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Apriori is one technique of data mining association rules that aims to extract
correlations between sets of items in the transaction database. The main
problem with the Apriori algorithm is the process of scanning databases
repeatedly to generate itemset candidates. This research examines the
combination of pruning by using the trieapproach and multi-thread
implementation in three algorithms to obtain frequent itemset. Trie is a data
structure in the form of an ordered tree to store a set of strings where every
node in the tree contains the same prefix. The use of a full combination trie
(different from frequent pattern (FP) tree using links) allows the
implementation of arrays and the hash calculation to achieve the addressing
of itemset combination. In this research, the measure to get the address is
called Hash-node calculation used to update support value. For these three
alternatives, run time processing is analyzed based on the number of itemset
combinations and transaction data at a certain minimum support value. The

experimental results show that an algorithm thatexploits resource capabilities
by applying multi-threadperforms almost seven times betterthanan algorithm
implemented in single-thread in calculating hash-node. The fastest run time
of the multi-thread approach is 43 minutes with 150-itemset combinations on
100,000 transaction data.
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1. INTRODUCTION

Several studies related to the application of the a priori algorithm have been carried out including for
clickstream data analyzing [1], reasons finding [2], display item maximizing [3], ozone profiling [4]. The
main problem of the Apriori algorithm lies in the process of generating itemset candidates that uses the
repetition of the database scanning as much (2"-1)*(read external) times or (2"-1)*(m/b block read), where
k: a sum of the item, m: a sum of a database record, b: block size; in the context of calculating support
count [5]. It would carry out a database scanning as 102410 times for the sale of 100 items. An alternative to
overcome the problem is to avoid the database scanning repeatedly, but only once in the process of updating
the support count (for all new transactions that occur in a specific period). Using a linear list here using a trie
data structure is to accommodate the database scanning to only be done once or (m/b).

This research's background is that there is still room for developing problem-solving to get frequent
itemset by combining methods from the previous study and exploiting computing resources. The problem of
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getting a frequent itemset was first presented at [5], which is considered one of the most important
contributions to the subject where an algorithm called Apriori greatly influences the community of data
mining association rules. Many results of Apriori-based modification research have emerged (e.g., priority
modeling, iteration reduction, wolf searching, reduction in scanning transaction) by [6]-[9], and in [10] the
triedata structure is used because it consumes less memory than a linear list. After all, the same information is
stored once. For example, there are 100 transactions that one item is in all dealings; storage of one item is
only used once. Whereas in a linear list, the item is stored one for each transaction.

The study [10] proposed an algorithm for finding association rules, namely a priori algorithm that
has been developed using the trie data structure stored in an array. Each edge in the tree contains a label and
links to child nodes. Each node contains the itemset frequency with the edge being a member of that itemset.
Itemset members consist of a set of edges from path node level 1 to the designated node. The root node
contains the value 0 because there is no itemset pointed to by the root node. The itemset length can be seen at
the depth node. Otherwise, research [11] presents a new approach in data separation by modifying the native
a priori algorithm using a tree-based approach. This study presents an approach that helps find itemset that
appears frequently which were constructed by finding 1-itemset first. However, this research also uses
frequent itemset generated method, but in contrast to [11], we modified the next level as candidate itemset
generation step in Apriori based on fulfillment status of the last frequent itemset combination (level-i),
namely level pruning, so that the trie is used to save frequent itemset candidates. Other than that, we created
the formula called Hash-node calculation to get an index of the n-itemset when adding the support count
value of that frequent itemset, otherwise, they [11] built a tree and all of the n-itemset combination using the
l-itemset and it still has to go through several nodes starting from 1-itemset to n-itemset which searched for.
However, the using of a tree-based data structure [10], [11] still used large memory by scanning the tree
many times, so it needs to create an algorithm for finding the node or index of the tree that in this research
namely Hash-node calculation and minimize the cost of 1/O process by using a parallel algorithm that in this
research called as mult-thread solution.

From another perspective, it is common to use multi-thread and computing power with multicore
architecture [12] in supporting data processing. This raises the suspicion that multi-thread in [13] and [14]
can produce better performance also in getting this frequent itemset, as well as a challenge on how to
determine the best performance process architecture that is applied to which subprocesses as threads and how
big is the increase for the best multi-thread architecture in a single server environment, where an experiment
in multi-node server environment was proposed by [15], [16].

The process of calculating the value of support in the candidate sets generation in this problem is a
bottleneck process, because this process will cause delays and queues to be forwarded to the next process. If
you only use a standard a priori algorithm with a trie data structure it will still take a long time. Therefore, the
multi-thread concept is applied in this study to minimize the time required for processing the support
candidate sets.For the thread model, this research applies thread in each sum of transaction data and not in
each itemset combination like [17] and implements multi-thread not like [18], which evaluates in
single-threaded performance.

2. RESEARCH METHOD

The research conducted is a quantitative research using experimental research techniques. The
experiment is divided into two types, namely single-thread and multi-thread processes. The processing time
run by each method is compared to be analyzed in terms of speed efficiency for adding the value of the
support count candidate set. The processing time determines the quality of the method designed as well as the
quality of the efficiency of the thread used with a data structure that has been specially designed by applying
the trieconcept.

The number of transactions that consist dataset for the experiment is 100,000 transactions and 5 to
150 item variants.The dataset used is different for each experiment, because the data is generated randomly
using a method. The method was specifically made in this study to generate data according to the needs of
this research software. Table 1 contains examples of data generated for experimental needs with the number
of 15 item variants.

To calculate the value of support count, transaction data is viewed one by one. If a subset of
transactions is found, the support count value increased by 1. Trie not only stores candidates but also all
itemset from the given transaction data. After the first database, the frequency for each item is obtained.
Storing the support count and itemset values will increase the memory requirement a little, in exchange, this
increases the speed of retrieving item appearances or the support count values of the itemset [19].

The objectives of conducting this experiment are:
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— Knowing the time required to calculate the support count candidate value, and to find out whether the
calculation of the supportcountcandidateset using multi-thread can run faster than a single-thread.

— Knowing the performance of the threads applied to the software to the available processors based on time,
also knowing the number of threads and the efficient multi-thread model in the application of the
candidate set calculation process.

A thread is like a small, lightweight process in process. A collection of threads is called a

process [20]. Multi-thread can be managed independently, also dependently data-driven. Distribution of
threads on multi-thread that are managed data-driven dependently only on the amount of data. Each data goes
through all processes, then the process for n data is applied to a thread. Meanwhile, the distribution of threads
in multi-thread is managed independently, namely in each process only [21]. Figure 1 shows this research

method.

Table 1. Data to be used for experiments

Problem domain
analysis and
experimental design:

- index search
method of candidate
set;

- support count
process;

- multi-threaded model
design;

- preparation of
experimental data and
scenario using random
data;

Results of the
problem
domain
analysis

Experiment

TID Items
T1 {1,4,7,8,9, 10, 14}
T2 {2,3,4,5,6,7,8,10, 13, 14}
T3 {4, 6}
T100000 {1,4, 7,9,12,13}
Multi-thread
Software

experimental

development results

Calculates the
average multi-
thread

processing time

Single-thread

| Conducting

al scenario

Experiment

experiments
A

experimental
results

Calculates the
average single-
thread
processing time

al data

Figure 1. Research method

3. RESULTS AND ANALYSIS

In this research, the Apriori algorithm is developed based on a tree using the trie data structure
approach, as seen in Figure 2. The modification of the Apriori algorithm is carried out based on the
relationship between the parent value and the number of children to obtain a formula to calculate the
Hash-node calculation. Table 2 explains how the trie data structure is used to determine the value of an index.

A/n/ltemset ‘ @ 6
@5 a

Single-
thread
processing
average

Figure 2. [llustration of trie for 4-itemset generation

Multi-thread
processing
average

Discussion of
experimental
results

Quality of the
thread model in
the calculation
of support
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Table 2. Illustration of n-itemset candidate generation
Node Parent Sum Child (n-Itemset)

0 - 4 0

1 0 3 1

2 0 2 2

3 0 1 3

4 0 0 4

5 1 2 12
6 1 1 13
7 1 0 14
8 2 1 23
9 2 0 2.4
10 3 0 3.4
11 5 1 1,2,3
12 5 0 12,4
13 6 0 13,4
14 8 0 234
15 11 0 1,2,3,4

3.1. Analaysis

The index in this research is not like a correlation between somethings [22], butit means an address
of the candidate set (column Nodes) of each subset (column n-Itemset) generated in 4 item variant, as seen in
Figure 2. The basic mechanism of the Apriori algorithm [5] is used in the reverse direction, where the
database access is done first. The support count for each superset of the itemset candidate is calculated. So it
takes the generation of a superset of itemset candidate as much as (2"-1). For example, in the right column,
namely, the n-itemset column shows a subset of a particular itemset that uses the formula. For example,
n-itemset {1, 3} is in Node 6, and it has Parent which node is 1, and it has Sum_Child is 1 that is Node 13
which hasn-itemset {1, 3, 4}, as seen in Figure 3. The number of sets produced by each variant item 4 to 6
can be seen in the following figure.

len | k=1 k=2 I=3 =4 len | b=l k=1 k=3 k=4 =5 =7
1 7 133 1333 T 12 113 1233 12335 113436
. 2 T 20013 124 1235 12348
> q ) : s s a8
2 {4 {;: 3014 125 1138 I3
3 ST 4 15 126 1245 I3
413 134 516 134 12456 ]
24 6§ 23 135 1256 &
14 24 136 1345
Sam | 2 3 3 1 15 145 1348
@ 16 146 1358
314 156 1456
lem [kl k=2 k=3 =4 =5 3,5 134 12345
T 12 1213 1134 12343 36 135 1346
213 124 12 45 236 2358
314 115 12, 46 245 2458
4 15 134 13, 56 146 3456
5 23 135 2.3, 1,56
2.4 11; 343
1.5 1.3, 3
34 235 Iig
33 243 4.5.6
Sum | § 10 10 : L Sum | 6 15 20 1S 3 1
(b) (c)

Figure 3. Candidate set for: (a) 4-itemset; (b) 5-itemset; and (c) 6-itemset

The pattern that results from the calculation of the number of candidate sets in Figure 1 is the Pascal
triangle pattern [23] on n-itemset, where (a) n=4 is 4,6,4,1; (b) n=5 is 5, 10, 10, 5, 1; and (¢) n=6 is 6, 15, 20,
15, 6, 1. The formula for getting the value of the Pascal triangle in the k-column of each n-itemset is used by
the following formula:

o (1)

Cony = k!(n—Fk)!
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The combination values obtained from each of these columns are then added up until k reaches len-1. Then
the number of subsets can be calculated using the following formula:

len—1

n!
Y= ; PICET) (2)

Next is to trace the branch points (BP) for height/level starting from the 2-itemset (level=2) and its value is
obtained from /len-2{...,len-2, i, j}, beside that the value of BP is 0 (zero). The branch points itself contain
nodes that produce a certain number of subsets based on the number of itemset combinations. The number of
branch point can be calculated using they,formula, which consists of two formulas of (y; and y,), as it can
be seen in following formula:

Y2 =23 3)

Y, is calculated by tracing the trieto the value of branch point that being searched from each of these columns
and then added until k reaches /en or level. The calculation for each value of the branches that is a subset can
be calculated using the following formula:

—(BP+1))(n—BP
ys = IR0 “

y3is the total of nodes from the first node of all the sibling children nodes to the last node at the branch in the

same parent node. After that, the value of y3 must be reduced by the value of the older brother nodes in the
same parent node that can be calculated using the following formula:

— (n—Xien-1) (M—Xien-1+1)

Va > )

The last is to trace the sequence of children in a subset of the branch points obtained. This value is obtained
from the last 2 digits of the subset. For example, the subset value {1, 3, 4} is obtained from the calculation of
4-3, which is 1, where the subset form is changed in form {..., i, j}. Here is the formula for calculating the
value of the sequence of children:

Ys = — i (6)

All the equations that have been obtained are then added up to find the final index of the subset. To get the
final index of an itemset, the calculations that must be done are:

index =y, +Y,—Ys+ Js @)

3.2. Design

Trie of the candidate set is a trie tree which is all supersets of the itemset that represent all
combinations of items sold. The trie here is used to calculate the support count of all itemset combinations.
Suppose there are 4 item sets, the superset is all possible subsets, for example:
— l-itemset: {1}, {2}, {3}, {4};
— 2-itemset: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3,4};
— 3-temset: {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4};
— 4-itemset: {1, 2, 3, 4},
Totaling 15 or 2"-1 with n=4. This is a complete combination patterned, so that to achieve the address of a
certain subset a formula can be formed.

Following is an illustration of calculating node values for 3-itemset combinations, for example,
{2, 3, 4} with total itemset combinations is 4, as shown in Figure 4. An example of using Hash-node
calculation to get the index value for 3-itemset {2, 3, 4} as illustrated in Figure 4, where BP=1 and 2, i=3,
j=4, len or level=3 is as explained in detail at Table 3 and Table 4. The other example of Hash-node
calculation for 4-itemset {1, 2, 3, 4} as illustrated in Figure 4, where BP=1, i=3, j=4, len or level=4, so the
index value is 15, and for 2-itemset {3, 4} is 10 with BP=0.

Analysis of frequent itemset generation based on trie data structure in Apriori algorithm (Ade Hodijah)
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Lﬁ @5 @ @IK’} é) @ vl =10

i
|
4 4 y5=1 node={1,2,3,4,5,6,7,8,9, 10}

¥ Index =y1 + y2 —vy4 + y5

e = 1 T Index=10+4-1+1
node = {11, 12, 13, 14}

=4 Index =14

Figure 4. Hash-node calculation

Table 3. An example of calculating the y;and Y, value for the subset {2, 3, 4} using Hash-node calculation

Y1 Y2
len—1
=Zn7! v =) s
N VANCICES]
2 41 2 41 _ (n—(BP +1))(n— BP)
J’1=Z— 27 Y = 2
k_11!(4—1)! k_ZZ!(4—2)!
2 41 3 41 G-+ 1)¢E-1) + _(A-2+1)¢A-2)
n= 206 a2 T
=1 3! k=2 !
2 463%2%1 ¢+ 4x3%241 y_(4—(2))(3) + y_(4—(3))(2)
= PYZY Y PYEYZ LY 3 2 3 2
k;11(3*2*1) k;22*1(2*1) s .
+ * *
Y1 = ﬁ ﬁ V3 = 2 ' V3 = 2
' 6 4
k=1 k=2
v, =4 + 6 y3 =13 + y3=1
y1 =10 y3=4
v, =4

Table 4. An example of calculating they,, Vs, and index value for the subset {2, 3, 4} using Hash-node

calculation
Va Vs Index
Vo = (M —=Xien-1)(N=Xien-1+1) ys=j—i Index =y, +y,—yatys
2
_(4—3)(4—3+1) V5=4—-3 Index=10+4-1+1
Yo = - 2
1x2 ys =1 Index = 14
Yo = 2
Vo=1

Data structures, as seen in Figure 5, are arrays with attributes consist of :
— Node as an index value of Hash-node calculation result.
— Data as an array of n-itemset combinations, such as 3-itemset {2, 3, 4}. The total combinations for 4 is
(2"-1), that is 15, as seen in Figure 4.
— Support isthevalue of support count. The default for each data is 0 (zero) and it will be counted plus one if
it existed in data, and so on.

public class ItemsetNode {
slic int node;

public int support;
List<Integer> data = new ArrayList<>();

Figure 5. Data structure for n-Itemsettrieof candidate
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After the index value is obtained, next is how to calculate the support value for each subset by
adopting pruning from Apriori. The generation of the itemset candidate is done per-level. Only itemset
candidates who meet the minimum support (frequent) are formed. Then find the candidate itemset's position
in the trie of the candidate set to increase the support count. The steps for the Alternative 1 algorithmare:

— Establishing a trie of the candidate set as much (2n-1), where k is the number of itemsets sold.

— Forming a linear list of databases and superset of itemset for each transaction by combining all itemset
purchased (transaction), which is as much as (2n-1) where ni is the number of itemsets purchased in the
transaction of i.

— For each transaction, all subsets of the superset are searched for a position in the candidate set's trie to
increase the support count.

The process model of the Alternative 1 algorithm is shown in Figure 6.

The difference between Alternative 1 and Alternative 2 algorithms is the generation of n-itemset.
Suppose the construction of n-itemset in Alternative 1 is to combine all itemset and produce itemset of
(2"-1), where ni is the number of itemsets in transaction i. However, this is not the case with Alternative 2.
Pruning is done by eliminating [24], [25] the previous long itemset whose frequency is below the minimum
support thresholds (infrequent), as seen in Figure 7.

3. Calculate {node} of i-

2. Generate combination itembought combination,
1. Read itembought of i-itembought from 1- formula: Y (children 4. node(i-itembought) =
from data —» itemboughtup to n- | from I-itembought to (i- node(from I-itembought to (i-
transaction. itembought, consists of: 1)-itembought) + 1)-itembought)
data, frequent. (sequence of children at
y i-itembought). Yes

Start
No

6. Get frequent

.1temset from 1- 5. Update
End ltrcmbought Io.n- €+Yes @ {support} (i-
itembought, if .
{support} > itembought).
minimum support

Figure 6. The process model of Alternative 1 algorithm

. 4. Calculate {node} of level-i-
1. Re: ht fi
Start cad “li;k;g::ltgio; fom data itembought combination,
: formula: Y (children from 1-

i itembought to (i-1)-

itembought) + (sequence of
2. Generate level-i-itembought

children at i-itembought).
combination {node, data, support}.

15. level =
level+1

3. item(data) =
item(non_frequent_1_Items
et)

5. node(i-itembought) =
node(from 1-itembought to (i-
1)-itembought)

A

No
6. Update {support}(i-itembought).

& support(from T>
itembought to n-

itembought) < minimum
support

13. Get frequent from 1-
itembought combination

4. item(data)

to r-itembought item(non_frequent Yes
combination - =
1_Ttemset)
4 Yes No,
No g
No\
v 12. There are still 11. PRUNING: delete 10. Set data(i-
es. frequent level- node(i-itembought) as  [€— itembought) as <+“—Ye
itembought? frequent level-itembought non_frequent 1_itemset

Figure 7. The process model of Alternative 2 algorithm
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Alternative 3 treats subprocesses-2 and subprocesses-3 of Alternative 2 as threads by installing
concurrent access control to avoid race conditions fighting over the value of support count at the same
position in the trie. Multi-thread applied in this research used dependency data-driven [21]. Transaction data
is divided into 4 threads and 8 threads. A different thread processes in this research based on the sum of the
transaction data that can be seen in Figure 8 (a), so that race conditions may occur which is illustrated in
Figure 8 (b), consisting of 4 threads.

To overcome race condition when update value of SupportCount, mutual exclusion is needed to
access the same address of itemset {2, 3} as one of itemset combination in node 8 {2, 3}, node 11 {1, 2, 3},
node 14 {2, 3, 4}, and node 15 {1, 2, 3, 4} as seen in Table 1. Different threads process it without discarding
one of the threads as collision handling [26] when two threads attempt to insert two different subtrees at the
same location. In this research, the mutual exclusion mechanism uses a monitor using synchronized
constructs when updating support values, as seen in Figure 9.

Threads in this research do not place on each itemset combination as it is unique. For example,
itemset {1, 3, 4} produces 7 combinations are {1}, {3}, {4}, {1, 3}, {1, 4}, {3, 4}, {1, 3, 4}, so that threads
is placed on sum of transaction database which has been divided by 4 and 8 threads. The experiment shows
that the itemset combination threads method has a longer run time than the transaction data threads method.

la. Read itembought from data
transaction.

v

1b. Divide the transaction data
record into 4 or 8 parts (threads).

v

2. Generate level-i-itembought
combination {node, data, support}.

(a)

‘Node‘ Support ‘ Data

!m/%

T1{1,4} C1{1},,{4}.{1,4} _ \. \
T2{4} C2{4} L[t ‘2‘6‘{2}”3‘6‘{3}”4‘3‘f4}‘
T3{1,2,3} Thread1-C3{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}
Tn{...} Cn{...}

—Thread2—| W

~Thread3—

{2, 3}

T2{2,3} C2{2},{3},{2,3}
~Thread4— ... Trie frequent n-itemset with minimum support >= 2
Tn{...} Cn{...}
Transaction ltemset combination
database

(b)

Figure 8. Process model of Alternative 3 algorithm with the example of the distribution of transaction data
(a) into 4 threads (b)
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for (int j = @; § <« indexilist.size(); j++) {
if( indexlist.get(]) »>=@ ) {
int nodeTrie = indexList.get(j);
int supportCount = listCombinaterial.get(nodeTrie-1).getSupport();
supportCount = supportCount + 1;

synchronized (listCombinatorial) {
listCombinatorial.get(nodeTrie-1).setSupport(supportCount);
¥

Figure 9. Updating support value algorithm (simplified)

}

3.2. Experiments

The run time of generating frequent itemset of each proposed algorithm in this research, a test in a
single server environment using a PC with Intel (R) Core (TM) specifications i5-8250U CPU @ 1.60GHz
1.80 GHz uses 12.0 GB RAM and uses the operating system Microsoft Windows 10. Test data obtained from
generating random itemset combinations by a simple application representing the sales transaction data set.
In getting the accurate run time results, testing is carried out 5 times for each minimum support value.

There are two types of the proposed algorithm, namely Single-thread processing average consists of
Alternative 1 and Alternative 2; multi-thread processing average consists of Alternative 3 with 4, 8, and 20
threads. The experiment was carried out with Sexperimental scenarios for each type of the proposed
algorithm made based on the 3 alternatives mentioned previously, each of which is described as follows:

— S1 (Alternative 1): Processing the tries candidate set with one main process. Scenario-1 is intended to
understand the workings and performance of tries.

— S2(Alternative 2): Processing with one main process like scenario S1 but added pruning that works
per-level tree height, namely LevelPruning. This scenario intends to measure whether there is an increase
in performance with pruning.

— S3 (Alternative 3 with 4 threads): Processing Alternative 2 with the use of the 4 threads. Scenario-3
intends to determine the performance improvement of tries with pruning and 4 threads to optimize CPU
work due to idle time I/O.

— S4 (Alternative 3 with 8 threads): Processing Alternative 2 with the use of the 8 threads. Scenario-4
intends to determine whether there is an increase in performance with threads compared to S3.

— S5 (Alternative 3 with 20 threads): Processing Alternative 2 with the use of the 20 threads. Scenario-5
intends to determine whether there is an increase in performance with threads compared to S3 and S4.

To get the quality of the thread model in the calculation, each proposed algorithm above tested by
100,000 transaction data with six variations of n-itemset as Experimental data based on the Research Method.
The variation number of itemset consists of 5-itemset, 25-itemset, 50-itemset, and 150 itemsets with the
threshold of support value is 25% from the total of transaction data.

Table 5. Experimental results for 100,000 transaction data, 5-itemsetup to150-itemset, 25% minimum support

in hours:minutes:seconds:milliseconds
1d 5-items 25-items 50-items 75-items 100-items 150-items
S1 00:00:00:906 X X X X X
S2  00:00:00:361 00:00:09:647 00:01:20:484  00:05:50:748 00:16:19:50 05:04:14:932
S3  00:00:00:161 00:00:03:368 00:00:31:216  00:01:55:805  00:09:05:147  02:00:55:783
S4  00:00:00:205 00:00:04:595 00:00:27:16 00:01:37:707  00:06:43:385  00:43:50:527
S5 00:00:00:242 00:00:11:888 00:04:34:563  00:19:43:225  01:09:36:369  05:54:35:530

The variation of the test data shown in Table 5 that the run time is the latest for the number of
S-itemset and 25% of minimum support is Alternative 1. It happens because before carrying out the
counting node process, it takes a full itemset combination generation process for all n-itemset combinations,
which is as much as (2"-1) so that at n>5-itemset takes the longest run time processing until the process
results in a hang. Therefore pruning operations are needed in this research using level pruning. If the result
of the generation of a combination (level-1)-itemset meets the minimum support thresholds, then the itemset
will be a candidate itemset at the next level. Level pruning's existence in generating itemset combinations
based on this trie tree-level can save memory usage. The item matching process for each transaction record
is not done for all itemset combinations (n-itemset), such as the proposed algorithm in Alternative 2 and
Alternative 3.
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The results from the 5-itemset up to 150-itemset of the three algorithms can be seen in the graph
below with the value is converted from hours to milliseconds. The horizontal axis is the number of itemsets,
and the vertical axis is run time processing (in millisecond), where red is for Alternative 1, green is for
Alternative 2, and blue is for Alternative 3 with 4 threads, yellow is for Alternative 3 with 8 threads, and
orange is for Alternative 3 with 20 threads, as seen in Figure 10.

The fastest run time is 00:43:50:527 (2,630,527 msec) can be done by an algorithm from
Alternative 3 with 8 threads for the number of 150-itemset and 25% of minimum support on 100,000
transaction data, while the run time generated by Alternative 2 is 05:04:14:932 (18,254,932 msec), and
Altervative 1 itself is in hang that only seen in 5-itemset, as seen in Figure 10 (a), and it disappeared from
Figures 10 (b) to 10 (f). Using multi-thread affects increasing run time that it is about 7 times faster than
using no thread (Alternative 1 and Alternative 2). However, its run time performance does not in line with
the number of multi-thread, as seen in Table 2. Alternative 3 with 4 thread (S3) is faster than 8 thread (S4)
for the number of 5-itemset and 25-itemset, as seen in Figures 10 (a) and 10 (b). In contrast, Alternative 3
with 8 threads (S4) is faster than 4 threads (S3) for the number from 50-itemset to 150-itemset. Otherwise,
Alternative 3 with 20 threads is the lastest from S5-itemset to 150-itemset, so the more threads did not affect
to get the betterperformance. Figure 11 shows that the greater the number of the item variants, then the
greater the time difference was obtained, but the greater the number of the threads did not always getting the
faster the time of processing.
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Figure 10. Experimental results for 100,000 transaction data in milliseconds: (a) 5-itemset, (b) 25-itemset,
(c) 50-itemset, (d) 75-itemset, (e) 100-itemset, and (f) 150-itemset with 25% of minimum support
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Figure 11. The difference in the processing time

The discussion of the experimental results in Table 4, it shows that the average time required for
processing using multi-thread is faster than the single-thread model, despite for Alternative 3 with 20 threads
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(S5). The difference in experimental time is very small for item variants under 100-itemset and it increased
dramatically over 100-itemset. However, the addition of the itemset variant to 150-itemset has resulted in
almost 8 times the difference in processing time between S2 and S4, which is about 15048740 msec or about
4 hours. In the case of market basket analysis, the number of item variants has a big role in processing time
where the number of candidate sets obtained is (2"-1).

4. CONCLUSION

The Hash-node calculation as a current research's achievement is proposed three variants algorithm
which has been able to generate frequent itemset with the fastest execution is the algorithm of
Alternative 3that is 43 minutes 50 seconds 527 milliseconds with the number of multi-thread is 8 threads.
Other than that, the experiment time between multi-thread and single-thread was very different at the
150-itemset, wherethe smallest time is multi-thread and the largest is single-thread.

There are two factors that are recommended to be further explored from the achievements of this
research. First, the kind of other thread models (lightweight process/LWP), where the thread processing in
this research is carried out based on the distribution (data-driven) of the number of transaction data in some
threads. Second, the other approach to find the order of nodes in a trieat a certain level using the formula of
(y3 and y4), where the search based on the value of BP carried out in this research requires a recursive
algorithm that requires a large enough memory, so that the available heap space is only a little. In addition,
the experimental data used in this research are relatively small. Therefore, it is possible that the processing
time needed is longer if the experiment uses real data in supermarkets with millions of item variants, and the
number of transactions reaching billions. Besides that, the development of this research is related to the need
for a multi-thread processing of a real environment, such as through MapReduce-based frequent itemset
mining algorithms.
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