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 In this paper, we proposed a matrix-free double-search direction based on the 

updated parameter file of the double-search direction with a new 

mathematical formula for the gamma parameter. When comparing the 

numerical results of this algorithm with the standard (HWY) algorithm which 

given by Halilu, Waziri and Yusuf in 2020. We get very robust numerical 

results. The proposed algorithm is devoid of derivatives to solve large-scale 

non-linear problems by combining two search directions in one search 

direction. We demonstrated the overall convergence of the proposed 

algorithm under certain conditions. The numerical results presented in this 

paper show that the new search direction is useful for solving widespread 

non-linear test problems. 
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1. INTRODUCTION  

Most of the applied problems derived from the following branches: engineering, biological, 

mathematics, physical, chemical, and the rest of the scientific branches are non-linear. Researchers have 

continued to develop numerical methods that solve this type of problem as in [1], [2]. In this article, we will 

discuss how to solve a system of nonlinear equations, which we can represent by: 

 

𝐹(𝑥) = 0         (1) 

 

So, we know the function 𝐹: 𝑅𝑛 → 𝑅𝑛 is a nonlinear function. The premise of this function 𝑅𝑛 refers 

to the real space of the dimension-n measured by the Euclidean standard ‖∙‖. As for the methods that can 

solve such a non-linear system, they are the iterative methods, such as the Newton method, Quasi-Newton 

method [3]-[8], and the derivative-free method [9]-[11]. When solving in (1) using the most commonly used 

iterative method through the linear sequence as in [12], as the search direction 𝑑𝑘  is obtained from (2). 

 

𝐹(𝑥𝑘) + 𝐽(𝑥𝑘)𝑑𝑘 = 0        (2) 
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Where  𝐽(𝑥𝑘) is the jacobian matrix that equal to 𝐹′(𝑥𝑘) or an approximation of it. One of the good 

characteristics of Newton’s method is the speed in reaching the optimal solution and its rapid convergence, 

but it requires the computation of the Jacobian matrix. The first idea of the double-search direction suggested 

in [13] relies on generating duplicates from the (3). 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑒𝑘 + 𝛼𝑘
2𝑐𝑘        (3) 

 

Where 𝛼𝑘 > 0 is the step-size, 𝑥𝑘+1 is the new point of (3), 𝑥𝑘 is the previous point while 𝑒𝑘 and 𝑐𝑘 are the 

first and the second search directions, respectively. In this article, we will shed light on approximating a 

matrix 𝐽(𝑥𝑘) using a diagonal matrix (𝐼 is the identity matrix) i.e., that (4). 

 

𝐽(𝑥𝑘) ≈ 𝜓𝑘𝐼         (4) 

 

We can define 𝑓(𝑥) as a modular function that defines it (5). 

 

𝑓(𝑥) =
1

2
‖𝐹(𝑥)‖2        (5) 

 

Note that the problem of equations in (1) is equivalent to the following global optimization problem (6). 

 

min 𝑓(𝑥) ,    𝑥 ∈ 𝑅𝑛        (6) 

 

In the double search direction method (3), the iterative information is used in multiple steps, and 

curves are searched to generate new iterative points. Researchers continue to develop a special type of search 

direction, for example, Petrovic and Stanimirovic [14] deal with a double-direction to solve unconstrained 

optimization issues. The transformation of the double-step length scheme is suggested in [15], [16] to boost 

the numerical efficiency and global convergence properties of double-direction methods. It is also possible to 

compute the step-length alpha, either by using exact or inexact line searches. Thus, inexact line search [17], 

[18] is the most commonly used approach in this field. A fundamental requirement of line search is to 

minimize function values properly, i.e. to evaluate the function values (7). 

 

‖𝐹(𝑥𝑘+1)‖ ≤ ‖𝐹(𝑥𝑘)‖        (7) 

 

We organized the article in the following order: section 2, deals with the two new algorithms (S-RA 

and D-RA). Section 3 deals with introducing some new theorems that prove the convergence of the newly 

proposed algorithms (S-RA and D-RA). Section 4, concerns the numerical results which demonstrate the 

efficiency of the newly proposed algorithms when compared to the standard (HWY) algorithm. Section 5 

deals with general conclusions.  

 

 

2. TWO NEW ALGORITHMS (S-RA AND D-RA) 

In this section, we suggest reducing the two vector directions (3) into a single that with relying on 

the projection technique to find that direction of research. This is made possible by allowing the two 

directions to be identical, i.e. 𝑒𝑘 = 𝑐𝑘. We propose that the 𝑒𝑘 and 𝑐𝑘 in (3), the unique search direction is 

described as (8) 

 

𝑒𝑘 = 𝑐𝑘 = −𝜓𝑘
−1𝐹(𝑥𝑘)        (8) 

 

Now, put (8) into (3), we get (9). 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(−𝜓𝑘
−1(1 + 𝛼𝑘))𝐹(𝑥𝑘)      (9) 

 

Through (9), we can conclude that the double-direction will become (10) 

 

𝑑𝑘 = −𝜓𝑘
−1(1 + 𝛼𝑘)𝐹(𝑥𝑘)       (10) 

 

Set the acceleration parameter used in (10) as (11), 
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𝜓𝑘+1 = 𝑒

[‖𝑠𝑘‖
2

−‖𝑦𝑘‖
2

]

‖𝐹(𝑥𝑘+1)‖
2

        (11) 

 

where 𝑦𝑘 = 𝐹𝑘+1 − 𝐹𝑘 and the difference between the two-point is 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘  . Therefore, through the 

(9) and (10), we can get (12). 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘        (12) 

 

The projection approach relies on the use of a monotone case F to accelerate and change the new 

point using repetition. As in the (13). 

 

𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘         (13) 

 

The hyperplane, as an original iterative, is (14). 

 

𝐻𝑘 = {𝑥 ∈ 𝑅𝑛|𝐹(𝑧𝑘)𝑇(𝑥𝑘 − 𝑧𝑘) = 0}      (14) 

 

To start using the projection technique, we use the update of the new point 𝑥𝑘+1 as given in the [19], 

[20] to be the projection of 𝑥𝑘 onto the hyperplane 𝐻𝑘. So, can be evaluated as: 

 

𝑥𝑘+1 = 𝑃𝛺[𝑥𝑘 − 𝜍𝑘𝐹(𝑧𝑘)]        (15) 

 

𝜍𝑘 =
𝐹(𝑧𝑘)𝑇(𝑥𝑘−𝑧𝑘)

‖𝐹(𝑧𝑘)‖2          (16) 

 

In the next paragraph, we will present the standard (HWY) algorithm [12] and the newly proposed 

algorithms which are divided into two parts: first of one (S-RA) algorithm which uses (12), (8), and (11) and 

the second (D-RA) algorithm which uses (12), (10), and (11). To clarify the idea of the numerical algorithms 

used in this research, we present the steps of each of these algorithms in detail. 

 

2.1.  Algorithm (HWY) [12] 

Input: Given 𝑥0, 𝜓0 ∈ (0,1), 𝛼 > 0, 𝜀 = 10−4, 𝑤1 and 𝑤2 > 0, set k=0. 

 Compute 𝐹𝑘 = 𝐹(𝑥𝑘). 
 Test the stopping criterion. If yes, then stop; otherwise, continue to the next step. 

 Compute search direction 𝑑𝑘 using (10).  

 Compute step length 𝛼𝑘 using this line-search: 

 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓(𝑥𝑘) ≤ −𝑤1 ‖𝛼𝑘  𝐹𝑘‖2 − 𝑤2 ‖𝛼𝑘  𝑑𝑘‖2 + 𝜂𝑘 𝑓(𝑥𝑘)    
 

 Set 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘. 

 Compute 𝐹(𝑥𝑘+1). 

 Determine 𝜓𝑘+1 using        𝜓𝑘+1 =
‖𝑦𝑘‖2

𝑦𝑘
𝑇𝑠𝑘

       

 Set k=k+1, and go to 2. 

 

2.2.  New single search direction algorithm (S-RA) 

Input: Given 𝑥0 ∈ Ω, 𝜓0, r, 𝜎, 𝜇 ∈(0,1), 𝛼 > 0, 𝜀 > 0, set k=0. 

 Compute 𝐹𝑘 = 𝐹(𝑥𝑘) and test If ‖𝐹𝑘‖ ≤ 𝜀 yes, then stop; otherwise, continue to the next step. 

 Compute search direction 𝑑𝑘 (using (8)). 

 Set 𝑧𝑘 from (13) and compute step length 𝛼𝑘  using this line-search: 

 

−𝐹(𝑥𝑘 + 𝜇 𝑟𝑘
𝑚𝑑𝑘)𝑇𝑑𝑘 ≥  𝜎 𝜇 𝑟𝑘

𝑚  ‖𝐹(𝑥𝑘 + 𝜇 𝑟𝑘
𝑚𝑑𝑘)‖ ‖𝑑𝑘‖2   (17) 

 

 If 𝑧𝑘 ∈ Ω and ‖𝐹(𝑧𝑘) ‖ ≤ 𝜀 stop, else compute 𝑥𝑘+1 from (12). 

 Determine 𝜓𝑘+1 using (11). 

 Set k=k+1, and go to 2. 

 

 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 6, December 2021:  1847 - 1856 

1850 

2.3.  New double search direction algorithm (D-RA) 

Input: Given 𝑥0 ∈ Ω, 𝜓0, r, 𝜎, 𝜇 ∈(0,1), 𝛼 > 0, 𝜀 > 0, set k=0. 

 Compute 𝐹𝑘 = 𝐹(𝑥𝑘) and test If ‖𝐹𝑘‖ ≤ 𝜀 yes, then stop; otherwise, continue to the next step. 

 Compute search direction 𝑑𝑘 (using (10)). 

 Set 𝑧𝑘 from (13) and compute step length 𝛼𝑘  using this line-search from (17). 

 If 𝑧𝑘 ∈ Ω and ‖𝐹(𝑧𝑘) ‖ ≤ 𝜀 stop, else compute 𝑥𝑘+1 from (12). 

 Determine 𝜓𝑘+1 using (11). 

 Set k=k+1, and go to 2. 

 

 

3. CONVERGENCE ANALYSIS 

In the previous section, we proposed two new algorithms (S-RA and D-RA) depending on the 

parameter 𝜓𝑘+1. Now in this section, we will present an affinity analysis for the second algorithm, which is 

more general than the first as in the coming theorems, but before that, we must give the basic assumptions a 

space of attention which is: 

 

3.1.  Assumption A 

Assumption A means that the special solution of (1) in 𝑁 stands for 𝑥∗. Since 𝐹′(𝑥𝑘) is 

approximated by 𝜓𝑘𝐼 along the direction 𝑠𝑘, we might mention another assumption of the same idea. 

 Suppose there is a set level defined by: 

 

 𝛺 = {𝑥|‖𝐹(𝑥)‖ ≤ ‖𝐹(𝑥0)‖}        

 

 There is an 𝑥∗ that belongs to 𝑅𝑛, where 𝐹(𝑥∗) = 0  is true. 

 Let the function 𝐹 be differentiable and continuous in some neighborhood, that is, N of 𝑥∗  contained in 

𝛺. 

 On N, i.e., there is a Jacobian of 𝐹 restricted and positive definite, i.e. there are a positive constants M > 

m > 0 are such that: 

 

‖𝐹′(𝑥)‖  ≤ 𝑀, ∀ 𝑥 ∈  𝑁.        (18) 

 

And 

 

𝑚‖𝑑‖2  ≤  𝑑𝑇𝐹′(𝑥)𝑑, ∀ 𝑥 ∈  𝑁, 𝑑 ∈  𝑅𝑛 .      (19) 

 

3.2.  Assumption B 

If we consider that 𝜓𝑘  𝐼 is a good approximation of 𝐹′(𝑥𝑘), which means that: 

 

‖(𝐹′(𝑥𝑘) − 𝜓𝑘  𝐼)𝑑𝑘‖  ≤  𝜀‖ 𝐹(𝑥𝑘)‖      (20) 

 

where  𝜀 ∈ (0,1) is a small quantity [6]. 

 

3.3.  Theorem (descent direction) 

Suppose assumption B holds and that new algorithm (S-RA) and (D-RA) produces {𝑥𝑘}. Then, 𝑑𝑘 in 

(8) in the direction of the descent of 𝑓(𝑥𝑘) at 𝑥𝑘  i.e. 

 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 < 0         (21) 

 

Proof: We will divide the proof into two parts, each part concerned with an algorithm to change the search 

direction in each of them as follows: 

Part 1: when dealing with the first algorithm, we will need a search direction from (8), as:  

 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = 𝐹(𝑥𝑘)𝑇𝐹′(𝑥𝑘)𝑑𝑘 = 𝐹(𝑥𝑘)𝑇[(𝐹′(𝑥𝑘) − 𝜓𝑘  𝐼)𝑑𝑘 − 𝐹(𝑥𝑘)]   
 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = 𝐹(𝑥𝑘)𝑇(𝐹′(𝑥𝑘) − 𝜓𝑘  𝐼)𝑑𝑘 − ‖𝐹(𝑥𝑘)‖2    (22) 

 

by Cauchy-Schwarz inequality, we have: 
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∇𝑓(𝑥𝑘)𝑇𝑑𝑘  ≤ ‖ 𝐹(𝑥𝑘)‖‖(𝐹′(𝑥𝑘) − 𝜓𝑘  𝐼)𝑑𝑘‖ − ‖𝐹(𝑥𝑘)‖2    (23) 

 

If (20) satisfy then, 

 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘  ≤  𝜀‖𝐹(𝑥𝑘)‖2 − ‖𝐹(𝑥𝑘)‖2 ≤ −(1 −  𝜀)‖𝐹(𝑥𝑘)‖2   (24) 

 

Hence for 𝜀 ∈ (0,1), this proves of part 1 is true. 

Part 2: when dealing with the second algorithm, we will need a search direction from (8) and (10), as: 

 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘 = 𝐹(𝑥𝑘)𝑇𝐹′(𝑥𝑘)𝑑𝑘 = 𝐹(𝑥𝑘)𝑇(𝐹′(𝑥𝑘) − 𝜓𝑘  𝐼)𝑑𝑘 − (1 + 𝛼𝑘)‖𝐹(𝑥𝑘)‖2 (25) 

 

by Cauchy-Schwarz inequality, we have: 

 

 ∇𝑓(𝑥𝑘)𝑇𝑑𝑘  ≤ ‖ 𝐹(𝑥𝑘)‖‖(𝐹′(𝑥𝑘) − 𝜓𝑘  𝐼)𝑑𝑘‖ − (1 + 𝛼𝑘)‖𝐹(𝑥𝑘)‖2    
If (20) satisfy then, 

 

∇𝑓(𝑥𝑘)𝑇𝑑𝑘  ≤  𝜀‖𝐹(𝑥𝑘)‖2 − (1 + 𝛼𝑘)‖𝐹(𝑥𝑘)‖2 ≤ −(1 −  𝜀 + 𝛼𝑘)‖𝐹(𝑥𝑘)‖2   
 

Hence this proves part 2. This means that the two new proposed algorithms have descent search directions. 

We can deduce from the theorem (descent direction) that the norm function 𝑓(𝑥𝑘) is a decline for 𝑑𝑘, which 

implies that ‖𝐹(𝑥𝑘+1)‖ ≤  ‖𝐹(𝑥𝑘)‖ ≤ . . . ≤  ‖𝐹(𝑥0)‖. This implies that 𝑥𝑘 ∈ Ω. 

 

3.4.  Lemma (bounded 𝜓𝑘+1) 

Suppose that assumption A holds and {𝑥𝑘} is generated by an algorithm (S-RA) and (D-RA). Then 

there exists a constants M > m > 0 such that for all k: 

 
[‖𝑠𝑘‖2−‖𝑦𝑘‖2]

‖𝐹(𝑥𝑘+1)‖2 ≤
𝑀−𝑀3

𝑚2         (26) 

 

Proof:  

From assumption A we get: 

 

𝑦𝑘
𝑇  𝑠𝑘  ≥  𝑚 ‖𝑠𝑘‖2        (27) 

 

from [18], we have: 

 

𝑀2 𝑦𝑘
𝑇 𝑠𝑘  ≥  𝑚 ‖𝑦𝑘‖2        (28) 

 

then, 

 

[𝑚 ‖𝑠𝑘‖2 − 𝑚 ‖𝑦𝑘‖2] ≤ [𝑦𝑘
𝑇  𝑠𝑘 − 𝑀2 𝑦𝑘

𝑇  𝑠𝑘] ⇒ [‖𝑠𝑘‖2 − ‖𝑦𝑘‖2] ≤
[1−𝑀2]

𝑚
𝑦𝑘

𝑇𝑠𝑘  

 

from the theorem we have: 

 

𝑚 ‖𝑠𝑘‖  ≤  ‖𝐹𝑘+1‖ ≤ ‖ 𝐹𝑘+1 − 𝐹𝑘‖ ≤  𝑀 ‖𝑠𝑘‖     (29) 

 

hence, 

 

[‖𝑠𝑘‖2−‖𝑦𝑘‖2]

‖𝐹(𝑥𝑘+1)‖2  ≤
[1−𝑀2]

𝑚
𝑦𝑘

𝑇𝑠𝑘

𝑚2‖𝑠𝑘‖2   ≤  
[1−𝑀2]𝑀

𝑚2       (30) 

 

The inequality (26) is true. Using (26), 𝜓𝑘+1 is generated by the update of (11) and we can deduce that 𝜓𝑘+1I 

inherit the positive definiteness of 𝜓𝑘I. 

 

3.5.  Lemma (bounded 𝑑𝑘) 

Suppose that assumption A and B holds and {𝑥𝑘}  is generated by an algorithm (S-RA) and (D-RA). 

Then there exists a constant b>0 such that ∀𝑘 > 0, 
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‖𝑑𝑘‖ ≤  𝑏𝑖         (31) 

 

where i=1,2. 

 

Proof: We will present two parts in this lemma, each of which depends on the search direction resulting from 

an algorithm as in: 

Part 1: From (8), (11), and assumption A we have: 

 

‖𝑑𝑘‖ = ‖−
𝐹(𝑥𝑘)

𝑒

‖𝑠𝑘‖
2

−‖𝑦𝑘‖
2

‖𝐹(𝑥𝑘+1)‖
2

‖        (32) 

 

and using the result of Lemma (bounded 𝜓𝑘+1), 

 

‖𝑑𝑘‖ ≤ 𝑒
[1−𝑀2]𝑀

𝑚2 ‖𝐹(𝑥𝑘)‖  ≤  [𝐵1‖𝐹(𝑥0)‖]  ≤  𝑏1     (33) 

 

where 𝐵1>0 and 𝑏1 = 𝐵1‖𝐹(𝑥0)‖. 
Part 2: From (10), (11), and assumption A we have: 

 

‖𝑑𝑘‖ = ‖−
(1+𝛼𝑘)𝐹(𝑥𝑘)

𝑒

‖𝑠𝑘‖
2

−‖𝑦𝑘‖
2

‖𝐹(𝑥𝑘+1)‖
2

‖        (34) 

 

and using the result of Lemma (bounded ψk+1), 

 

‖𝑑𝑘‖  ≤ (1 + 𝛼𝑘)𝑒
[1−𝑀2]𝑀

𝑚2 ‖𝐹(𝑥𝑘)‖ ≤  [(‖𝐹(𝑥0)‖ + 𝛼𝑘‖𝐹(𝑥𝑘)‖)𝑒
[1−𝑀2]𝑀

𝑚2 ]  (35) 

 

‖𝑑𝑘‖  ≤  [(‖𝐹(𝑥0)‖ + 𝐵2)𝑒
[1−𝑀2]𝑀

𝑚2 ]  ≤  𝑏2      (36) 

 

where 𝐵2>0 and 𝑏2 = (‖𝐹(𝑥0)‖ + 𝐵2)𝑒
[1−𝑀2]𝑀

𝑚2 . The following theorem deals with the global convergence 

property. To prove that under a few suitable conditions, there exist an accumulation point of 𝑥𝑘 which is a 

solution to the problem (1). 

 

3.6.  Theorem (global convergence) 

Suppose that assumption B holds, {𝑥𝑘}  is generated by an algorithm (S-RA) and (D-RA). Assume 

further ∀𝑘 > 0, 
 

𝛼𝑘  ≥   𝜏
|𝐹(𝑥𝑘)𝑇𝑑𝑘|

‖𝑑𝑘‖2          (37) 

 

where 𝜏 is some positive constant. Then 

 

𝑙𝑖𝑚
𝑘→∞

‖𝐹(𝑥𝑘)‖ = 0         (38) 

 

Proof: From (31), and (Descent Direction Theorem) we have: 

 

𝑙𝑖𝑚
𝑘→∞

‖𝑠𝑘‖ = 0         (39) 

 

and the bounded of ‖𝑑𝑘‖, we have: 

 

𝑙𝑖𝑚
𝑘→∞

𝛼𝑘‖𝑑𝑘‖2 = 0         (40) 

 

From (37) and (40) it follows that: 
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𝑙𝑖𝑚
𝑘→∞

|𝐹(𝑥𝑘)𝑇𝑑𝑘| = 0        (41) 

 

In this stage of the proof, we will take two parts according to the two new algorithms as in: 

Part 1: According to the (S-RA) algorithm and from (8), we have: 
 

𝐹(𝑥𝑘)𝑇𝑑𝑘 = −𝜓𝑘
−1‖𝐹(𝑥𝑘)‖2 ⟹ |𝜓𝑘 ||𝐹(𝑥𝑘)𝑇𝑑𝑘| = ‖𝐹(𝑥𝑘)‖2    

 

and as we imposed in the theorem: 
 

|𝜓𝑘 |
1

𝑐
𝛼𝑘‖𝑑𝑘‖2 ≥  ‖𝐹(𝑥𝑘)‖2       (42) 

 

While |𝜓𝑘 | = 𝑒

[‖𝑠𝑘−1‖
2

−‖𝑦𝑘−1‖
2

]

‖𝐹(𝑥𝑘)‖
2

≤ 𝑒
[1−𝑀2]𝑀

𝑚2 ≤ 𝛿       

 

so, from the (42), then 
 

0 ←
𝛿

𝑐
𝛼𝑘‖𝑑𝑘‖2  ≥  ‖𝐹(𝑥𝑘)‖2 ≥  0       (43) 

 

therefore, in (42) is true and the proof for part 1 is completed. 

Part 2: According to the (D-RA) algorithm and using (10), we have: 
 

𝐹(𝑥𝑘)𝑇𝑑𝑘 = −𝜓𝑘
−1(1 + 𝛼𝑘)‖𝐹(𝑥𝑘)‖2       

 

‖𝐹(𝑥𝑘)‖2 = ‖−𝜓𝑘 𝐹(𝑥𝑘)𝑇𝑑𝑘‖ − ‖𝛼𝑘𝐹(𝑥𝑘)‖2 ≤ |𝜓𝑘 ||𝐹(𝑥𝑘)𝑇𝑑𝑘|   (44) 
 

while |𝜓𝑘 | ≤ 𝛿 as in part 1, so from the (50), then 
 

0 ← 𝛿|𝐹(𝑥𝑘)𝑇𝑑𝑘|  ≥  ‖𝐹(𝑥𝑘)‖2 ≥  0      (45) 
 

therefore, the (38) is true and the proof for part 2 is completed. 

 

 

4. NUMERICAL PERFORMANCE 

In this section, we will present our numerical results for comparisons between the two new proposed 

algorithms (S-RA) and (D-RA) and the standard (HWY) algorithm which is devoid of the derivative to solve 

certain nonlinear test problems. In our implementing all three algorithms, we used the Matlab R2018b 

program in a laptop calculator with its Corei5 specifications. As for the tools used in the two algorithms, they 

are as follows: 𝜓0 = 0.6 𝑎𝑛𝑑  1, 𝑟 = 0.9, 𝜎 = 0.02, 𝜇 = 1, 𝑤1 =  𝑤2 = 10−4, ‖𝐹(𝑥𝑘)‖ < 10−8. The program 

finds the results on several non-derivative functions through several two initial points indicated in the  

Tables 1 and 2. 

 

 

Table 1. The initial points 
Name of Variable Initial point 

𝑥1 (1, 1, 1, . . , 1)𝑇 

𝑥2 (0.2, 0.2, 0.2, . . , 0.2)𝑇 

𝑥3 (20, 20, 20, . . , 20)𝑇 

𝑥4 (𝑟𝑎𝑛𝑑, 𝑟𝑎𝑛𝑑, 𝑟𝑎𝑛𝑑, . . , 𝑟𝑎𝑛𝑑)𝑇 

 

 

These algorithms we implemented within dimensions n (1000, 2000, 5000, 7000, 12000). All such 

algorithms are recognized by their performance in (Iter) the number of iterations, (Eval-F) the number of 

evaluations of functions, (Time) in second CPU time, (Norm) approximation solution norm. The  

test problems 𝐹(𝑥) = (𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝑛)𝑇  where 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)𝑇, for 𝑖 = 1,2, . . . , 𝑛 and 𝛺 = 𝑅+
𝑛 are 

from [21]-[24] and listed as shown in Table 2. Using Dolan and Mor´e style [25], the Figures 1-3 are used for 

comparison between the (HWY) with (S-RA) and (D-RA) algorithms when switching the search direction. 

The Figures 1-3 are about the initial point 1 because it is the best performance. 
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Table 2. Define the problems 
No.  Problems 

1 𝐹𝑖(𝑥) = 𝑥𝑖 − 𝑠𝑖𝑛 𝑥𝑖 
2 𝐹𝑖(𝑥) = 𝑒𝑥𝑖 − 1 
3 𝐹𝑖(𝑥)  = √𝑐 (𝑥1 − 1), 𝑖 = 2,3, . . , 𝑛 − 1. 

𝐹𝑛(𝑥) =
1

4𝑛
∑ 𝑥𝑗

2

𝑛

𝑗=1

− 1/4, 𝑐 = 1 ∗ 10−5 

4 𝐹𝑖(𝑥) = 𝑙𝑛(|𝑥𝑖| + 1) −
𝑥𝑖

𝑛
 

5 𝐹𝑖(𝑥) = 𝑚𝑖𝑛(𝑚𝑖𝑛(|𝑥𝑖|, 𝑥𝑖
2), 𝑚𝑎𝑥(|𝑥𝑖|, 𝑥𝑖

3)) 

6 
𝐹1(𝑥) = 𝑥1 − 𝑒

𝑐𝑜𝑠(𝑥1+𝑥2)
𝑛+1  

𝐹𝑖(𝑥) = 𝑥𝑖 − 𝑒
𝑐𝑜𝑠(𝑥𝑖+1+𝑥𝑖+𝑥𝑖−1)

𝑛+1 , 𝑓𝑜𝑟 𝑖 = 2,3, . . , 𝑛 − 1 

𝐹𝑛(𝑥) = 𝑥𝑛 − 𝑒
𝑐𝑜𝑠(𝑥𝑛−1+𝑥𝑛)

𝑛+1  
7 

𝐹𝑖(𝑥) =  
𝑖

𝑛
𝑒𝑥𝑖 − 1 

8 𝐹1(𝑥) = 𝑒𝑥1 − 1 

𝐹𝑖(𝑥) =  𝑒𝑥𝑖 − 𝑥𝑖−1 − 1 

9 
𝐹𝑖(𝑥) = ∑|𝑥𝑖|𝑖

𝑛

𝑖=1

 

10 
𝐹𝑖(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

 

11 𝐹𝑖(𝑥) = 𝑚𝑎𝑥
𝑖=1,..,𝑛

|𝑥𝑖| 

12 
𝐹𝑖(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

 𝑒− ∑ 𝑠𝑖𝑛(𝑥𝑖
2)𝑛

𝑖=1  

13 
𝐹𝑖(𝑥) = ∑|𝑥𝑖|𝑖+1

𝑛

𝑖=1

 

 

 

 
(a) 

 
(b) 

 

Figure 1. Performance of iterations for the (S-RA and D-RA vs. HWY) algorithms: (a) S-RA and HWY and 

(b) D-RA and HWY 
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(a) (b) 

  

Figure 2. Performance of function evaluations for the (S-RA and D-RA vs. HWY) algorithms: (a) S-RA and 

HWY and (b) D-RA and HWY 

 

 

  
(a) (b) 

 

Figure 3. Performance of time for the (S-RA and D-RA vs. HWY) algorithms: (a) S-RA and HWY and  

(b) D-RA and HWY 

 

 

5. CONCLUSIONS 

The results, presented in the six figures show the efficiency of the two new algorithms (S-RA) and 

(D-RA) when compared with the previous standard (HWY) algorithm, and their efficiency is better by taking 

the first initial point and increase when increasing the dimensions in the variables used. The new algorithms 

have given a clear convergence in reaching the optimal point for solving non-linear functions. 
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