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 Self-excited oscillation problem occurring from a triode electrical circuit has 

been modelled by van der Pol. Until now, the exact solution to the van der Pol 

equation is not available. This paper focuses on finding a new method for 

solving the van der Pol equation simply and accurately. There exists several 

approximate iterative methods available in the literature for solving the van 

der Pol equation, such as, the successive approximation method. The 

successive approximation method is simple, but inaccurate for large time 

values. In this paper, we propose a new variant of numerical-analytical 

method, which is simple but accurate, for solving the van der Pol equation. 

Our new variant of numerical-analytical method solves the van der Pol 

equation from its equivalent system of first order ordinary differential 

equations. Our strategy leads to a simple implementation of the numerical-

analytical method in the multistage way. Furthermore, computational 

experiments show that our proposed method is accurate for large sizes of time 

domain in solving the van der Pol equation. 
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1. INTRODUCTION  

Mathematical models have been used for simulating various problems in the areas of 

telecommunication, computing, electronics and control [1]-[5]. The solution to the mathematical model 

represents the solution to the real problem. As a large number of mathematical models do not have analytical 

exact solutions in general, numerical methods are usually used to obtain approximate solutions [6]-[9]. 

Other than numerical methods, analytical approaches such as the successive approximation method 

provide approximate solutions [10]-[16]. The successive approximation method can be considered as a special 

case of variational iteration methods, which have been used to solve problems in biology [17], [18],  

engineering [19]-[22], and others [23]-[28]. In this work, we shall combine numerical and analytical methods 

to form a new numerical-analytical method. 

In this paper, we shall solve the van der Pol equation arising from a triode electrical circuit problem. 

The van der Pol equation models self-excited oscillations of the circuit [29]. We limit this paper to the 

computational method for solving the van der Pol equation. Readers interested in the modelling of the van der 

Pol equation can consult the literature [29]-[33]. The standard successive approximation method is able to 

https://creativecommons.org/licenses/by-sa/4.0/
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solve the problem only for temporal points close enough to the initial time, unless a large number of iterations 

are taken in the successive approximations [34]. However, taking a large number of successive iterations is 

impractical and should be avoided, because of the expensive computation. Therefore, an accurate method 

which is inexpensive computationally and simple practically is desired. 

Our main contribution in this paper is to propose a new numerical-analytical method for solving the 

van der Pol equation. This contribution is useful, because the exact solution to the van der Pol equation is not 

available, at least until this paper is written. Our proposed method takes the strength of the variational iteration 

method, and at the same time, avoids the weakness of the variational iteration method. This leads that our 

proposed method is able to solve the van der Pol equation accurately for large time domain.  

The rest of this paper is arranged as follows. We write the mathematical model for the van der Pol 

equation in section 2. Solving methods are presented in section 3. Results and discussion are provided in 

section 4. We conclude the paper in section 5. 

 

 

2. MATHEMATICAL MODEL 

The van der Pol equation is: 
 

𝑑2𝑢(𝑡)

𝑑𝑡2 − 𝜇(1 − 𝑢(𝑡)2)
𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑢(𝑡) = 0, (1) 

 

with initial condition: 
 

𝑢(𝑡0) = 𝑢0, 𝑢′(𝑡0 ) = 𝑣0, (2) 
 

where 𝜇 is a positive parameter indicating the strengths of the damping and the nonlinearity of the problem, 𝑡 

is the time variable, and 𝑢(𝑡) is the unknown function. The given domain is 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓, where 𝑡0 and 𝑡𝑓 are 

the initial and the final of the time domain, respectively. Here 𝑢′(𝑡)  =  𝑑𝑢/𝑑𝑡. The van der Pol as shown in (1) 

describes self-excited oscillations in a triode electrical circuit. It was formulated by Balthasar van der Pol, a 

Dutch physicist, in around 1920 [29] for the electrical circuit problem, as shown in Figure 1. In this paper, we 

limit our research in the computational method for solving the van der Pol equation. Readers interested in the 

modelling of the van der Pol equation can consult the literature [29]-[33] and references therein. 
 

 

 
 

Figure 1. Illustration of the electrical circuit of van der Pol [29] 
 

 

The van der Pol as shown in (1) can be written equivalently into the following system of two first 

order differential equations: 
 

𝑑𝑢

𝑑𝑡
= 𝑣, (3) 

 
𝑑𝑣

𝑑𝑡
= −𝑢 + 𝜇(1 − 𝑢2)𝑣. (4) 

 

Therefore, the solution to the van der Pol as shown in (1) is the solution to the system of as shown in (3) and (4). 

To obtain the solution to the van der Pol shown in (1), we shall solve the system of as shown in (3) and (4). 

 

 

3. SOLVING METHODS 

This section is devoted to present two solving methods for the considered van der Pol problem. We 

recall an existing iterative method. We also provide the proposed numerical-analytical iterative method. Our 

proposed method takes the strength and avoids the weakness of the existing iterative method. 
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3.1.  Existing iterative method 

An available iterative method in the literature is the successive approximation method. The successive 

approximation method for solving the van der Pol equation is described as follows. To begin, let us consider 

the general first order ordinary differential equation: 
 
𝑑𝑦(𝑥)

𝑑𝑥
= 𝑓(𝑥, 𝑦(𝑥)), (5) 

 

with initial condition: 
 

𝑦(𝑥0) = 𝑦0, (6) 
 

where the given domain is 𝑥0 ≤ 𝑥 ≤ 𝑥𝑓 . Here 𝑥0 is the initial point of the domain, 𝑥𝑓 is the final point of the 

domain. Picard’s successive approximation method for solving problem (5)-(6) is: 
 

𝑦𝑛(𝑥) = 𝑦0 + ∫ 𝑓(𝜉, 𝑦𝑛−1(𝜉))
𝑥

𝑥0
𝑑𝜉, (7) 

 

where 𝑛 = 1, 2, 3, … and the exact solution 𝑦(𝑥) to problem (5)-(6) is given by the limit: 
 

lim
𝑛→∞

𝑦𝑛(𝑥) = 𝑦(𝑥). (8) 

 

Following Picard’s successive approximation method for solving problem (5)-(6), we develop a 

successive approximation method for solving the van der Pol as shown in (1) with initial condition (2). In this 

case, we shall solve the equivalent form (3)-(4) with initial condition (2). Taking the initialization: 
 

𝑢0(𝑡) = 𝑢0, 𝑣0(𝑡) = 𝑣0, (9) 
 

and according to Picard’s successive approximation method, we have the successive approximation method 

for problem (3)-(4) with initial condition (2) as shown in (10) and (11): 
 

𝑢𝑛(𝑡) = 𝑢0 + ∫ 𝑣𝑛−1(𝜏)𝑑𝜏,
𝑡

𝑡0
 (10) 

 

𝑣𝑛(𝑡) = 𝑣0 + ∫ [−𝑢𝑛−1(𝜏) + 𝜇(1 − 𝑢𝑛−1(𝜏)2)𝑣𝑛−1(𝜏)]𝑑𝜏.
𝑡

𝑡0
 (11) 

 

The successive approximation method is able to solve the van der Pol equation accurately only for a 

short time after the initialisation, unless we take a very large number of successive iterations. However, taking 

a very large number of successive iterations is very tedious and impractical. To deal with this problem, we 

propose a numerical-analytical method that we write in what follows. 
 

3.2.  Proposed numerical-analytical iterative method 

We develop a numerical-analytical iterative method for solving the van der Pol equation. With initial 

condition (2) and for as shown in (3) and (4), let us take the following correction functionals: 
 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) + ∫ 𝜆1(𝜏) [
𝑑𝑢𝑛(𝜏)

𝑑𝜏
− �̅�𝑛(𝜏)] 𝑑𝜏,

𝑡

𝑡0
 (12) 

 

𝑣𝑛+1(𝑡) = 𝑣𝑛(𝑡) + ∫ 𝜆2(𝜏) [
𝑑𝑣𝑛(𝜏)

𝑑𝜏
+ �̅�𝑛(𝜏) − 𝜇(1 − �̅�𝑛

2(𝜏))�̅�𝑛(𝜏)] 𝑑𝜏,
𝑡

𝑡0
 (13) 

 

where 𝜆1(𝜏) and 𝜆2(𝜏) are Lagrange multipliers to be determined optimally via the variational theory. Here 

𝑛 = 0, 1, 2 …. All variables having bar notations are restricted variables. Taking the variations of as shown 

in (12) and (13), we obtain: 
 

𝛿𝑢𝑛+1(𝑡) = 𝛿𝑢𝑛(𝑡) + 𝛿 ∫ 𝜆1(𝜏) [
𝑑𝑢𝑛(𝜏)

𝑑𝜏
] 𝑑𝜏,

𝑡

𝑡0
 (14) 

 

𝛿𝑣𝑛+1(𝑡) = 𝛿𝑣𝑛(𝑡) + 𝛿 ∫ 𝜆2(𝜏) [
𝑑𝑣𝑛(𝜏)

𝑑𝜏
] 𝑑𝜏.

𝑡

𝑡0
 (15) 

 

Rewriting shown in (14) and (15), we have: 
 

𝛿𝑢𝑛+1(𝑡) = 𝛿[(1 + 𝜆1(𝑡))𝑢𝑛(𝑡)] − 𝛿 ∫ 𝜆′1(𝜏)𝑢𝑛(𝜏)𝑑𝜏,
𝑡

𝑡0
 (16) 
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𝛿𝑣𝑛+1(𝑡) = 𝛿[(1 + 𝜆2(𝑡))𝑣𝑛(𝑡)] − 𝛿 ∫ 𝜆′2(𝜏)𝑣𝑛(𝜏)𝑑𝜏.
𝑡

𝑡0
 (17) 

 

We obtain stationary conditions based on shown in (16) and (17) as shown in (18) and (19): 
 

1 + 𝜆1(𝑡) = 0, 𝜆′1(𝜏) = 0, (18) 
 

1 + 𝜆2(𝑡) = 0, 𝜆′2(𝜏) = 0. (19) 
 

The solutions to stationary conditions (18) and (19) are (20): 
 

𝜆1 = 𝜆2 = −1. (20) 
 

Therefore, the iterative formulas based on the taken correction functionals for solving the van der Pol equation 

are: 
 

𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) − ∫ [
𝑑𝑢𝑛(𝜏)

𝑑𝜏
− 𝑣𝑛(𝜏)] 𝑑𝜏,

𝑡

𝑡0
 (21) 

 

𝑣𝑛+1(𝑡) = 𝑣𝑛(𝑡) − ∫ [
𝑑𝑣𝑛(𝜏)

𝑑𝜏
+ 𝑢𝑛(𝜏) − 𝜇(1 − 𝑢𝑛

2(𝜏))𝑣𝑛(𝜏)] 𝑑𝜏.
𝑡

𝑡0
 (22) 

 

Knowing the properties of the standard iterative method, we shall take advantage of the strength and 

avoid the weakness of the iterative method by implementing it into small sizes of the time intervals. To do so, 

the originally-given large size of the time domain is subdivided into small sizes of time intervals, and we 

implement the iterative method (21)-(21) into each of them. Considering the originally-given large size of time 

domain 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓, we take discrete points 𝑡0, 𝑡1, 𝑡2, … , 𝑡𝑓 . These discrete points can be either equidistant or 

non-equidistant. For simplicity in this paper, we assume that we take 𝐾 + 1 equidistant discrete points 

𝑡0, 𝑡1, 𝑡2, … , 𝑡𝐾, where ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1 for all 𝑘 and 𝑡𝐾 = 𝑡𝑓. In this way, we have 𝐾 small same-size 

subintervals of time domain 𝐼𝑘 = [𝑡𝑘−1, 𝑡𝑘] where 𝑘 =  1, 2, 3, . . . , 𝐾. Suppose that we want to have 𝑁 

iterations in the numerical-analytical method for each subinterval. We denote 𝑢𝑛,𝑘(𝑡) the approximate solution 

of 𝑢(𝑡) at the 𝑛th iteration on the 𝑘th subinterval. Notation 𝑣𝑛,𝑘(𝑡) is meant analogously. 

Therefore, the numerical-analytical method for solving the van der Pol equation works as follows. For 

𝑘 = 1, 2, 3, . . . , 𝐾 and for 𝑛 = 1, 2, 3, . . . , 𝑁, we iterate: 
 

𝑢𝑛,𝑘(𝑡) = 𝑢𝑛−1,𝑘(𝑡) − ∫ [
𝑑𝑢𝑛−1,𝑘(𝜏)

𝑑𝜏
− 𝑣𝑛−1,𝑘(𝜏)] 𝑑𝜏,

𝑡

𝑡𝑘−1
 (23) 

 

𝑣𝑛,𝑘(𝑡) = 𝑣𝑛−1,𝑘(𝑡) − ∫ [
𝑑𝑣𝑛−1,𝑘(𝜏)

𝑑𝜏
+ 𝑢𝑛−1,𝑘(𝜏) − 𝜇 (1 − 𝑢𝑛−1,𝑘

2 (𝜏)) 𝑣𝑛−1,𝑘(𝜏)] 𝑑𝜏.
𝑡

𝑡0
 (24) 

 

Here for the initialisation of the numerical-analytical method on each subinterval, if 𝑘 = 1 we take: 
 

𝑢0,𝑘(𝑡) = 𝑢0, 𝑣0,𝑘(𝑡) = 𝑣0, (25) 
 

otherwise (if 𝑘 ≥ 2) we take: 
 

𝑢0,𝑘(𝑡) = 𝑢𝑁,𝑘−1(𝑡𝑘−1), 𝑣0,𝑘(𝑡) = 𝑣𝑁,𝑘−1(𝑡𝑘−1). (26) 
 

Computational tests will show that our proposed method is accurate on large sizes of time domain. 
 

 

4. RESULTS AND DISCUSSION 

In this section, we present our research results and discussion about them. First, we explain the 

numerical implementation of the proposed method. Then, two test cases are considered. The first test case takes 

𝑁 = 5, 𝑡0 = 0, 𝑡𝑓 = 3, 𝜇 = 0.1, 𝑢0 = 1, and 𝑣0 = 0. The second test case takes the same parameter values as 

in the first one, except 𝜇 = 0.5 and 𝑢0 = 2. In this section, we use two abbreviations, namely, successive 

approximation method (SAM) and numerical-analytical method (NAM). SAM stands for the successive 

approximation method, which is the standard method. NAM stands for the numerical-analytical method, which 

is the one that we propose. 
 

4.1.  Numerical implementation of the proposed method 
In the numerical implementation, the analytical iterative method must be written in the simplest 

possible form. This is in order that the computation is efficient. To simplify the numerical implementation, let 

us reconsider the iterative method (21)-(22), which can be written as shown in (27) and (28): 
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𝑢𝑛+1(𝑡) = 𝑢𝑛(𝑡) − ∫ [
𝑑𝑢𝑛(𝜏)

𝑑𝜏
] 𝑑𝜏 + ∫ 𝑣𝑛(𝜏)𝑑𝜏

𝑡

𝑡0
,

𝑡

𝑡0
 (27) 

 

𝑣𝑛+1(𝑡) = 𝑣𝑛(𝑡) − ∫ [
𝑑𝑣𝑛(𝜏)

𝑑𝜏
] 𝑑𝜏 + ∫ [−𝑢𝑛(𝜏) + 𝜇(1 − 𝑢𝑛

2(𝜏))𝑣𝑛(𝜏)]
𝑡

𝑡0
𝑑𝜏.

𝑡

𝑡0
 (28) 

 

Then, we rewrite as shown in (27) and (28) as: 
 

𝑢𝑛+1(𝑡) = 𝑢0(𝑡) + ∫ 𝑣𝑛(𝜏)𝑑𝜏
𝑡

𝑡0
, (29) 

 

𝑣𝑛+1(𝑡) = 𝑣0(𝑡) + ∫ [−𝑢𝑛(𝜏) + 𝜇(1 − 𝑢𝑛
2(𝜏))𝑣𝑛(𝜏)]𝑑𝜏.

𝑡

𝑡0
 (30) 

 

This is interesting, because the iterative method (21)-(22) has become as shown in (29) and (30), which are 

actually another as shown in (10) and (11) with different indices. 

Therefore, the numerical implementation of the proposed method for solving the van der Pol 

equation works as follows. For 𝑘 = 1, 2, 3, . . . , 𝐾 and for 𝑛 = 1, 2, 3, . . . , 𝑁, we iterate: 
 

𝑢𝑛,𝑘(𝑡) = 𝑢0,𝑘(𝑡) + ∫ 𝑣𝑛−1,𝑘(𝜏)𝑑𝜏
𝑡

𝑡0
, (31) 

 

𝑣𝑛,𝑘(𝑡) = 𝑣0,𝑘(𝑡) + ∫ [−𝑢𝑛−1,𝑘(𝜏) + 𝜇 (1 − 𝑢𝑛−1,𝑘
2 (𝜏)) 𝑣𝑛−1,𝑘(𝜏)] 𝑑𝜏.

𝑡

𝑡0
 (32) 

 

Here for the initialisation of the numerical-analytical method on each subinterval, if 𝑘 = 1 we take: 
 

𝑢0,𝑘(𝑡) = 𝑢0, 𝑣0,𝑘(𝑡) = 𝑣0, (33) 
 

otherwise (if 𝑘 ≥ 2) we take: 
 

𝑢0,𝑘(𝑡) = 𝑢𝑁,𝑘−1(𝑡𝑘−1), 𝑣0,𝑘(𝑡) = 𝑣𝑁,𝑘−1(𝑡𝑘−1). (34) 
 

4.2.  Results and discussion for the existing method 
We obtain that SAM solution is accurate only for small sizes of the time domain for both test cases, 

as shown in Figures 2 and 3 with 𝑁 = 5. In Figure 2, we observe that SAM solution is inaccurate for 𝑡 close 

to the final point of time. This phenomenon is even worse when the values of the nonlinearity parameter 𝜇 and 

the initial condition 𝑢0 are higher, as we observe in Figure 3. We obtain that SAM is not applicable when the 

size of the time domain is large, because it is accurate only for temporal points about the initialisation. 
 

4.3.  Results and discussion for the proposed method 

Here, for both test cases, NAM takes ∆𝑡 = 0.1 and 𝑁 = 3. To show that our proposed NAM method 

is accurate for large sizes of the time domain, we take the final time is large, say, 𝑡𝑓 = 50. Reference and NAM 

solutions are shown in Figure 4 for the first test case and Figure 5 for the second test case, respectively. In 

these figures, we observe that NAM solutions provide close approximation to the reference solutions on the 

whole large domain. The curves of NAM solutions coincide graphically with the reference solutions, even 

though in NAM we have used smaller number of iterations (𝑁 = 3) than the one used in SAM, where in the 

previous SAM simulations we used five iterations (𝑁 = 5). 
 

 

 
 

Figure 2. Reference and SAM solutions for the first test case of the van der Pol equation with 𝑁 = 5, 

 𝑡0 = 0,  𝑡𝑓 = 3, µ = 0.1,  𝑢0 = 1, and 𝑣0 = 0. SAM solution is inaccurate at points close to final time 
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Figure 3. Reference and SAM solutions for the second test case of the van der Pol equation 𝑁 = 5, 

 𝑡0 = 0,  𝑡𝑓 = 3, µ = 0.5,  𝑢0 = 2, and 𝑣0 = 0. SAM solution is inaccurate at points close to final time 
 

 

 
 

Figure 4. Reference and NAM solutions for the first test case of the van der Pol equation with 𝑁 = 3, 

 𝑡0 = 0,  𝑡𝑓 = 50, µ = 0.1,  𝑢0 = 1, and 𝑣0 = 0. NAM solution is accurate on large domain [0, 50] 
 

 

 
 

Figure 5. Reference and NAM solutions for the second test case of the van der Pol equation with 𝑁 = 3, 

 𝑡0 = 0,  𝑡𝑓 = 50, µ = 0.5,  𝑢0 = 2, and 𝑣0 = 0. NAM solution is accurate on large domain [0, 50] 
 

 

4.4.  Experimental convergence of the proposed method 

For the first test, we record the absolute errors for variables 𝑢(𝑡) and 𝑣(𝑡) in Table 1. We observe that 

the experimental orders of convergence of our simulations are 3.05 and 3.03 for 𝑢(𝑡) and 𝑣(𝑡), respectively. 

This means that the experimental order of convergence of our simulations is 3 by rounding the numbers into 

the nearest integer. This matches with the number of iterations in the NAM evolution (𝑁 = 3). 

For the second test case, we record the absolute errors for variables 𝑢(𝑡) and 𝑣(𝑡) in Table 2. We 

observe that the experimental orders of convergence of our simulations are 3.24 and 3.27 for 𝑢(𝑡) and 𝑣(𝑡), 
respectively. This means that again the experimental order of convergence of our simulations is 3, which is 

obtained by rounding the numbers into the nearest integer. Again, this matches with the number of iterations 

in the numerical-analytical evolution (𝑁 = 3). 
 

 

Table 1. Average of absolute errors of NAM 

solutions for 𝑢(𝑡) and 𝑣(𝑡) for the first test case on 

(0.50] 

Table 2. Average of absolute errors of NAM 

solutions for 𝑢(𝑡) and 𝑣(𝑡) for the second test case 

on (0. 50] 
∆𝑡 Average of 

absolute errors 

for 𝑢(𝑡) 

Average of 

absolute errors for 

𝑣(𝑡) 

0.1 5.083227E-04 4.899905E-04 

0.05 6.137440E-05 5.994797E-05 

Covergence rate 3.05 3.03 
 

∆𝑡 Average of 

absolute errors 

for 𝑢(𝑡) 

Average of absolute 

errors for 𝑣(𝑡) 

0.1 8.813172E-04 8.801303E-04 

0.05 9.319829E-05 9.136513E-05 

Covergence rate 3.24 3.27 
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5. CONCLUSION 

We have achieved our goal to propose a new numerical-analytical method for solving the van der Pol 

equation. As the exact solution to the van der Pol equation is not available, our proposed method is useful for 

obtaining approximate solutions simply and accurately. Solutions resulting from our proposed method are 

accurate and coincide graphically with available reference solutions for large sizes of the time domain. Future 

research direction could extend the proposed method for solving other engineering problems. 
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