with resolution up to 3840x2160 pixels and 60 FPS [60]. The first approach provides each pixel 
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with a dedicated background model and processes grayscale images. In contrast, the second gives each pixel a 

dedicated background model per clock cycle and processes red-green-blue (RGB) colour model images along 

with the grayscale ones. The background model is read via the AXI memory controller, and Gaussian 

distributions are sorted using a simple bubble sort algorithm in parallel to colour-space conversion. The authors 

employed a lossless compression algorithm for reducing the memory bandwidth (i.e., the RAM access time) 

for hardware implementation by reducing the background model’s size. The whole system used 22 W and 

obtained 32.8 GOP/s for the first implementation and 20.7 GOP/s for the latter. 

In [61], the authors proposed two optimization methods based on a virtual-channel (VC) router, one 

consisting of scoring crossbar arbitration and the other of arbitration interception. The first method processes 

the priority and round-robin arbitrations in parallel, assigning a score to the packets based on both their priority 

and current round-robin factor as weight. The packets with the highest score are transmitted to the next router 

(Figure 3). To prevent lower-priority packets from waiting in the virtual channels, the authors proposed an 

arbitration interception to overcome transmission congestion and latency, improving overall performance. If 

the high-priority channel fails to pass the crossbar arbitration, an arbitration interception signal is sent to the 

VC allocator, disabling the request of the high-priority channel, guaranteeing to the lower priority one the 

crossbar arbitration. The proposed router used 2644 LUTs and 1189 FF and showed 0.645 W power 

consumption. 
 

 

 
 

Figure 3. Scoring crossbar arbitration proposed in [61] 
 

 

Shen et al. presented an FPGA-based service gateway user plane (SGW-U) system in mobile edge 

computing (MEC) aimed to 5G scenario [62]. The system includes a generic OpenFlow switch, and, for offload 

computational tasks, a programmable GPRS tunneling protocol (GTP) processor for GTP packets 

encapsulation and decapsulation. This last processor is programmed by programming protocol-independent 

packet processors (P4) code, consisting of two sub-systems, called the GTP Encap and GTP Decap. The 

OpenFlow switch manages the ethernet packets by forwarding them between the Backhaul and the edge 

servers. When they are transmitted from the Backhaul to the edge servers, the packets are offloaded by the 

switch to the Encap sub-system, where they are arranged as GTP packets by adding the correspondent 

overhead. Similarly, the packets are offloaded to the Decap sub-system when transmitted from edge servers to 

the Backhaul, and the GTP headers are removed. The system achieves a 10 Gb/s throughput for each port, with 

a 5 μs processing latency and a total of 40 Gb/s speed considering only four ports. 

A non-volatile memory express over remote processor messaging (NVMe-over-RPMsg) software 

solution is described in [63], for emulating a remote storage system without requiring VMs. The proposed 

solution represents a high scalable framework for virtualizing remote storage systems such as NVMe solid 

state drive (SSD), overcoming the limitation of the NVMe SSD emulated method by quick emulator (QEMU). 

A guest operating system (OS) runs local applications, as wells as a remote OS, the independent storage 

management software, replacing the PCIe with RPMsg protocol to deliver messages between the two OSs. The 

remote core manages the communication between the guest OS and remote OS and represents the RPMsg 

endpoint as well as the front-end of NVMe-over-RPMsg. The remote OS implements the back-end, by 

emulating an NVMe SSD controller and processing NVMe commands received from the guest OS. The 

obtained results indicated a performance boost than the QEMU-NVMe, reducing the read/write latency by 

45.4% and scaling up to 1.74x the read/write throughput. 
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In [64], the authors benchmarked computer algorithms on three graphical accelerators for image 

processing applications: the ARM57 CPU, ZCU102 FPGA, and Jetson TX2 GPU, equipped with proprietary 

libraries (OpenCV, xfOpenCV, and VisionWorks, respectively). The algorithms, according to their 

functionality, are classified into six categories. The input processing category includes the pre-processing 

methods, including arithmetic methods, to convert the incoming format or several channels into another format. 

The image arithmetic category includes standard arithmetical or logical image processing operations; the 

algorithms can be distributed in different processing units regardless of data dependencies. The image filters-

type algorithms compute the correlation between an input image and a kernel; in the image analysis, analytic 

kernels extract the image’s features, including the colour distribution, the maximum and minimum pixel value, 

etc. The matrix product is included in the geometric transformation category. Finally, the composite kernels 

category contains all the kernels included in the above-described categories. The tests demonstrated the GPUs’ 

superiority for standard and easy-to-parallelize methods, achieving a reduction of energy/frame ratio of  

1.1-3.2 times than CPU and FPGA implementations. On the other hand, the FPGA works better than the other 

hardware accelerators for complex kernels, reducing the energy/frame ratio of 1.2-2.3 times. 

Xinkai et al. proposed an FPGA-based architecture that combines owning processing unit, enabling 

parallel and pipelined processing with buffering capability. The novel method splits the filters using a 

preliminary feature map before performing the Winograd approach, called Wino-transCONV. This algorithm 

eliminates the multiplication with 0 value and, then applies the transposed convolution, through the classic 

Winograd-transformed processing, to the splitting and remapping stage’s outputs [65]. 

Finally, they presented a parallel-aware memory partition technique to coordinate parallel operations 

and to achieve efficient data access. The dataflow of the developed Wino-transCONV algorithm is graphically 

summarized in the following Figure 4; as evident, the splitting (S1) and remapping (S5) are added to  

the fast Winograd algorithm (S2-S4). The S1 processing divides into four sub-filters windows the K×K 

complete filter window; afterwards, each of them is transformed into the related sub-inFM window. The S2 

processing performs matrix transformations for the input feature map as well as the filter, whereas for the 

output feature map, the S4 step carries out matrix transformations. The S3 processing carried out the  

element-wise multiplications manipulation (EWMM), whereas the S5 processing rearranges the m×m sized, 

intermediate output patterns, computed by the S4, into a 2m×2m sized outFM matrix. The proposed 

implementation reaches 639.2 GOP/s on the Xilinx ZCU102 board and 162.5 GOP/s on the VC706  

FPGA-based platform, obtaining a 2.2-factor improvement of the performance and up to 11.7-factor on 

processing throughput compared to other works present in the literature. Table 3 summarizes the scientific 

works discussed above, classifying them in terms of application and benefits offered by the FPGA-based 

compared to traditional implementations [66], [67]. 
 

 

 
 

Figure 4. Wino-transCONV dataflow proposed in [65] 
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Table 3. Summarizing table of the scientific works discussed in section 4, related to image and signal 

processing, visual recognition, and hardware resource management using the ZCU102 platform 
Work Application Benefits 

Liu et al. [55] Hardware Multi-View decoder High parallel 

High throughput (11x faster compared to the software 
implementation) 

Huang et al. [56] Digital Pre-Distorsion system Hardware-efficient 

High-bandwidth scalability 
Ordoñez et al. [57] 3D CNN graphic accelerator Reconfigurability 

Flexibility 

High throughput (32.08 GOP/S) 
High efficiency (3.58 GOP/s/W) 

Véstias et al. [58] CNN optimized with fixed-

point representation, zero-
skipping, and weight pruning 

operation 

Reduced execution time (2.9 ms) 

High throughput (5.8X compared to traditional 
implementations) 

Low memory requirements 

Nakahara et al. [59] YOLOver2 object detector Low recognition time (28 ms) 
Higher accuracy (mAP-mean average accuracy of 85.2%) 

Janus et al. [60] Gaussian mixture algorithm for 

video streams 

Process 4K video in real-time 

High throughput (32.8 GOPS) 
High efficiency (6.98 GOPS/W) 

High accuracy (percentage of wrong 

classified pixels varies from 6% to 11%) 
Guo et al. [61] Virtual-Channel router Reduced hardware resource (-10% LUT compared to a 

traditional router) 
Low packet latency 

High throughput (+165% compared to a traditional router) 

Shen et al. [62] Processing engine for packing 
and unpacking of GTP packet 

High throughput (10 Gbps) 
Low latency (5 µs) 

Zhang et al. [63] NVMe for remote processing 

messaging (RPMsg) 

Reduced latency (-45.4% compared to QEMU-NVMe system) 

High throughput (1.74x compared to QEMU-NVMe system) 
Di et al. [65] Accelerated Architecture for 

Wino-transCONV of GANs 

High throughput (8.6x ÷11.7x compared to conventional Conv-

baseline) 

High performance (2.2x compared to conventional Conv-
baseline) 

 

 

5. CONCLUSION 

The FPGA-based platforms represent an ideal solution for high-speed processing due to their intrinsic 

capability to parallel elaboration as well as their flexibility both in the design phase and runtime step. Thanks 

to these advanced features, the FPGA devices are widely applied in 5G networks/systems for implementing 

critical tasks, such as accelerators for C-RAN controllers, network slicer employing NFV, and characterization 

of MIMO channels. In this review paper, we explored the applications of FPGA devices for high-speed 

processing; in particular, an overview of the main applications of the FPGA devices in the 5G networks/systems 

was presented, exploiting their flexibility and advanced performances. These features enable the network 

apparatuses to support different functionalities and operating modalities in runtime to dynamically respond to 

the communication requirements and improve resource and power efficiency. Thanks to hardware 

virtualization, the FPGA applications are opening new frontiers for developing the new generation of network 

device able to comply with the evolution of the communication architectures. Afterwards, an AES-128 

cypher/decipher, implemented on the Xilinx Zynq Ultrascale+ MPSoC ZCU102 FPGA board, were presented, 

as well as, we introduced our efficient and performant AES-128 encryption/decryption system, suitably 

designed for a point-to-point, close-distance and high-throughput communication apparatus, named “wireless 

connector”. The encryption/decryption system is based on the ZCU102 FPGA development board, 

implementing a pipelined strategy, enabling the parallel elaboration, in each clock cycle, of multiple rounds on 

distinct consecutive data packets, obtaining a higher data rate. Specifically, the developed AES-128 

cypher/decypher reaches 220 MHz clock frequency, spending ten clock cycle s for both encryption and 

decryption; a data rate greater than 28 Gbit/s is also achieved thank to the employed pipelined solution and 

rapid implementation of the Substitute Bytes step. Besides, our AES-128 encryption system is featured by 

efficient hardware resource utilization, obtaining an efficiency higher (i.e., 8.63 Mbps/slice) than similar 

solutions reported in the scientific literature. Finally, further applications of the Xilinx Zynq Ultrascale+ 

MPSoC ZCU102 platform for high-speed processing were explored. Exploiting the wide range of peripherals 

and the advanced performances in terms of data throughput and storing capability, the ZCU102 board 

represents a powerful and versatile tool to implement custom solutions in various operative scenarios, such as 

image and signal processing, visual recognition, and hardware resource management. 
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APPENDIX 

Table 1. Summarizing table with the scientific works analyzed in section 2 
Work Application FPGA Platform Benefits 

Ricart-Sanchez et al. 

[20] 

5G-aware traffic 

processing 

NetFPGA-SUME board 

(Xilinx Virtex-7 690T) 

Reduced packet loss (4%) 
Good scalability 

Reduced process delay (4µs) 

Kumar et al. [21] 
Universal-Filtered 
Multicarrier (UFMC) 

system 

Xilinx Virtex-5 

XC5VLX20T-2FF323 
Reduced quantization error (≈3.051X10-5) 

Ferreira et al. [22] 
Baseband modulator 
utilizing the DFS 

technique 

Xilinx Zynq XC7Z020 
Low processing latency (< 1 ms) 
Reduced power consumption (180 mW 

@100MHz) 

Riberio et al. [27] OFDM transceiver Xilinx ML 605 
High reconfigurability 
Reduced cost 

Low hardware utilization 

Jiao et al. [28] 
Multi-standards SDR 

architecture  
Xilinx ZC706 

Multiple transmissions using parallel 
virtual channels 

Parametric control of each channel 

Radio resources slicing 

Duarte et al. [29] 
SDR communication 

architecture 
Xilinx VC707 

Design flexibility 

Upgradability 

Reconfigurability 
Low cost 

Pinneterre et al. [31] Virtualization Manager Xilinx Virtex-7 

Dynamic remote management with 

commands function of hardware 
accelerator and VNF status. 

Huang et al. [36] MIMO channels emulation Xilinx Virtex-7 VH870 

Efficient emulations of a large number of 

rays 
AR(Autoregressive)-fading channel 

generator reduces the required memory by 

95% than traditional LUT-based approach 
Better scalability 

Danneberg et al. [37] 
2x2 MIMO GFDM 

transceiver 

NI USRP RIO platform 

(Xilinx Kintex-7 410T) 

Design flexibility 

Reduced latency 
Low OOB emission (-48 dBm) 

Ayoubi et al. [41] 
GMRC receiver for 
MIMO channels 

Altera Cyclone 
EP1C6F256 

High throughput 
Low hardware utilization 
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