
TELKOMNIKA Telecommunication, Computing, Electronics and Control 

Vol. 19, No. 4, August 2021, pp. 1234~1241 

ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 

DOI: 10.12928/TELKOMNIKA.v19i4.20369  1234 

  

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA 

Enhancing text classification performance by preprocessing 

misspelled words in Indonesian language 

 

 

Reza Setiabudi, Ni Made Satvika Iswari, Andre Rusli 
Department of Informatics, Universitas Multimedia Nusantara, Indonesia 

 

 

Article Info  ABSTRACT  

Article history: 

Received Aug 31. 2020 

Revised Jan 11, 2021 

Accepted Jan 20, 2021 

 

 Supervised learning using shallow machine learning methods is still a popular 

method in processing text, despite the rapidly advancing sector of 

unsupervised methodologies using deep learning. Supervised text 

classification for application user feedback sentiments in Indonesian Language 

is one of the applications which is quite popular in both the research 

community and industry. However, due to the nature of shallow machine 

learning approaches, various text preprocessing techniques are required to 

clean the input data. This research aims to implement and evaluate the role of 

Levenshtein distance algorithm in detecting and preprocessing misspelled 

words in Indonesian language, before the text data is then used to train a 

user feedback sentiment classification model using multinomial Naïve Bayes. 

This research experimented with various evaluation scenarios, and found that 

preprocessing misspelled words in Indonesian language using the 

Levenshtein distance algorithm could be useful and showed a promising 8.2% 

increase on the accuracy of the model’s ability to classify user feedback text 

according to their sentiments. 

Keywords: 

Indonesian language 

Levenshtein distance 

Text classification 

Typo correction 

User feedback 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Andre Rusli  

Department of Informatics 

Universitas Multimedia Nusantara 

UMN Campus, Scientia Boulevard St., Gading, Serpong, Tangerang, Banten 15811, Indonesia 

Email: andrerusli19@gmail.com 

 

 

1. INTRODUCTION  

Nowadays, thanks to the rapidly advancing technologies in various sectors, end-user feedback can be 

gathered and collected easily via various channels such as digital user surveys, social media and mobile 

application stores. Analyzing these end-user feedback could provide useful information regarding product 

requirements which could benefit the owners and engineers of a certain product, as the users themselves could 

participate in determining the product requirements through the feedback they gave. User involvement in 

software requirements engineering [1], [2] is crucial in delivering a right product. Not only before and during 

the software development process takes place, user involvement after the product is delivered is also crucial. 

Developers and product owners would often gather feedback from their end-users to continuously improve 

their products, thus, making user feedback as one of the most crucial sources of information in order to make 

a product with the best quality. This is a fundamental aspect in some recent concepts of requirements 

engineering such as the market driven requirements engineering (MODRE) [3] and the CrowdRE  

paradigm [4], which gives end-users a prominent role with respect to other stakeholders. In order to analyze 

and process feedback into useful information, one important point will be the characterization of the feedback 

https://creativecommons.org/licenses/by-sa/4.0/


TELKOMNIKA Telecommun Comput El Control   

 

Enhancing text classification performance by preprocessing misspelled… (Reza Setiabudi) 

1235 

properties that may be actually used in the automated prioritization steps [5] and those that need human 

competences and intervention to be exploited in the decision process [6]. 

Recent advances in machine learning and natural language processing give way to enable software 

developers to better process these user feedback automatically, as processing all the collected user feedback 

text would take tremendous time and effort. However, user feedback in the form of app reviews poses some 

challenges to build a machine to be automatically processed into useful information. On the one side, they 

share properties with Tweets and other social media texts, e.g., comparably short and informal language [7], 

thus making it a challenges for the machine which is often used to dealing with structured data. On the other 

side, they are similar to product reviews from other domains or platforms, e.g., reviews about household 

appliances or books on Amazon, as they typically describe the user’s opinion about specific aspects [8]. Many 

works of research have been tackling these challenges in automatically processing text for application user 

feedback.  

Text classification is one branch of natural language processing that is often used in processing 

feedback texts. Many supervised machine learning methods, such as multinomial Naïve Bayes, logistics 

regression, and support vector machine, are proven to be effective and applicable in classifying texts in  

English [9], [10]. However, as a language with less resource compared to English, research in processing 

Indonesian language is very crucial, especially if we consider the huge number of social media and mobile 

application users in the country. Many researchers in the field have already conducted experiments in text 

classification, especially sentiment analysis/classification, in Indonesian language [11]-[15]. Based on results 

from related works of research, our previous works implemented and evaluated the performance and applicability 

of several methods in classifying text written in Indonesian language, such as Naïve Bayes algorithm to classify 

application user feedback based on their sentiments and specific feedback categories [16], [17], multilayer 

perceptron to identify fake news [18], and a comparison of several shallow machine learning methods to 

classify user feedback based on their categories [19]. In these various works of research in Indonesian language, 

many methodologies in classifying texts have been experimented, Naïve Bayes being one of the most popular 

methods with promising performance as a supervised machine learning classification method. However, as 

shown in [20], [21], text preprocessing and language normalization techniques, such as preprocessing 

misspelled words, have shown a huge increase in performance when performing text classification in English. 

Another paper [22] also shows the potential of Naïve Bayes to be further improved for text classification.  

Based on the results of previous works of research, the main contributions of our research could be 

decomposed into three steps.  

- Firstly, our research aims to implement a method for processing misspelled words in Indonesian language 

using the Levenshtein distance algorithm, which has been proven to search for similar words [23] in the text 

preprocessing phase. 

- Secondly, two classification models using Naïve Bayes algorithm are built, one of them utilizes the method 

for preprocessing misspelled words and the other does not.  

- Finally, we test the both ability of Levenshtein distance in processing misspelled words in the dataset and the 

ability of the models to classify texts from the test set. The performance results are then compared and 

analyzed to evaluate the impact of incorporating an additional text preprocessing step when building a text 

classification model for texts written in Indonesian language. 

In section 2, the methodologies used in our reseach and experimentation are described. Section 3 

explains the results and analysis of our experimentation, to serve as an evaluation of the methods used in our 

paper so future works could get some insights based on our works. Lastly, section 4 concludes our paper and 

mentions several improvements that have not been covered in this paper for future works. 

 

 

2. RESEARCH METHOD 

In conducting the research to implement and evaluate Levenshtein distance algorithm to preprocess 

misspelled words and multinomial Naïve Bayes to classify user feedbacks, several research steps are done. 

Figure 1 shows the overall step-by-step research metholodogies that were conducted. The research was started 

by reviewing literatures and recent works on similar topics, including requirements engineering, user feedback 

processing, text classification, typo correction, and common evaluation metrics to measure the performance of 

our proposed model. 

Research problems are then elicited and defined after reviewing various literatures. This research aims 

to implement the Levenshtein distance algorithm to preprocess texts containing misspelled words in Indonesian 

language which are then used to train our feedback sentiment classification model using multinomial Naïve 

Bayes. The Levenshtein distance algorithm works by calculating similarities between words to normalize 

unknown words which are similar to existing words in Indonesian language, thus transforming words 

considered to be misspelled to words in the Indonesian dictionary. The formula below explains how the 



               ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 4, August 2021:  1234 - 1241 

1236 

Levenshtein distance algorithm works, here, the distance between two words is defined as the minimum steps 

required to transform the source string to the target string, via operations such as deletion, insertion, and/or 

substitution.  

 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗)𝑓(𝑥) =  

{
 
 

 
 max

(𝑖, 𝑗)                                                     𝑖𝑓min(𝑖, 𝑗) = 0

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1(𝑎𝑖≠𝑏𝑗)

  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

 

 

 
 

Figure 1. Step-by-step research methodologies 
 

 

Another formula that is used in our work is to normalize the result of Levenshtein distance calculation 

which is sensitive to the varying length of the compared strings. We normalize the result using the (2) [24], 

where length is the maximum length of the two strings that are compared, and distance is the minimum value 

calculated from (1); 
 

𝑠𝑐𝑜𝑟𝑒 =  
𝑙𝑒𝑛𝑔𝑡ℎ−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑙𝑒𝑛𝑔𝑡ℎ
 (2) 

 

Furthermore, to evaluate the effectivity of employing the algorithm in text classification, this research also 

aims to design several test scenarios and measure the accuracy of both the typo correction algorithm and the 

newly enhanced accuracy of our classification model. In the data acquisition phase, we gathered data from 

several sources for our experiments. Firstly, in order to correct supposebly misspelled words, we use 

dictionaries from two sources, one is a digital dictionary of Indonesian language [25] and the other one contains 

the list of slang words in Indonesian language [26]. Secondly, we collected a portion of the feedback data from 

previous work which can be found in [11] for training and testing the classification model. The feedback data 

will be used to train two models, the first one is the one without typo correction and the other implements the 

typo correction preprocessing step using Levenshtein algorithm. We use two sentiment labels from the dataset, 

which tell us whether a feedback text is classified as a positive and negative feedback. Below are some 

examples of end-user feedback consisted in the dataset [11] that were used in our experiment: 

a. Positive feedback (241 data): 

- “aplikasi bagus untuk majalah, buku yg original bikinan Indonesia.” 

(in English: “cool, very useful for original Indonesian magazines and books.”) 

- “keren bro. membantu dalam proses belajar mengajar thank you.” 

(in English: “cool bro. very helpful for teaching and learning thank you.”) 

b. Negative feedback (241 data): 

- “selalu crash setiap mau mencari kata!! jangan update ke versi ini!!!” 

(in English: “it always crashes every time I tried to find a word!! don't update to this version!!!”) 

- “betulin dong aplikasinya, rusak mulu nih!!!!”  

(in English: “fix the app, it’s broken!!!!”) 

After the required data are gathered, we started to design the system which would later implement all 

the required natural language processing techniques to fulfill our research objectives. Figure 2 shows the overall 

flow of our system’s program. Firstly, we imported all the required data into the system. We used Python and 

Jupyter Notebook as our main development environment. After all data has been imported, the system then 

proceeds to the data cleansing phase. In this phase, the system will conduct common data preprocessing chores 

such as casefolding to change text data to lowercase, removing non-alphanumeric characters, tokenization, and 

stemming. The result of the stemming process is a formal reprenstation of a word in Indonesian language. After 

the data cleansing process is done, the system will move on to the next step which is the main empashize of 

our research.  

 



TELKOMNIKA Telecommun Comput El Control   

 

Enhancing text classification performance by preprocessing misspelled… (Reza Setiabudi) 

1237 

 
 

Figure 2. Overall system flowchart 
 

 

Figure 3 below depicts the flowchart of the typo correction process in our system. After initializing 

some variables, the system will initially check words form the feedback list and match them with both the 

slang-word list and the Indonesian dictionary list. In our experiment, only words with a specified length from 

the list will be used for comparison, we used words with lengths plus minus 3 character compared to the input 

word. Then, if a word is not a member of the slang-word and dictionary list, then the word is considered as 

unknown and will proceed to the typo correction phase using the Levenshtein distance algorithm. The unknown 

word will then used as an input and the algorithm will calculate the word distance with every word within both 

the dictionary and the slangword. Finally, the distance scores are converted into floating point to be  

normalized [24], and the word with the highest similarity score (minimum distance) is then selected as the 

correct spelling of the unknown word.  

After the text data are cleaned and misspelled words are converted into known words from the 

dictionary or the slang-word list, as also shown in Figure 2, the system then proceeds to extract features by 

converting text data into their numerical representation using simple bag of words, unigram and bigram. The 

features which have been converted into their numerical representation are then used to create classification 

model using the multinomial Naïve Bayes that is quite popular as a shallow machine learning method for text 

classification that is also could be optimized for various improvements [27], [28]. Finally, we design two main 

test scenarios as can be seen below, before then continued to evaluate the results and documented all our 

findings. 

- In the first scenario, we isolated the typo correction module to test and evaluate the ability to accurately fix 

the supposebly misspelled words. We performed manual desk checking by inputting words with various 

length spanning from 3 lettered words to 12 lettered words. 

- In the second scenario, we executed the whole program to build the feedback sentiment classification 

model. Here, we compared the classification performance between two models, one with the typo correction 

and another one without typo correction. 
 

 

 
 

Figure 3. Typo/misspelled word correction flowchart 



               ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 4, August 2021:  1234 - 1241 

1238 

3. RESULTS AND ANALYSIS 

Our experiments are conducted and all modules are built using Python 3 and Jupyter Notebook. We 

also used several common libraries for working with the data, such as Sastrawi, NLTK, Pandas, and Scikit-

Learn. All the program’s modules are developed using a computer running on Windows 10 with 8GB RAM, 

using Intel® Core TM i5-8250U CPU@1.60GHz. This section presents the results of our implementation and 

findings, including the experiment results which depict the performance of Levenshtein distance algorithm in 

correcting misspelled words in the dataset used in our research. Moreover, this section also shows the result of 

the performance comparison between two classification models, one without the typo correction module after 

data cleansing and the other one implemented the typo correction module. Both classifiers are trained using 

the same dataset and built using Naïve Bayes classifier and the bag of words feature extraction method.  

 

3.1.  Typo correction demo web interface 

After the Levenshtein distance algorithm, typo correction sub module, and all the other modules for 

building the classification model are coded and ready to go, we built a simple local web interface to demo the 

typo correction using Flask, as shown in Figure 4. In this simple web interface, users can test the same typo 

correction module, which will also be evaluated more thoroughly in the next sections, by typing a sentence 

containing misspelled words in Indonesian language and the system will try to correct them and display the 

result on the screen. 
 
 

 
 

Figure 4. Typo correction demo web interface 
 
 

3.2.  Typo correction performance evaluation 

Before implementing the typo correction module in the classification model, we isolated the module 

and tested the performance of the typo correction module itself which implements the Levenshtein distance 

algorithm with normalized similarity. As also shown in Table 1, we collected numerous words from the 

feedback dataset in Indonesian language divided into 10 categories ranging from 3-lettered word to 12-lettered 

words. Each category is then filled with 21 random words from the dataset, except for the 12-lettered words 

category which only filled with 11 words. Unsurprisingly, the typo correction module performed poorly with 

words with small number of letters (14.2% accuracy in 3- and 4-lettered words). The less numbers of letters it 

has, the more word possibility exist, thus making it more difficult to guess the correct words. However, it 

performs better as the number of letters increase, as can be seen in Table 1, it achieved a little more than 90% 

accuracy when dealing with 11- and 12-lettered words. The experiment also revealed that the average time 

needed for processing one word is 3.84 seconds and the average accuracy of all the words in the experiment  

is 55.3%. 
 
 

Table 1. The performance of typo correction module 
Length of word No. of word Elapsed time (seconds) Accuracy (%) 

3 21 6.7 14.2 
4 21 12.8 14.2 

5 21 29.3 23.8 

6 21 49.3 33.3 
7 21 73 42.8 

8 21 99 72.4 

9 21 116 90.4 
10 21 136 80.9 

11 21 142 90.4 

12 11 75 90.9 



TELKOMNIKA Telecommun Comput El Control   

 

Enhancing text classification performance by preprocessing misspelled… (Reza Setiabudi) 

1239 

3.2.  Model comparison 

In the last testing scenario, we build two models for feedback sentiment classification, both using 

Naïve Bayes (α=2.5) and the bag of words feature extraction method. The model uses 482 feedback texts, with 

a balance 50:50 distribution between text labeled as positive and negative. Within the 482 texts, we used 80% 

data for training and 20% data for testing the model. The first model only implements common data cleansing 

processes such as casefolding, removing non-alphanumerical characters, stopwords removal, and stemming. 

On the other hand, the second model performed the same processes with an additional typo correction module 

to convert supposebly misspelled words into words existing in the dictionary and slang-word list.  

The experiment result showed that the first model without the typo correction module achieved a score 

of 70.1% of accuracy, while the second model using the typo correction module achieved a score of 78.3% of 

accuracy. This result shows that albeit the typo correction performed poorly for word with small number of 

letters, this could generally increase the performance of text classification (8.2% increase), at least in our 

balanced dataset written in Indonesian language. We also found that even in feedback texts written mainly in 

Indonesian language, sentences written in combination with foreign languages such as English are often found, 

which shows that more works to preprocess text with various languages are needed. Furthermore, although 

more works are also needed to validate these results with various configuration, dataset, and classification 

techniques, this early result shows the huge potential of employing a more thorough text preprocessing 

techniques when using supervised machine learning techniques to build text classification models, such as typo 

correction. 

 

 

4. CONCLUSION 

In this research, we reviewed various literatures related to automated text classification in Indonesian 

language and how to improve existing metholodogies. This research implemented the Levenshtein distance 

algorithm with normalized similarity to preprocess supposebly misspelled words in the dataset before the data 

is used to build a classification model. Furthermore, this paper shows the results of performance evaluation of 

the typo correction module with Levenshtein distance and comparison of two classification models.  

Our experiments show that the Levenshtein distance algorithm works better with longer words in 

Indonesian language, achieving more than 90% accuracy in 11- and 12-lettered words, however performed 

poorly in shorter words. The average time needed for processing one word is 3.84 seconds and the average 

accuracy of all the words in the experiment is 55.3%. Moreover, this paper’s main contribution includes 

performing a comparison of two text classification models, showing that the model which performs text 

preprocessing techniques including the typo correction module could achieve an 8.2% increase in accuracy, 

compared to the model without the typo correction module. These early results show the promising potential 

of employing various language normalization techniques in data preprocessing especially when dealing with 

supervised machine learning for texts in Indonesian language, which is the focus of this paper. 

Next research steps could include a more thorough validation and evaluation techniques to further 

reveal the potential of various language normalization and text preprocessing techniques in Indonesian 

language, combined with techniques to handle foreign languages such as English. Moreover, further research 

is also needed to evaluate the effectiveness of doing such things when using deep learning techniques and more 

advanced state-of-the-art word embedding techniques. And finally, sentiment analysis is gaining traction in 

natural language processing in Indonesian language, future works could include to compare the results in our 

research to various baseline models and classifiers provided by the research community as well as by the 

industry. 

 

 

ACKNOWLEDGEMENTS 

This research was supported by the Artificial Intelligence Laboratory in Universitas Multimedia 

Nusantara. We also thank our colleagues from the Faculty of Engineering and Informatics who provided insight 

and expertise that greatly assisted the research, although they may not agree with all of the 

interpretations/conclusions of this paper. 

 

 

REFERENCES  
[1] S. Kujala, “User involvement: A review of the benefits and challenges,” Behaviour & Information Technology,  

vol. 22, no. 1, pp. 1-16, Jan. 2003, doi: 10.1080/01449290301782. 

[2] D. Pagano and B. Bruegge, “User Involvement in Software Evolution Practice: A Case Study,” 35th International 

Conference on Software Engineering, San Francisco, May 2013, doi: 10.1109/ICSE.2013.6606645. 

[3] B. Regnell and S. Brinkkemper, “Market-Driven Requirements Engineering for Software Products,” Engineering 

and Managing Software Requirements, Springer, pp. 287-308, 2015, doi: 10.1007/3-540-28244-0_13. 



               ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 4, August 2021:  1234 - 1241 

1240 

[4] E. C. Groen, et al., “The Crowd in Requirements Engineering: The Landscape and Challenges,” IEEE Software, 

vol. 34, no. 2, pp. 44-52, Mar. 2017, doi: 10.1109/MS.2017.33. 

[5] I. Morales-Ramirez, D. Munante, F. Kifetew, A. Perini, A. Susi, and A. Siena, “Exploiting User Feedback in Tool-

Supported Multi-criteria Requirements Prioritization,” 25th International Requirements Engineering Conference 

(RE), Sept. 2017, doi: 10.1109/RE.2017.41. 

[6] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical study,” Conference: 21st International 

Conference on Requirements Engineering, Jul. 2013, doi: 10.1109/RE.2013.6636712. 

[7] L. Derczynski, D. Maynard, G. Rizzo, M. v. Erp, G. Gorrell, R. Troncy, J. Petrak and K. Bontcheva, “Analysis  

of named entity recognition and linking for tweets,” Information Processing and Management, vol. 51, no. 2,  

pp. 32-49, Mar. 2015, doi: 10.1016/j.ipm.2014.10.006. 

[8] M. Sanger, U. Leser, and R. Klinger, “Fine-Grained Opinion Mining from Mobile App Reviews with Word 

Embedding Features,” International Conference on Applications of Natural Language to Information Systems, Jun. 

2017, doi: 10.1007/978-3-319-59569-61. 

[9] E. Guzman, M. El-Haliby, and B. Bruegge, “Ensemble Methods for App Review Classification: An Approach for 

Software Evolution (N),” 30th IEEE/ACM International Conference on Automated Software Engineering (ASE),  

Nov. 2015, doi: 10.1109/ASE.2015.88. 

[10] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall, “How can i improve my app? 

Classifying user reviews for software maintenance and evolution,” IEEE International Conference on Software 

Maintenance and Evolution (ICSME), Oct. 2015, doi: 10.1109/ICSM.2015.7332474. 

[11] E. W. Pamungkas and D. G. P. Putri, “Word Sense Disambiguation for Lexicon-Based Sentiment Analysis,” 

Proceedings of the 9th International Conference on Machine Learning and Computing, Feb. 2017,  

doi: 10.1145/3055635.3056578. 

[12] Y. Nurdiansyah, S. Bukhori and R. Hidayat, “Sentiment analysis system for movie review in Bahasa Indonesia using 

naive bayes classifier method,” Journal of Physics: Conference Series, Apr. 2018, doi: 10.1088/1742-

6596/1008/1/012011. 

[13] I. Prasetyaningrum, K. Fathoni and T. T. J. Priyantoro, “Application of recommendation system with AHP method 

and sentiment analysis,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 18, no. 3, pp. 

1343-1353, Jun. 2020, doi: 10.12928/telkomnika.v18i3.14778. 

[14] W. Gata and A. Bayhaqy, “Analysis sentiment about islamophobia when Christchurch attack on social media,” 

TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 18, no. 4, pp. 1819-1827, Aug. 2020, 

doi: 10.12928/telkomnika.v18i4.14179. 

[15] H. A. Santoso, E. H. Rachmawanto, A. Nugraha, A. A. Nugroho, D. R. I. M. Setiadi and R. S. Basuki, “Hoax 

classification and sentiment analysis of Indonesian news using Naive Bayes optimization,” TELKOMNIKA 

Telecommunication Computing Electronics and Control, vol. 18, no. 2, pp. 799-806, Aug. 2020,  

doi: 10.12928/telkomnika.v18i4.14179. 

[16] I. Ferdino and A. Rusli, “Using Naïve Bayes Classifier for Application Feedback Classification and Management in 

Bahasa Indonesia,” 5th International Conference on New Media Studies (CONMEDIA), 2019,  

doi: 10.1109/CONMEDIA46929.2019.8981830. 

[17] G. P. Wiratama and A. Rusli, “Sentiment Analysis of Application User Feedback in Bahasa Indonesia Using 

Multinomial Naïve Bayes,” CONMEDIA, Oct. 2019, doi: 10.1109/CONMEDIA46929.2019.8981850. 

[18] A. Rusli, J. C. Young and N. M. S. Iswari, “Identifying Fake News in Indonesian via Supervised Binary Text 

Classification,” IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications 

Technology (IAICT), Jul. 2020, doi: 10.1109/IAICT50021.2020.9172020. 

[19] A. Rusli, A. Suryadibrata, S. B. Nusantara and J. C. Young, “A Comparison of Traditional Machine Learning 

Approaches for Supervised Feedback Classification in Bahasa Indonesia,” International Journal of New Media 

Technologies, vol. 7, no. 1, pp. 28-32, 2020, doi: 10.31937/ijnmt.v1i1.1485. 

[20] L. H. Nguyen, A. Salopek, L. Zhao and F. Jin, “A natural language normalization approach to enhance social media 

text reasoning,” IEEE International Conference on Big Data (Big Data), Dec. 2017,  

doi: 10.1109/BigData.2017.8258148. 

[21] M. K. Dalal and M. A. Zaveri, “Automatic Text Classification: A Technical Review,” International Journal of 

Computer Applications, vol. 28, no. 2, pp. 37-40, Aug. 2011, doi: 10.5120/3358-4633. 

[22] W. Zhang and F. Gao, “An improvement to naive bayes for text classification,” Procedia Engineering, vol. 15,  

pp. 2016-2164, 2011, doi: 10.1016/j.proeng.2011.08.404. 

[23] S. Zhang, Y. Hu and G. Bian, “Research on string similarity algorithm based on Levenshtein Distance,” IEEE 2nd 

Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Mar. 2017,  

doi: 10.1109/IAEAC.2017.8054419. 

[24] J. Schepens, A. Dijkstra and F. Grootjen, “Distributions of cognates in Europe based on the Levenshtein Distance,” 

Radboud University Nijmegen, Jan. 2008, doi: 10.1017/S1366728910000623. 

[25] Kateglo.com, “Kateglo-Kamus, tesaurus, dan glosarium Bahasa Indonesia,” 2009. [Online]. Available: 

https://kateglo.com 

[26] A. Maulana, “Github,” Jul. 2018. [Online]. Available: https://github.com/anggamaulana/svm-firefly-

optimization/blob/master/slangwords.txt 

[27] B. Tang, S. Kay and H. He, “Toward Optimal Feature Selection in Naive Bayes for Text Categorization,” IEEE 

Transactions on Knowledge and Data Engineering, vol. 28, no. 9, pp. 2508-2521, Feb. 2016,  

doi: 10.1109/TKDE.2016.2563436. 



TELKOMNIKA Telecommun Comput El Control   

 

Enhancing text classification performance by preprocessing misspelled… (Reza Setiabudi) 

1241 

[28] B. Wagh, J. V. Shinde and P. A. Kale, “A Twitter Sentiment Analysis Using NLTK and Machine Learning 

Techniques,” International Journal of Emerging Research in Management & Technology, vol. 6, no. 12, pp. 37-44, 

Jun. 2018, doi: 10.23956/ijermt.v6i12.32. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

Reza Setiabudi is an undergraduate student from the Department of Informatics in Universitas 

Multimedia Nusantara, Indonesia. He has a background in research in applied machine learning 

for natural language processing in Indonesian language. His interest includes the development 

of automation testing using various tools in Python, such as Magic Mock, Pytest, and Django 

Factory. 

 

  

 

Ni Made Satvika Iswari received her bachelor’s and master’s degree from Institut Teknologi 

Bandung (ITB), Indonesia in 2013. She is a lecturer in Department of Informatics, Universitas 

Multimedia Nusantara, Indonesia. She is currently pursuing the Ph.D. degree in computer 

science from Universitas Indonesia. Her research interests include e-business platform and 

software engineering. 

  

 

Andre Rusli received his master’s degree in Information Environment from Tokyo Denki 

University, Japan, in 2017. He is currently pursuing a doctoral degree in the Graduate School of 

Advanced Science and Technology in Tokyo Denki University, Japan, while also serving as a 

lecturer in Universitas Multimedia Nusantara. His research interests include requirements 

engineering in software application development, natural language processing, and human 

computer interaction. 

 


