
TELKOMNIKA, Vol. 13, No. 4, December 2015, pp. 1145~1152
ISSN: 1693-6930, accredited A by DIKTI, Decree No: 58/DIKTI/Kep/2013
DOI: 10.12928/TELKOMNIKA.v13i4.1894 1145

Received July 14, 2015; Revised September 15, 2015; Accepted October 2, 2015

FPGA Implementation ofLow-Area Square Root
Calculator

Aiman Zakwan Jidin*1, Tole Sutikno2

1Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka
2Department of Electrical Engineering, Universiti Ahmad Dahlan

*Corresponding author, e-mail: aimanzakwan@utem.edu.my1, tole@ee.uad.ac.id2

Abstract
Square root is one of the mathematical operations which are widely used in digital signal

processing. Its implementation on hardware such as FPGA will provide several advantages compare to the
performance offered in software. There are several algorithms which can be utilized for this calculation, but
they are difficult to be implemented in FPGA. This paper presents a model of FPGA based square root
calculator, which requires very low resources usage, thus occupying very low area of FPGA. The model is
designed to suit the needs of medium-speed and low-speed applications which don’t need very high
processing speed, while optimizing the number of resources utilized. The modified non-restoring algorithm
is used in this design to compute the square root. The design is coded in RTL VHDL, and implemented in
Altera DE2-board for hardware validation. The implementation produced very precise square root
calculation, with low latency computation and low area consumption, for various input data width tested.

Keywords: FPGA, VHDL, Square Root, Area Optimization

Copyright © 2015 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Square root is an arithmetic operation which is widely used in various applications such
as image and audio processing, scientific computation, computer graphics and digital
communications [1- 2- 3- 4]. Recently, there are many researches which implement the square
root calculator in hardware like Field Programmable Gate Array (FPGA) in order to achieve high
speed computation. The main interest of implementing square root calculation in hardware is to
reduce the delays present in its computation, thus producing a very fast computation.

In many VLSI applications nowadays, it is vital to create designs which are not only
producing correct and accurate results, but also to provide designs with very high processing
speed, where the execution delay is typically in the order of a few nanoseconds or even faster,
like in the case of a computer graphic applications. However, in order to achieve the best
performance from the system, certain criterias like the power consumption and the resources
utilization need to be sacrificed.For instance, the computation speed in hardware can be
increased by introducing techniques such as pipelining and parallel computing [5]. The latter will
certainly speed up the process, however creating multiple parallel path for the same operation
will cause the increase in the number of resources (i.e. Adders, Registers) used, and in
consequence, the area or the size of the design will also become bigger.

This case is certainly becoming an unnecessary issue which is encountered when
developing medium-speed and low-speed applications, with the sampling or operating
frequency is less than 10MHz, which do not required very high speed computation with very
small delays, while still need to utilize the same amount of resources and thus occupying the
same area in the hardware. For example, applications like Direct Torque Control (DTC) for
machines, which implemented the square root calculation in FPGA to achieve better estimation
of flux and torque, only operated at a minimum sampling period of 5 µs [6]. In this case, the
redundancy which had been introduced by the parallel computation can be eliminated and
therefore, optimizing the resources usage.

Besides, other strategies that need be considered is the algorithm to be implemented in
hardware, for square root calculator. Unlike other basic mathematical operations such as
addition, substraction or multiplication, it is very difficult to implement a square root calculation in

 ISSN: 1693-6930

TELKOMNIKA Vol. 13, No. 4, December 2015 : 1145 – 1152

1146

hardware, as its algorithm is more complex than the others. Often, it is quite hard to obtain an
exact result through hardware implementation [7].

In fact, there are various algorithms which can be chosen in order to implement a
square root in FPGA. For example, there are several methods, which are called estimation
methods, such as Newton-Raphson method [8], Babylonian method [9] and Taylor-Series
expansion mehod [10]. There are also methods called digit-by-digit calculation methods, which
are more suitable for FPGA Implementation purpose. Vedic duplex method, which is based on
16 formulaes from ancient Indian mathematics, use duplex operation in order to find the square
root of a number. The algorithm includes several steps such as the division of the operand into
groups of 2 bits, the inspection of each groups, and the quotient extraction [11-12]. Besides,
there are researches which had implemented restoring method and non-restoring method.
However, the non-restoring method is more preferable than restoring method, owing to its
capability to reduce the number of hardware resources utilization, since it does not restore the
remainder [13- 14].

This paper presents an effective way to design a low-area square root calculator, which
is implemented by using FPGA. The main contribution of this paper is the development of the
square root calculator by using the modified non-restoring method, which is coded in
synthesizable VHSIC Hardware Description Language (VHDL). In addition, the implementation
strategy proposed in this paper is by sharing common hardware resource, thus eliminating
circuit redundancy and optimizing the design area. In the result and analysis section, the
performance of the proposed design, in terms of resources usage, speed, latency and also
power dissipation, will be analyzed and compared to those obtain from the non-optimized
design, which was developed previously by using the same algorithm [13].

2. Research Method

In this section, the theory of the algorithm for computing square root results in hardware
is explained. Next, the implementation stratergy in FPGA will be described. The whole
implementation is designed by using VHDL. All digital computations are performed in unsigned
binary, since square root can only accept positive numbers as the radicand.

2.1. Modified Non-Restoring Method

A square root equation can be written as follows:

ࡽ ൌ	√(1) ࡰ

Where D is the radicand, and Q is square root of D. In digital computation, D is denoted

by n-bit unsigned number, represented as D = Dn-1Dn-2…D1D0. For every pair of bits of the
radicand, the integer part of the square root has one bit. Therefore, the resulted square root Q
should be represented by m = n/2 bits: Q = Qm-1Qm-2…Q1Q0.

In the conventional non-restoring digit-by-digit calculation, only a pair of bits from the
radicand is taken in order to compute the partial square root result at each iteration, starting
from the the most significant bit. This pair is appended to the current remainder, which is
properly shifted first. The procedure consists of appending 01 to the partial square root obtained
so far. It is properly shifted and then subtracted from the current remainder. If the newly resulted
remainder is positive, then the newly developed square root bit is 1, else the bit is set to 0 and
the 11 is appended to the current partial square root and an additional operation will be
performed at the next iteration, instead of subtraction. The operation will keep on iterating until
the last bit of the square root is calculated.

Figure 1 demonstrates how the square root of 169 (D = 101010012) is calculated by
using digit-by-digit non-restoring algorithm. In this case, it can be observed that the square root
is equal to 13 (Q = 11012).

TELKOMNIKA ISSN: 1693-6930

FPGA Implementation ofLow-Area Square Root Calculator (Aiman Zakwan Jidin)

1147

Figure 1. The example of non-restoring digit-by-digit calculation to compute the square root of

169

However, there is slight differences which can be found in the modified non-restoring
algorithm when solving a square root problem, it provides simpler solution which only perform
subtract operation and appends 01. Thus, the adding operation is removed and thus lesser
hardware resources are required here. In this case, if the resulted result is negative, no
subtraction will take place. As illustrated in Figure 2, the same calculation is done as the
previous, by using the modified non-restoring algorithm.

Figure 2. The example of modified non-restoring digit-by-digit calculation to compute the square

root of 169

Figure 3 shows the pseudocode of the calculating procedure in order to solve the

square root problems by using the modified non-restoring algorithm. Here, the radicand is
denoted by n-bit binary. Thus, n/2 iteration will be performed before completed calculating the
final square root result Q, which is denoted by n/2-bit binary.

 ISSN: 1693-6930

TELKOMNIKA Vol. 13, No. 4, December 2015 : 1145 – 1152

1148

Figure 3. The pseudocode of modified non-restoring digit-by-digit calculation to solve square
root computation

2.2. Hardware Implementation Strategy
As can be seen from the algorithm which has been explained in Section 2.1, the square

root calculator design can partitioned into two different groups, namely Partial Remainder
Calculator (PRC), which calculates the remainder value, and Partial Square Root Calculator
(PSC), which determines the value of each bits in the square root result.

In order to achieve a very high speed square root calculation in hardware, pairs of PRC
and PSC blocks shall be implemented in parallel, where each pair is used to calculate the partial
square root result generated by each pair of bits of the radicand. The number of pairs to be
implemented depends on the number of bits of the radicand; n-bit radicand requires the
implementation of n/2 pairs of PRC and PSC in parallel. Figure 4 illustrates the block diagrams
of the hardware implementation for a square root calculator with 8-bit radicand.

Figure 4. The hardware implementation of 8-bit radicand square root calculator

As the matter of fact, all those pairs are exactly similar and performing the same
operation. The only differences are their inputs and outputs. Therefore, in order to optimize the
utilization of the hardware resources, it is proposed to share a single pair of PRC and PSC block

TELKOMNIKA ISSN: 1693-6930

FPGA Implementation ofLow-Area Square Root Calculator (Aiman Zakwan Jidin)

1149

which is common to all computation of square root bits. This method will eliminate all the
redundant circuity in the design, and thus will significantly reduce the hardware resources
usage, especially for the case of square root calculators with big radicands.

Figure 5 shows the block diagrams representing the hardware implementation of low-
area square root calculator. In order to allow the hardware sharing, each computation of the
square root bit will be conducted sequentially. Consequently, some latency will be introduced in
the square root calculation time, as only one bit of the square root is resulted at each clock
cycle.

Figure 5. The hardware implementation of area-optimized square root calculator

The computation latency can be determined by looking at the number of bits used for
the radicand. For n-bit radicand, the square root calculation shall be completed after n/2 clock
cycles. Even the proposed implementation provides slower square root calculator than previous
researches, it should be suitable for applications which do not require very high speed
processing time, while the area of the design or the hardware resources utilization can be
optimized.

3. Results and Analysis

The proposed design was successfully implemented on Altera DE2 Development
Board, which use Cyclone II FPGA.Synthesizable VHDL code is used to configure the design.
Moreover, the design coding method make it scalable, thus it is very simple to vary the width of
the square root radicand in order to perform different tests.

3.1. Functional Simulation Verification

In order to verify the functionality and to analyze the performance of the design, several
simulations and also hardware verification by using FPGA had been conducted.

Figure 6 shows the simulation results of the square root calculation for 12-bit radicand
square root computation by using the proposed design.Based on these results, the outputs of
the computation are correct and accurate. The latency in resulting the square root can also be
observed from this result.

 ISSN: 1693-6930

TELKOMNIKA Vol. 13, No. 4, December 2015 : 1145 – 1152

1150

Figure 6. The simulation result of square root computed by the proposed design

Meanwhile, Figure 7 shows the 8-bit radicand square root calculation results which had
been obtained from the hardware validation, by using FPGA. Both the radicand and the output
from FPGA have been displayed in the SignalTap II Logic Analyzer. Based on these results, it
shows that the square root has been correctly implemented in FPGA hardware, producing
accurate results.

Figure 7. The hardware validation result of square root computed by the proposed design,
displayed in SignalTap II Logic Analyzer

3.2. Design Performance Analysis

Table 1 shows the resource utilization and the processing time for various configuration
tested.These data are obtained from the compilation report, which had been generated once the
design compilation is completed in Altera Quartus II Software.From this table, we can clearly
see that the number of logic elements (LE) used in area-optimized designs are much lower than
those used in speed-optimized designs, although the number registers utilized are slightly
bigger.

Table 1. Comparison between non-optimzed vs. area-optimized designs, in terms of resources

utilization and computation speed
Optimization Radicand

width
(bit)

Logic
Elements

Registers Fmax
(MHz)

Latency
(clock
cycles)

Minimum
computation time

(ns)

NO OPTIMIZATION

8 52 15 100.1 1 9.99
16 196 27 46.8 1 21.3
32 713 51 19.1 1 52.3
64 2710 99 7.1 1 140.8

AREA

8 39 27 174.3 4 22.9
16 78 48 88.8 8 90.1
32 123 89 110.8 16 144.4
64 243 170 77.6 32 412.4

TELKOMNIKA ISSN: 1693-6930

FPGA Implementation ofLow-Area Square Root Calculator (Aiman Zakwan Jidin)

1151

In term of computation time, the speed-optimized designs produce the results faster than the
area-optimized design. The calculation of the minimum computation time above is based purely
on the Fmax obtained, where

Minimum computation time = Latency * 1 / Fmax (2)

If the same clock frequency is used for both speed-optimized and area-optimized
designs, the computation time for the former shall be n/2 times bigger than the computation time
of the latter, where n is the width of the radicand in bit.

3.3. Power Dissipation Analysis

Since area-optimized configuration produced smaller design with fewer resources than
non-optimized configuration, the power consumption in the former shall be lesser than the latter,
as proven in Table 2.The information shown in this table are collected from the PowerPlay
Power Analyzer Tool, which is a feature that is available in Altera Quartus II Software. This will
certainly contribute in overcoming the problem of overheating, which has been encountered by
many applications.

Table 2. The comparison of power dissipation between non-optimized and area-optimized
square root design

Radicand width (bit) Thermal power dissipation for non-
optimized configuration (mW)

Thermal power dissipation for area-
optimized configuration (mW)

8 85.4 85.2
16 87.2 86.6
32 90.6 89.1
64 97.1 94.6

4. Conclusion

This paper has described an alternative in the hardware implantation of a square root
calculator which consume low design area or low hardware resources utilization, with low power
dissipation, by using the modified non-restoring algotirhm. The design functionality has been
verified via simulations and also hardware verification by using FPGA, where it produced correct
and accurate outputs. The analysis also shown improvement offered by proposed design, in
terms of resources usage as well as the power consumption. Despite being slower than other
previous designs, it may well contribute in low-speed application which may require low design
area and low power consumption.

References
[1] Vijeyakumar KN, Sumathy V, Vasakipriya P, Dinesh Babu A. FPGA implementation of Low Power

High Speed square root circuits. IEEE International Conference on Computational Intelligence &
Computing Research (ICCIC). Coimbatore. 2012: 1-5.

[2] Kachhwal P, Rout BC. Novel square root algorithm and its FPGA Implementation. International
Conference on Signal Propagation and Computer Technology (ICSPCT). Ajmer. 2014: 158-162.

[3] Yamin L, Wanming C. Implementation of Single Precision Floating Point Square Root on FPGAs.
IEEE Symposium on FPGA for Custom Computing Machines. Napa. 1997: 226-232.

[4] Xiaojun W. Variable Precision Floating-Point Divide and Square Root for Efficient FPGA
Implementation of Image and Signal Processing Algorithms. PhD Thesis. Boston: Northeastern
University Boston, Massachusetts; 2007.

[5] Xiumin W, Yang Z, Qiang Y, Shihua Y. A New Algorithm for Designing Square Root Calculators
Based on FPGA with Pipeline Technology. Ninth International Conference on Hybrid Intelligent
Systems. Shengyang. 2009; 1: 99-102.

[6] Sutikno T, Idris NRN, Jidin AZ, Jidin A. A Model of FPGA-based Direct Torque Controller.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(2): 747 – 753.

[7] Dong-Guk H, Dooho C, Howon K. Improved Computaton of Square Roots in Specific Fine Fields.
IEEE Transactions on Computers. 2009; 58: 188-196.

 ISSN: 1693-6930

TELKOMNIKA Vol. 13, No. 4, December 2015 : 1145 – 1152

1152

[8] Liang-Kai W, Schulte MJ. Decimal floating-point Square Root Using Newton-Raphson Iteration. 16th
IEEE International Conference on Application-Specific Systems, Architechture Processors (ASAP).
Samos. 2005: 309-315.

[9] Kosheleva O. Babylonian Method of Computing The Square Root: Justifications Based on Fuzzy
Techniques and on Computational Complexity. Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS). Cincinnati. 2009: 1-6.

[10] Taek-Jun K, Sondeen J, Draper J. Floating-Point Division and Square Root Implementation Using A
Taylor-Series Expansion Algorithm. 15th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). St. Julian’s. 2008:702-705.

[11] Banerjee A, Ghosh A, Das M. High Performance Novel Square Root Architecture Using Ancient
Indian Mathematics for High Speed Signal Processing. Advances in Pure Mathematics. 2015; 5(8):
428-441.

[12] Kaur J, Grewal NS. Design and FPGA Implementation of a Novel Square Root Evaluator based on
Vedic Mathematics. International Journal of Information & Computation Technology. 2014; 4(15):
1531-1537.

[13] Sutikno T, Jidin AZ, Jidin A, Idris NRN. Simplified VHDL Coding of Modified Non-Restoring Square
Root Calculator. International Journal of Reconfigurable and Embedded Systems. 2012; 1(1): 37-42.

[14] Rahman A, Abdullah AK. New efficient hardware design methodology for modified non-restoring
square root algorithm. International Conference on Informatics, Electronics & Vision (ICIEV).
Fukuoka. 2014: 1-6.

