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 This study deals with the problem of robust fault detection for linear time-

invariant fractional-order systems (FOSs) assumed to be affected by sensor, 

actuator and process faults as well as disturbances. The observer-based 

method was employed to solve the problem, where the detector is an 

observer. The problem was transformed into the mixed 𝐻∞/𝐻− robust 

optimization problem to make the system disturbance-resistant on one hand 

and fault-sensitive on the other hand. Then, sufficient conditions were 

obtained to solve the problem in the linear matrix inequality (LMI) mode. 

Finally, the effectiveness and superiority of the method were demonstrated 

by simulating the solutions on a single-input multi-output thermal testing 

bench. 
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1. INTRODUCTION 

Fraction calculations made their way through engineering and application after 300 years and 

merely theoretical studies in mathematics [1]-[18]. Given different and new mathematics provided in fraction 

calculations, debates in various fields such as control theory require new proofs and theorems. As a result, the 

fundamental aspects of fractional-order systems (FOSs) were investigated, and stability theorems were 

proposed [19]-[22]. However, many aspects remain open, with some of them being currently studied. One of 

such aspects is fault detection (FD) in FOSs, which is of great importance. According to searches, there have 

been few studies in this area. Aribi et al. [23] present three methods to evaluate fractional residual.  

Aribi et al. [24], diagnosis methods in FO thermal systems have been proposed. The FD control of FOSs is 

investigated in [25]. Zhong et al. [26] tried to find a way to solve the fault detection observer design problem 

for fractional-order systems. Their subject is precisely the same as the subject of this article. However, they 

were utterly unsuccessful because they could not prove the stability of the closed-loop system, and the 

published article has very undeniable flaws. 

Various methods have been proposed to detect faults [27]-[33]. One of these methods is the model-

based FD technique, which has been practically employed in many industrial applications [34]-[38]. Figure 1 

illustrates the algorithm of the model-based FD method. Disturbances disable typical fault detection systems 

in real-life systems since they are treated as faults. So, alarms are activated while there has been no fault in 

https://creativecommons.org/licenses/by-sa/4.0/
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the system. For this reason, robust fault detection systems have been designed. In a fault detection system, 

robustness is defined as the system’s sensitivity to faults and resistance against unknown inputs [39]-[42].  

The main challenge is now to implement the model-based fault detection algorithm on FOSs and 

make the system disturbance-resistant on the one hand and fault-sensitive on the other hand. Additionally, it 

is well-known that the use of linear matrix inequality (LMI) can eliminate restrictions on conventional 

approaches, and can be used to solve problems involving multiple matrix variables. Besides those, different 

structures can be imposed on these matrices [43]-[46]. To this end, the problem was transformed into the 

mixed 𝐻∞/𝐻− robust optimization problem, also present the results in linear matrix inequalities (LMIs) 

robust control theoretical framework. 

 

 

 
 

Figure 1. Model-based fault diagnosis algorithm 

 

 

The rest of the paper is organized as follows. In section 2, implementation of the model-based 

technique on the FOS, as well as, the preliminaries and the problem statement are given. The solutions to the 

FD problem for FOSs are presented in section 3. Also, some simulation examples are given in section 5 to 

illustrate the results. Finally, some concluding remarks are provided in section 6. Notations: 𝐴𝑇 denoted the 

transpose of a matrix 𝐴, its conjugate �̅� and its conjugate transpose 𝐴∗. 𝐻𝑒𝑟(𝐴) is short for 𝐴 + 𝐴∗, and 

𝜎max⁡(𝐴) represents the maximum singular value of 𝐴.  

 

 

2. SYSTEM DESCRIPTION AND PROBLEM STATEMENT 

Consider the following FOS: 

 

G: {

Dαx(t) = Ax(t) + Bu(t) + Bdd(t) + Bff(t)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

y(t) = Cx(t) + Du(t) + Ddd(t) + Dff(t)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

x(t) = x(0)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡t ∈ [-h1, 0]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

    (1) 

 

System G is the state space form of a time-invariant linear FOS where D is the differ-integral operator and 

0 < 𝛼 < 1. 𝑥(t) ∈ ℝ𝑛  denotes the pseudo-state vector. 𝑦(t) ∈ ℝ𝑟 denotes the measured output.⁡⁡𝐴 ∈ ℝ𝑛×𝑛,
𝐵𝑑 ∈ ℝ

𝑛×𝑝, 𝐵𝑓 ∈ ℝ
𝑛×𝑞 , 𝐶 ∈ ℝ𝑟×𝑛, ⁡𝐷𝑑 ∈ ℝ

𝑟×𝑝 and 𝐷𝑓 ∈ ℝ
𝑟×𝑞  are constant matrices. The 𝑥(0), stand for 

initial condition defined on [−ℎ1, 0] where ℎ1 ∈ ℝ⁡ and 0 < ℎ1⁡. This FOS affected by disturbance⁡⁡𝑑(t) ∈
ℝ𝑝 as an unwanted input and fault 𝑓(t) ∈ ℝ𝑞 input as a bug in the system. If there is a problem in reading 

and sending data, or in measurement, it is referred to as a sensor fault 𝑓𝑠(𝑡), which is represented by 

considering Bf = 𝐼 in the output equation of the system as (2) [47]. 

 

y(t) = Cx(t) + Ddd(t) + 𝑓𝑠(𝑡)       (2) 

 

If there is a problem with actuators' performance, it affects the input of the system and calls it an actuator 

fault 𝑓𝐴: 

 

⁡
Dα⁡x(t) = A⁡x(t) + B(u(t) + 𝑓𝐴(t)) + Bdd(t)

y(t) = C⁡x(t) + D(u(t) + 𝑓𝐴(t)) + Dd⁡d(t)⁡
     (3) 
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by adding the process fault 𝑓𝑝(t) according to its location and type and considering Bf = 𝐵𝑝 and Df = 𝐷𝑝, 

generally, in this method, additive faults for describing the fault is considered for the system with sensor, 

actuator and process faults. As a result, the faults can be rewritten as: 

 

𝑓(𝑡) = [

𝑓𝐴(t)

𝑓𝑝(t)

𝑓𝑠(𝑡)

],   Bf = [𝐵 𝐵𝑝 0],  Df = [𝐷 𝐷𝑝 𝐼], 

 

one of the best definitions of fractional derivatives so far in control applications is the Caputo’s definition [48]:  

 

Dt
α ≜⁡

1

Γ(k−α)
⁡∫

f(k)(τ)

(t−τ)α+1−k
⁡dτ

t

aa
⁡        (4)  

 

if the FOS (1) is relaxed at 𝑡 = 0, the transfer functions of the system, in which the fault and disturbance are 

as inputs and the output of the system considered as output are as (5) and (6), respectively [49]:  

 

𝐺𝑦𝑓(𝑠) = 𝐶(𝑆
𝛼𝐼 − 𝐴)−1𝐵𝑓 + 𝐷𝑓       (5) 

 

𝐺𝑦𝑑(𝑠) = 𝐶(𝑆𝛼𝐼 − 𝐴)−1𝐵𝑑 + 𝐷𝑑        (6) 

 

according to Figure 1, after determining the dynamical equations of the system with the fault, the next 

important step is to define a stable observer for the system (1). For this purpose, the observer F has been 

designed as (7). 

 

𝐹:

{
 

 
𝐷𝛼⁡�̂�(𝑡) = ⁡𝐴⁡�̂�(𝑡) + 𝐿⁡⁡𝑟(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

�̂�(𝑡) ⁡= ⁡𝐶⁡�̂�(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑟(𝑡) = 𝑦(𝑡) − �̂�(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

�̂�(𝑡) = 𝜑(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 ∈ [−ℎ2, 0]

       (7) 

 

Where �̂�(𝑡) ∈ ℝ𝑛 denotes the detection observer state vector,⁡�̂�(𝑡) ∈ ℝ𝑟  represents the output estimation 

vectors, 𝑟(𝑡) ∈ ℝ𝑟 is residual, and 𝐿 ∈ ℝ𝑛×𝑟 is the observer gain.  

By the combination of the filter (7), the system (1) and considering 𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡)⁡ the 

following augmented FOS is obtained: 

 

{
𝐷𝛼𝑒(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + (𝐵𝑑 − 𝐿𝐷𝑑)𝑑(𝑡) + (𝐵𝑓 − 𝐿𝐷𝑓)𝑓(𝑡)

𝑟(𝑡) = 𝐶𝑒(𝑡) + 𝐷𝑑𝑑(𝑡) + 𝐷𝑓𝑓(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
   (8) 

 

To have a robust FD system, the design should be carried out in such a way that the following 

conditions are established: 

 The observer (7) must be designed such that asymptotically stability of the augmented system (8) is 

guaranteed. To achieve this condition, |𝐴𝑟𝑔 (𝑠𝑝𝑒𝑐((𝐴 − 𝐿𝐶)))| > 𝛼
𝜋

2
, where spec ((𝐴 − 𝐿𝐶)) is the set 

of eigenvalues of (𝐴 − 𝐿𝐶) or there exist 𝑃 > 0 and 𝑄 > 0  such that  𝑠𝑦𝑚(𝑟𝐴𝑃 + �̅�𝐴𝑄) < 0  where 

𝑟 = 𝑒𝑗(1−𝛼)
𝜋

2  is asymptotically stable [50]. Figure 2 shows the stability region for this system. 

 Robustness to disturbance input is one of the main design points of the FD. By using 𝐻∞ optimization 

criteria, this performance index expressed as (9) [51]. 

 

𝑠𝑢𝑝
‖𝑟(𝑡)‖2

‖𝑑(𝑡)‖2
< 𝛾, 𝛾 > 0        (9) 

 

 Robust control by 𝐻− optimizations criteria is the best idea for solving system sensitivity to faults. 

Performance index (10) guarantees the residual's sensitivity to faults, which is expressed as (10) [52]. 

 

𝑠𝑢𝑝
‖𝑟(𝑡)‖2

‖𝑓(𝑡)‖2
> 𝛽,𝛽 > 0        (10) 
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Figure 2. Stable region illustration 

 

 

Based on the three above assumptions, mixing 𝐻∞/𝐻− is the proposed method in this work for FDI 

design. The following definitions and lemmas are used for implementing the proposed method. Definition 1. 

[53] The 𝐻∞ norm of 𝐺𝑦𝑑(𝑠) for FOS (1) is defined as (11). 

 

‖𝐺𝑦𝑑‖_(𝐻_∞⁡) ≜ 𝑠𝑢𝑝
𝑅𝑒(𝑠)≥0

𝜎𝑚𝑎𝑥(𝐺𝑦𝑑(𝑠))      (11) 

 

Lemma 1: (H-BR): [54] Consider the FOS (1) and 𝐺𝑦𝑢(𝑠) = 𝐶(𝑆𝛼𝐼 − 𝐴)−1𝐵 + 𝐷  then  ‖𝐺𝑦𝑢(𝑠)‖𝐻∞
< 𝛾  

if only if there exist 𝑃 > 0 and 𝑄 > 0 such that:  

 

[

𝑠𝑦𝑚(𝐴𝑋) ∗ ∗
𝐶𝑋 −𝛾𝐼 ∗

𝐵𝑇 𝐷𝑇 −𝛾𝐼
] < 0       (12) 

 

where 𝑋 = {
𝑒𝑗𝜃𝑃 + 𝑒−𝑗𝜃𝑄,⁡⁡⁡⁡𝑖𝑓⁡0 < 𝛼 < 1

𝑒𝑗𝜃 ⁡⁡⁡𝑖𝑓⁡1 ≤ 𝛼 < 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
⁡⁡𝜃 =

𝜋

2
(1 − 𝛼) 

Lemma 2: [55] Let matrices 𝐴 ∈ ℝ𝑛×𝑛,⁡𝐵 ∈ ℝ𝑛×𝑚 ,⁡Φ ∈ 𝐻2 
 Θ ∈ 𝐻(𝑛+𝑚) and 𝜓 ∈ 𝐻2. Set Λ is defined as (13). 

 

Λ(Φ,Ψ) ≜ {𝜆 ∈ 𝐶 |[
𝜆
𝐼
]
∗

Φ [
𝜆
𝐼
] = 0, [

𝜆
𝐼
]
∗

Ψ[
𝜆
𝐼
] ≥ 0}     (13) 

 

For 𝐻(𝜆) ≜ (𝜆𝐼𝑛 − 𝐴)
−1, there holds: 

 

[
𝐻(𝜆)
𝐼𝑚

]
∗

Θ [
𝐻(𝜆)
𝐼𝑚

] < 0,⁡ ⁡⁡⁡⁡∀𝜆 ∈ Λ       (14) 

 

there exist 𝑃, 𝑄 ∈ 𝐻𝑛  and 𝑄 > 0 such that: 

 

[
𝐴 𝐵
𝐼𝑛 0

]
∗

(Φ⊗ 𝑃 +Ψ⊗ 𝑄) [
𝐴 𝐵
𝐼𝑛 0

] + Θ < 0      (15) 

 

then "(15) ⟹ (14)". Furthermore, if Λ represents a curve in the complex plane, then holds"(15) ⟺ (14)". 
Lemma 3: [55] The set Λ(Φ,Ψ) is defined as: 

 

Λ(Φ,Ψ) ≜ {𝜆 ∈ 𝐶 |[
𝜆
𝐼
]
∗

Φ[
𝜆
𝐼
] ≥ 0, [

𝜆
𝐼
]
∗

Ψ[
𝜆
𝐼
] ≥ 0}     (16) 

 

if matrices 𝑃 > 0  and 𝑄 > 0  exist such that LMI condition (15) holds, then condition (14) holds ∀𝜆 ∈ Λ. 

Lemma 4: (Projection lemma) [56]. Unstructured matrix 𝑋  satisfies the following equations if a symmetric 

matrix⁡𝑍 ∈ 𝑆𝑚 and column dimension 𝑚, 𝑈 and 𝑉 matrices exist: 
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𝑈𝑇𝑋𝑉 + 𝑉𝑇𝑋𝑇𝑈 + 𝑍 < 0        (17) 

 

if and only if: 

 

𝑁𝑈
𝑇𝑍𝑁𝑈 < 0         (18) 

 

and 

 

𝑁𝑉
𝑇𝑍𝑁𝑉 < 0         (19) 

 

concerning to 𝑋 are satisfied. Where 𝑁𝑈 and 𝑁𝑉 are arbitrary matrices, whose columns form a basis of the 

null spaces of 𝑈 and 𝑉, respectively. 

Lemma 5: [57]. The FOS G(s)is stable if and only if ‖𝐺(𝑠)‖𝐻∞ is bounded. 

 

 

3. MAIN RESULTS 

In this section, conditions ii and iii are transformed into LMIs. Corollary 1 unifies the theorems. 

Theorem 1. The system (8) is stable, and the performance indices (9) is guaranteed, if there exist positive 

scalar 𝛾 positive definite symmetric matrices 𝑃1,⁡⁡⁡𝑄1 and matrices 𝑋, 𝑁 such that the following LMIs hold: 

 

[

𝐻𝑒𝑟(Π) + 𝐶𝑇𝐶 Ξ2 Ω + C𝑇𝐷𝑑
∗ −𝜆(𝑋 + 𝑋𝑇) 𝜆Ω

∗ ∗ 𝐷𝑑
𝑇𝐷𝑑 − 𝛾

2⁡

⁡
𝐼

] < 0     (20) 

 

where  

 

Π = 𝐴𝑇𝑋 − 𝐶𝑇𝑁𝑇 , Ω = 𝑋𝑇𝐵𝑑 − 𝑁𝐷𝑑 , 𝜆 > 0, Ξ2 = 𝜆Π − 𝑋
𝑇 + 𝑟𝑃1 + 𝑟𝑄1, 𝑟 = 𝑒𝑗𝜃 , 𝜃 = (1 − 𝛼)

𝜋

2
. 

 

holds and the filter gain 𝐿 is obtained: 

 

𝐿 = 𝑋−𝑇𝑁         (21) 

 

Proof:  Based on definition 1:  

 

‖𝐺(𝑠)𝑟𝑑‖𝐻∞ ≜ 𝑠𝑢𝑝
𝑅𝑒(𝑠)≥0

𝜎⁡(𝐺(𝑠)𝑟𝑑) ⁡⁡= 𝑠𝑢𝑝𝜎⁡(
𝑅𝑒(𝑠)≥0

𝐶(𝑆𝛼𝐼 − �̃�)
−1
�̃�𝑑 + 𝐷𝑑)⁡⁡⁡⁡⁡⁡⁡⁡  (22) 

 

where  

 

�̃� = 𝐴 − 𝐿𝐶⁡⁡⁡⁡
�̃�𝑑 = 𝐵𝑑 − 𝐿𝐷𝑑

          (23) 

 

by some basic matrix calculations: 

 

‖𝐺(𝑠)𝑟𝑑⁡‖𝐻∞
< 𝛾 ⟺ 𝐺(𝑠)𝑟𝑑𝐺(𝑠)𝑟𝑑

∗ − 𝛾2𝐼 < 0⁡⁡⁡∀⁡𝑅𝑒(𝑠) ≥ 0 ⟺ [
𝐻(𝜆)
𝐼𝑚

]
∗

Θ [
𝐻(𝜆)
𝐼𝑚

] < 0,⁡ ⁡∀𝜆 ∈ Λ (24) 

 

where⁡𝐻(𝜆) ≜ (𝜆𝐼𝑛 − �̃�)
−1

, 𝜆 = 𝑆𝛼 , and Λ(Φ,Ψ) is defined in (13), also: 

 

Θ = [
𝐶𝑇𝐶 𝐶𝑇𝐷𝑑
𝐷𝑑
𝑇𝐶 𝐷𝑑

𝑇𝐷𝑑 − 𝛾
2𝐼
]          (25) 

 

then according to Lemma 2, the last part of (24) is also equivalent to the statement that ∃⁡𝑃1 , ⁡𝑄1 ∈ 𝐻𝑛 , 
⁡𝑃1 > 0 and 𝑄1 > 0 such that the LMI (24) holds. 

 

[
𝐼 0
�̃� �̃�𝑑

]
𝑇

(Φ⊗ 𝑃1 +Ψ⊗𝑄1) [
𝐼 0
�̃� �̃�𝑑

] + Θ < 0⁡⁡      (26) 
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similar to [54],  

 

Φ⁡ = ⁡ [
0 �̅�
𝑟 0

]

Ψ⁡ = ⁡ [
0 𝑟
�̅� 0

]
         (27) 

 

now the inequality (26) can be reformulated as 𝑁𝑈
𝑇𝑍𝑁𝑈 < 0 where 𝑁𝑈 and 𝑍 are given by: 

 

𝑍 = [

𝐶𝑇𝐶⁡ 𝑟𝑃1 + 𝑟𝑄1 C𝑇𝐷𝑑
𝑟𝑃1 + 𝑟𝑄1 0 0

𝐷𝑑
𝑇C 0 𝐷𝑑

𝑇𝐷𝑑 − 𝛾
2𝐼

]

𝑁𝑈 = [
𝐼 0
�̃� �̃�𝑑
0 𝐼

]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

     (28) 

 

by defining the matrices 𝑁𝑉 and 𝑉 as (29). 

 

𝑁𝑉 = [
𝜆𝐼 0
−𝐼 0
0 𝐼

] → 𝑉 = [𝐼⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜆𝐼⁡⁡⁡⁡⁡⁡⁡⁡⁡0]      (29) 

 

It can be obtained by Lemma 4 that inequality 𝑁𝑈
𝑇𝑍𝑁𝑈 < 0 is equivalent to: 

 

𝑍 + [
�̃�𝑇

−𝐼
�̃�𝑑

] [𝑋 𝜆𝑋 0] + [
𝑋𝑇

𝜆𝑋𝑇

0

] [�̃�𝑇 −𝐼 �̃�𝑑] < 0      (30) 

 

Now by substituting 𝑁 = 𝑋𝑇𝐿 inequality (20) is obtained, and the proof is completed.  

Theorem 2. The augmented fractional-order system (8) is stable and it guarantees the performance index 

(10), if there exist positive scalar ⁡𝛽 > 0 and symmetric matrices 𝑃2,⁡𝑄2 and matrices 𝑋, 𝑁 such that the 

following LMI: 

 

[

𝐻𝑒𝑟(Π) − 𝐶𝑇𝐶 Ξ2 Ω − C𝑇𝐷𝑓

∗ 𝜆(𝑋 − 𝑋𝑇) 𝜆Ω

∗ ∗ −𝐷𝑓
𝑇𝐷𝑓 + 𝛽

2⁡

⁡
𝐼

] < 0     (31) 

 

where 

 

Π = 𝐴𝑇𝑋 − 𝐶𝑇𝑁𝑇 , Ω = 𝑋𝑇𝐵𝑓 − 𝑁𝐷𝑓   , 𝜆 > 0 , Ξ2 = 𝜆Π − 𝑋
𝑇 + 𝑟𝑃2 + 𝑟𝑄2,  𝑟 = 𝑒𝑗𝜃 , 𝜃 = (1 − 𝛼)

𝜋

2
. 

 

The filter gain 𝐿⁡is given by (21). 

Proof: Although the principles of proving this theorem are very similar to that Theorem 1, since it contains 

small and essential points, the proof of this theorem is fully addressed. 

Based on definition 1: 

 

‖𝐺(𝑠)𝑟𝑓‖𝐻∞
≜ 𝑠𝑢𝑝

𝑅𝑒(𝑠)≥0
𝜎⁡(𝐺(𝑠)𝑟𝑓) ⁡⁡= 𝑠𝑢𝑝𝜎⁡(

𝑅𝑒(𝑠)≥0
C(𝑆𝛼𝐼 − �̃�)

−1
�̃�𝑓 + 𝐷𝑓)⁡⁡⁡   (32) 

 

where �̃�𝑓 = 𝐵𝑓 − 𝐿𝐷𝑓 ,⁡⁡⁡ 

By analyzing ‖𝐺(𝑠)⁡𝑟𝑓‖𝐻∞
: 

 

‖𝐺(𝑠)⁡𝑟𝑓‖𝐻∞
< 𝛾 ⟺ 𝐺(𝑠)𝑟𝑓𝐺(𝑠)𝑟𝑓

∗ − 𝛾2𝐼 < 0⁡⁡∀𝑅𝑒(𝑠) ≥ 0 ⟺ [
𝐻(𝜆)
𝐼𝑚

]
∗

Θ [
𝐻(𝜆)
𝐼𝑚

] < 0⁡. ∀𝜆 ∈ Λ (33) 

 

where⁡𝐻(𝜆) ≜ (𝜆𝐼𝑛 − �̃�)
−1
�̃�𝑓 and Λ(Φ,Ψ) is defined in (11), also: 
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Θ = [
−𝐶𝑇𝐶 −𝐶𝑇𝐷𝑓

−𝐷𝑓
𝑇𝐶 𝐷𝑓

𝑇𝐷𝑓 − 𝛽
2𝐼
]

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
       (34) 

 

then according to Lemma 3, the last part of (29) is also equivalent to the statement that ∃⁡𝑃2, ⁡𝑄2 ∈ 𝐻𝑛 , 𝑃2 >
0 and 𝑄1 > 0 such that the LMI (29) holds. 

 

[
𝐼 0
�̃� B̃𝑓

]
𝑇

(Φ⊗ 𝑃2 +Ψ⊗ 𝑄2) [
𝐼 0
�̃� B̃𝑓

] + Θ < 0⁡⁡     (35)  

 

similar to [54],  

 

Φ⁡ = ⁡ [
0 �̅�
𝑟 0

]

Ψ⁡ = ⁡ [
0 𝑟
�̅� 0

]
           (36) 

 

now the inequality (29) can be reformulated as 𝑁𝑈
𝑇𝑍𝑁𝑈 < 0 where 𝑁𝑈  and 𝑍 are given by: 

 

𝑍 = [

−𝐶𝑇𝐶⁡ 𝑟𝑃2 + 𝑟𝑄2 −𝐶𝑇𝐷𝑓
𝑟𝑃1 + 𝑟𝑄1 0 0

−𝐷𝑓
𝑇𝐶 0 𝐷𝑓

𝑇𝐷𝑓 − 𝛽
2𝐼

]

𝑁𝑈 = [
𝐼 0
�̃� B̃𝑓
0 𝐼

]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

     (37) 

 

by defining the matrices 𝑁𝑉and 𝑉 as (38). 

 

𝑁𝑉 = [
𝜆𝐼 0
−𝐼 0
0 𝐼

] → 𝑉 = [𝐼⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜆𝐼⁡⁡⁡⁡⁡⁡⁡⁡⁡0]         (38) 

 

It can be obtained by Lemma 4 that inequality 𝑁𝑈
𝑇𝑍𝑁𝑈 < 0 is equivalent to: 

 

𝑍 + [
�̃�𝑇

−𝐼
B̃𝑓
𝑇
] [𝑋 𝜆𝑋 0] + [

𝑋𝑇

𝜆𝑋𝑇

0

] [�̃�𝑇 −𝐼 B̃𝑓
𝑇] < 0     (39) 

 

Now by substituting 𝑁 = 𝑋𝑇𝐿 inequality (31) is obtained, and the proof is completed.  

Corollary 1. Solving the following convex optimization problem, results a feasible solution to the  

multi-objective 𝐻−/𝐻∞ problem (fault detection problem) for Given: 
 

max ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽
𝑋. 𝑃1, 𝑃2. 𝑄1. 𝑄2. 𝑁

𝑠. 𝑡⁡⁡⁡⁡⁡(20). (31).
        (40) 

 

Proof: By collecting the theorems 1 and 2, the proof is completed.  

Remark 3: In this work, the residual evaluation function is defined as [52]: 
 

𝐽(𝑡) = (𝜃−1 ∫ 𝑟𝑇(𝑠)𝑟(𝑠)𝑑𝑠
𝜃

0
)
1/2

        (41) 

 

where 𝜃 represents the detection time range. The upper threshold values are calculated as: 
 

𝐽𝑡ℎ = sup
𝑓(𝑡)=0
𝑑(𝑡)∈𝐿2

𝐽(𝑡)         (42) 

 

 

4. SIMULATION EXAMPLES 

The model considered for validating the results proved in this article is the testing bench that 
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described in [24]. As can be seen in Figure 3, this type of test bench made up of two long aluminum rods 

which are glued together with the heat paste. The input of this model, which is a single input multi output 

system is voltage 𝑉𝑟(𝑡) and its outputs are 𝜃1, 𝜃2, 𝜃3⁡𝑎𝑛𝑑⁡𝜃4. Rod 1 thermal behavior is as (43) and (44). 

 

𝜃1 = ℒ−1[𝐺13] ∗ 𝜃3        (43) 

 

𝜃3 = ℒ
−1[𝐺𝑉3] ∗ 𝑉𝑟(𝑡)        (44) 

 

 

 
 

Figure 3. Two rods thermal bench 

 

 

Rod 2 thermal behavior is as (45) and (46). 

 

𝜃2 = ℒ−1[𝐺42] ∗ 𝜃4        (45) 

 

𝜃4 = ℒ−1[𝐺𝑉4] ∗ 𝑉𝑟(𝑡)        (46) 

 

Where numerical values of identified transfer functions are: 
 

𝐺𝑉3(𝑠) =
−348.5𝑠0.5+319.9

1840𝑠1.5−130𝑠+485.7𝑠0.5+1
⁡=

𝑏1
𝑉3𝑠0.5+𝑏0

𝑉3

𝑎3
𝑉3𝑠1.5+𝑎2

𝑉3𝑠+𝑎1
𝑉3𝑠0.5+𝑎0

𝑉3    (47) 

 

𝐺31(𝑠) =
1.1587

2.367𝑠0.5+1
− 0.1599 =

𝑏0
31

𝑎1
31𝑠0.5+𝑎0

31 + 𝐷31       (48) 

 

𝐺𝑉4(𝑠) =
−299.5𝑠0.5+260.7

6472𝑠1.5−300.2𝑠+453.2𝑠0.5+1
=

𝑏1
𝑉4𝑠0.5+𝑏0

𝑉4

𝑎3
𝑉4𝑠1.5+𝑎2

𝑉4𝑠+𝑎1
𝑉4𝑠0.5+𝑎0

𝑉4     (49) 

 

𝐺42(𝑠) =
1.6361

0.5415𝑠0.5+1
− 0.6372 =

𝑏0
42

𝑎1
42𝑠0.5+𝑎0

42 + 𝐷42     (50) 

 

Observability forms of fractional order transmittances (47)-(50) are: 

 

{
  
 

  
 
𝐷𝛼 [

𝜁1(𝑡)
𝜁2(𝑡)

𝜃3(𝑡)
] = 𝐴𝑉3 [

𝜁1(𝑡)
𝜁2(𝑡)

𝜃3(𝑡)
] + 𝐵𝑉3𝑉𝑟(𝑡)

𝜃3(𝑡) = 𝐶𝑉3 [

𝜁1(𝑡)
𝜁2(𝑡)

𝜃3(𝑡)
]

      (51) 

 

{
  
 

  
 
𝐷𝛼 [

𝜁4(𝑡)
𝜁5(𝑡)

𝜃4(𝑡)
] = 𝐴𝑉4 [

𝜁4(𝑡)
𝜁5(𝑡)

𝜃4(𝑡)
] + 𝐵𝑉4𝑉𝑟(𝑡)

𝜃4(𝑡) = 𝐶𝑉4 [

𝜁4(𝑡)
𝜁5(𝑡)

𝜃4(𝑡)
]

      (52) 
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{
𝐷𝛼𝜁3(𝑡) =

−𝑎0
31

𝑎1
31 𝜁3(𝑡) +

𝑏0
31

𝑎1
31 𝜃3(𝑡) = 𝐴31𝜁3(𝑡) + 𝐵31𝜃3(𝑡)

𝜃1(𝑡) = 𝜁3(𝑡) + 𝐷31𝜃3(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
    (53) 

 

{
𝐷𝛼𝜁6(𝑡) =

−𝑎0
42

𝑎1
42 𝜁6(𝑡) +

𝑏0
42

𝑎1
42 𝜃4(𝑡) = 𝐴42𝜁6(𝑡) + 𝐵42𝜃4(𝑡)

𝜃2(𝑡) = 𝜁6(𝑡) + 𝐷42𝜃4(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
     (54) 

 

where 

 

𝐴𝑉𝑖 =

[
 
 
 
 
 0 0

−𝑎0
𝑉𝑖

𝑎3
𝑉𝑖

1 0
−𝑎1

𝑉𝑖

𝑎3
𝑉𝑖

0 1
−𝑎1

𝑉𝑖

𝑎3
𝑉𝑖 ]
 
 
 
 
 

,⁡⁡⁡⁡⁡𝐵𝑉𝑖 =

[
 
 
 
 
𝑏0
𝑉𝑖

𝑏3
𝑉𝑖

𝑏1
𝑉𝑖

𝑏3
𝑉𝑖

0 ]
 
 
 
 

,⁡⁡⁡⁡𝐶𝑉𝑖 = [0 0 1]; ⁡⁡⁡⁡⁡⁡⁡𝑖 = 3,4.   (55) 

 

the pseudo state space description of this SIMO system is as (56): 

 

{
𝐷𝛼 ⁡𝑥(𝑡) = 𝐴⁡𝑥(𝑡) + 𝐵⁡𝑢(𝑡)

𝑦(𝑡) ⁡= 𝐶⁡𝑥(𝑡) + 𝐷⁡𝑢(𝑡)
       (56) 

 

where 

 

𝐴 = [

𝐴𝑉3 0
𝐵31𝐶𝑉3 𝐴31

⁡⁡⁡⁡⁡
0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0
0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0

0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0
0 ⁡⁡⁡⁡⁡⁡⁡⁡⁡0

𝐴𝑉4 ⁡⁡⁡⁡⁡⁡0
𝐵42𝐶𝑉4 ⁡⁡𝐴42

] ,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐵 = [

𝐵𝑉3
0
𝐵𝑉4
0

], 

 

𝐶 = [

𝐷31𝐶𝑉3 1
0⁡⁡⁡⁡⁡⁡⁡⁡ 0

⁡⁡⁡⁡⁡⁡⁡⁡⁡
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 0
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 0

𝐶𝑉3 ⁡⁡⁡⁡⁡⁡0
0⁡⁡ ⁡⁡⁡⁡⁡⁡0⁡

⁡⁡⁡⁡
𝐷41𝐶𝑉4 1
𝐶𝑉4 ⁡0

] ,⁡⁡⁡𝐷 = 0.⁡⁡⁡⁡⁡⁡⁡⁡ 

 

𝑥(𝑡) = [𝜁1(𝑡)⁡⁡𝜁2(𝑡)⁡⁡𝜃3(𝑡)⁡⁡𝜁3(𝑡)⁡⁡𝜁4(𝑡)⁡⁡𝜁5(𝑡)⁡⁡𝜃4(𝑡)⁡⁡𝜁6(𝑡)] 
 

𝑦(𝑡) = [𝜃1(𝑡) 𝜃2(𝑡) 𝜃3(𝑡) 𝜃4(𝑡)] 
 

Consider the FOS (1) with the following parameters: 

 

𝐴 =

[
 
 
 
 
 
 
 
0⁡
1⁡
0⁡
0⁡⁡
0⁡
0⁡
0⁡
0⁡

0
0
1
0
0
0
0
0

⁡⁡−0.0005
⁡⁡−0.2640
⁡⁡⁡⁡0.0707
⁡⁡⁡⁡⁡0.4895⁡

0
0
0
0

⁡⁡

0
0
0

−0.4225⁡
0⁡
0
0
0

0
0
0
0
⁡0⁡
1
0
0

0
0
⁡⁡0⁡⁡
0
0
0
1
0

0
0
0
0

−0.0002
⁡−0.0700
0.0464⁡
3.0214

0
0
0
0
0
0
0

−1.8467]
 
 
 
 
 
 
 

. 𝐵 = 0, 𝐵𝑑 =

[
 
 
 
 
 
 
 
0.1⁡
0⁡
0⁡
⁡0⁡⁡
0⁡
0⁡
0⁡
0⁡ ]
 
 
 
 
 
 
 

⁡ , 𝐵𝑓 =

[
 
 
 
 
 
 
 
0.2⁡
0⁡
0⁡
⁡0⁡⁡
0⁡
0⁡
0⁡
0⁡ ]
 
 
 
 
 
 
 

,⁡⁡ 

 

𝐷 = 0,⁡⁡⁡⁡𝐷𝑑 = [

0.1⁡
0⁡
0
0

] , 𝐷𝑓 = [

0.2⁡
0⁡
0
0

] ⁡.⁡⁡𝐶 = [

0
0
0
0

⁡⁡⁡

0
0
0
0

⁡⁡⁡

−0.1599
0
1
0

⁡⁡⁡

1
0
0
0

⁡⁡⁡⁡⁡

0
0
0
0

⁡⁡⁡

0
0
0
0

⁡⁡⁡⁡

0
0.6372⁡
0
0

⁡⁡⁡

0
1
0
0

]. 

 

⁡𝑑(𝑡)= be 0.5 exp(−0.4𝑡) cos(0.7𝜋𝑡) 𝑢(𝑡). 
 

The fault signal 𝑓(𝑡) is simulated as a square wave of unit amplitude from 40 to 60 steps. For a given  

𝛾 = ⁡0.0328, we solved the optimization problem Corollary 1 by YALMIP toolbox in Matlab and 𝛽 is 

obtained as 71.8540.  Furthermore, the observer gains were obtained as: 
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𝐿 =

[
 
 
 
 
 
 
 
1.0011⁡⁡⁡
0.0012⁡⁡⁡
−0.0009⁡⁡⁡⁡⁡
−0.0040⁡⁡⁡⁡⁡

0⁡
0⁡
0⁡
0⁡

0
0
0
0

0.0010⁡
0.0002
0.0043⁡
−0.8542⁡

⁡⁡2.1735
⁡⁡3.2501
⁡⁡⁡⁡2.9924
⁡⁡⁡⁡⁡0.2422⁡

0
0
0
0

⁡⁡

0
0
0
0⁡

0.9972⁡
2.5353
2.6462
3.5680]

 
 
 
 
 
 
 

 

 

Real and estimated outputs are represented in Figures 4-7. The threshold values of residual signal 𝑟1 and 𝑟3 

computed by (42) as  𝐽𝑡ℎ𝑟1 = 0.0908 and 𝐽𝑡ℎ𝑟3 =⁡−0.00021620. Residuals in the faulty cases are shown in 

Figures 8 and 9. It can be concluded that the robustness against disturbance and the fault sensitivity are both 

amplified, and the fault is well separated from disturbance. 

 

 

 
 

Figure 4. The output 𝜽𝟏 and its estimate 

 

 

 
 

Figure 5. The output 𝜃2 and its estimate 

 

 

 
 

Figure 6. The output 𝜽𝟑 and its estimate 

 

 

 
 

Figure 7. The output 𝜽𝟒 and its estimate 
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Figure 8. Residual signal 𝒓𝟏 

 

 

 
 

Figure 9. Residual signal 𝒓𝟑 

 

 

Aribi et al. [24] performed the simulation with the Luenberger diagnosis observer method without 

considering the effect of disturbance. Also, the overshot at the beginning is a big drawback of that method. 

Their other methods, generalized dynamic parity space, are very good, although they do not introduce a 

disturbance signal.  

 

 

5. CONCLUSION  
In this work, the robust fault detection problem has been investigated for a linear time-invariant 

fractional-order system in the simultaneous presence of sensor, actuator and process faults as well as input 

and output disturbances. The core of this study is the formulation of the FD design problem as the mixed  

𝐻∞/𝐻− robust optimization problem to satisfy the fault sensitivity and disturbance attenuation. Furthermore, 

the linear matrix inequality approach has been introduced to warrant stability and the two multi-objective 

𝐻∞/𝐻− performances. Finally, the effectiveness of the proposed theory is validated via numerical results. In 

future work, this problem will be solved by considering other algorithms. 
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