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 Cognitive radio is a mechanism allowing dynamic access to spectrum 

channels. Since its beginnings, researchers have been working on using this 

inventive technology to control and manage the spectrum resources. 

Consequently, this research field has been progressing rapidly and important 

advances have been made. Spectrum sensing is a key function of cognitive 

radios that helps prevent the harmful interference with licensed users, as well 

as identifies the available spectrum to improve its utilization. Several spectrum 

sensing techniques are found in scientific literature. In this paper, we 

investigate the effect of the random sampling in spectrum sensing. We propose 

a spectrum sensing approach based on the energy detection and on the 

maximum eigenvalue detection (MED) combined with random sampling. The 

performance of the proposed approach is evaluated in terms of the receiver 

operating characteristics curves and in terms of the detection probability for 

different values of signal to noise ratio. The obtained results are compared to 

the uniform sampling case to show the added value of random sampling. 
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1. INTRODUCTION 

There is a vast demand for novel wireless technologies in the frequency domain spurred by the 

exponential advancements in the wireless telecommunication industry. Recent studies, however, demonstrate 

that the predetermined spectrum assignment strategies currently in use do not utilize the spectrum efficiently. 

Cognitive radio (CR) has been presented as a viable answer to the aforementioned issue since the spectrum is 

a precious resource and need to be utilized effectively [1]. 

CR is a technology that combines software defined radio (SDR) and artificial intelligence (AI). As 

mentioned in [2], the cognitive radio technology will allow the users to: 

− select the suitable available band (spectrum management), 

− coordinate access to this band with other users (spectrum sharing) [3], 

− vacate the band when a licensed user is detected (spectrum mobility) [4], 

− and determine which portions of the spectrum are available and detect the presence of licensed users when 

a user operates in a licensed band (spectrum sensing), which is a main function of CR. 

Spectrum sensing (SS) is used to inform of the status of the spectrum (vacant/occupied). This allows 

for the spectrum to be accessed by a secondary user (SU) without interfering with the primary user (PU) [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In the laste decade, various spectrum sensing methods that can be divided into two categories have been 

suggested: narrowband and wideband. Narrowband sensing methods analyze one frequency channel at a time 

while wideband sensing methods analyze several frequencies at a time. The narrowband sensing techniques 

include energy detection [6], [7], cyclostationary features detection [6], [8], matched filter detection [8], [9], 

covariance based-detection [10], [11], and machine learning-based sensing [12]-[14]. Each one has its own 

pros and cons [6]. Wideband sensing techniques include power efficient version, sequential sensing, and basic 

pursuit [2]. 

Given that the aim of spectrum sensing in cognitive radios is to determine the availability of the 

spectrum and detect the presence of the primary user when a user operates in a licensed band, the narrowband 

sensing approaches can be ineffective. This is because they require longer times and higher energy due to the 

use of high-resolution analog-to-digital converters (ADC), which are both costly and impractical for timely 

communications [6], [7]. To overcome this disadvantage, several solutions including the compressive sensing 

method have been proposed [15], [16]. 

In this paper, we are focused on the association of random sampling with spectrum sensing techniques. 

We scope our study to the SS algorithms presented below, with the objective to show the advantages of 

applying non-uniform sampling [15], [17] in the context of spectral detection. In [18], the authors show the 

utility of random sampling in the context of cognitive radio based on the energy detector (ED). In this work, 

we contribute to the research by exploring the application of random sampling to both the energy detector and 

to the maximum eigenvalue detector (MED). The spectrum sensing methods choice is motivated by the fact 

that these methods do not need any previous information from the primary signal transmission. The proposed 

approach's performance will be assessed and then compared to the uniform sampling case reported in [19]. 

This paper is structured as follows: section 2 presents an overview of the random sampling theory. As for 

section 3, it explains the energy detection and the maximum eigenvalue detection methods. Simulation results 

and discussion are given in section 4 before conclusion. 
 
 

2. RANDOM SAMPLING THEORY 

In software radio systems, the analog to digital converter (ADC) receives broadband radio frequency 

signals with a large dynamic range. The number of bits necessary to code the received signal is largely  

non-trivial, and the sampling frequency is very high, leading to a high-energy consumption, whereas not all 

the standards are needed to be used every time. Therefore, the bandwidth that needs to be analyzed may vary 

over time. This is something that the uniform sampling ADC is not able to accommodate easily, as it always 

operates at the same frequency, with the same energy consumption. Therefore, in order to increase energy 

efficiency, it would be interesting to be able to adapt either the sampling frequency or the number of bits of the 

ADC to reduce its energy consumption [15], [19].  

One of the solutions proposed that can help optimize the CR system is random sampling, where an 

average sample rate slightly greater than the Nyquist frequency may be sufficient to reconstruct the information 

received [15]. Using random sampling provides a greater flexibility in sampling rate choices and makes  

it possible to reduce the spectrum aliasing (or to eliminate it in the case of a stationary sampling  

sequence) [17], [20], thus helping reduce the constraints on the various elements of the transmission chain. In 

the literature, there are two commonly used random sampling modes, namely additive random sampling (ARS) 

and jitter random sampling (JRS). In this work, we use the JRS mode for its ease of implementation [15]. 

Random sampling consists of converting a continuous analog signal x(t) into a discrete time 

representation xs(t) as shown in Figure 1 where the sampling instants are non-uniformly distributed. The JRS 

mode is a random process where the sampling times are described by the following expression: 

 

 

 
 

Figure 1. Random sampling principle 
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𝑡𝑛 = 𝑛𝑇 + 𝜏𝑛         , 𝑛 = 1, 2, …       (1) 

 

T represents the mean sampling rate. 

τn denotes a set of independent random variables identically distributed with a probability density p(τ), a 

variance  𝜎2 , and a mean=0, which can be generated using uniform or normal distribution. 
 
 

3. THEORY OF ENERGY AND MAXIMUM EIGENVALUE DETECTION  

Suppose that the received signal has the following simple form: 
 

𝑥𝑛 = 𝑠𝑛 + 𝜔𝑛            (2) 
 

In (2), n means the sample index. The primary user signal (the signal to be detected) is represented by sn, while 

𝜔𝑛 refers to the additive white Gaussian noise (AWGN). When there is no transmission by the primary user, 

(2) can be written as 𝑥𝑛 = 𝜔𝑛. The problem of detection is equivalent to the following states [5]: 
 

 𝐻0:  𝑥𝑛 = 𝜔𝑛                                Signal is absent 

𝐻1:  𝑥𝑛 = 𝑠𝑛 + 𝜔𝑛              Signal is present     (3) 
 

where H0 is the null hypothesis that the primary user is absent and H1 indicates the presence of a primary user 

in the channel of interest.  

The SS aims to choose between H0 and H1 based on the observation xn. The model presented in (3) is 

used to evaluate the studied technique. Therefore, two criteria are examined: the probability of false alarm (Pfa) 

and the probability of detection (Pd). Pfa is the probability that the test gives a wrong declaration about the 

occupancy of the considered band, whereas Pd denotes the probability to correctly detect the PU on the 

considered band. These probabilities can be defined as follows [10]: 
 

 𝑃𝑓𝑎 : 𝑃𝑟𝑜𝑏 {𝑇𝑑 >  𝜆/𝐻0}  

𝑃𝑑: 𝑃𝑟𝑜𝑏 {𝑇𝑑 >  𝜆/𝐻1}         (4) 
 

where Td is the statistical test of detection which is compared to the threshold 𝜆 to make decision. 
 

3.1.  Energy detection  

The basic spectrum sensing technique presented in the literature is Energy detection (ED) which was 

proposed for the first time in [8]. It does not need any prior information on the signal-to-be-detected to 

determine whether the channel is occupied or not. The Figure 2 presents the block diagram summurized the 

principle of ED. 
 

 

 
 

Figure 2. Block diagram of an energy detection 
 

 

The out of band signals is removed using the input band pass filter by choosing the central frequency 

fc and the bandwidth of interest. After the signal is digitized by an analog to digital converter (ADC), a simple 

square and average block is used to estimate the received signal energy. Energy Detection compares the 

decision statistic TED with a threshold ‘𝜆ED’ to decide whether a signal is present ‘H1’ or not ‘H0’ [5]. The 

following equation represents the statistical test of ED [21]: 
 

T
ED

= 
1

𝑁𝐸𝐷
  ∑ |𝑋𝑛|²

𝑁𝐸𝐷
𝑛=1         (5) 

 

where NED is the number of samples. For a given Pfa, the threshold can be obtained as follow [14]:  
 

𝜆𝐸𝐷 = √
2

𝑁𝐸𝐷
𝑄−1 (𝑃𝑓𝑎) + 1       (6) 

 

where Q(t) =
1

√2π
 ∫ e−

u2

2
 +∞

t
du. The theoretical detection and false alarm probabilities can be expressed as [22]:  
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𝑃𝑓𝑎 =
𝛤(𝑁,

𝜆𝐸𝐷
2

)

𝛤(𝑁)
         (7) 

 

𝑃𝑑 = 𝑄𝑚(√2𝛾, √𝜆𝐸𝐷)        (8) 
 

λED represents the threshold, Γ (a, x) is the incomplete gamma function, Γ(a) is the gamma function and  

Qm (a, b) is the generalized Marcum Q function. 
 

3.2.  Maximum eigenvalue detection 

The idea of exploiting the properties of eigenvalues for spectral detection is first proposed by  

M. Haddad et al [23]; the authors calculate eigenvalues of the covariance matrix and use eigenvalue-dependent 

test statistics. The authors of [10]-[12], [24] used the eigenvalues to develop a spectral detection technique which 

is mainly based on evaluating the matrix eigenvalues constituted by the acquired samples. This technique can 

be considered as the most reliable among the methods presented previously and this is due to the fact that it 

presents many advantages such as: no prior information needed on the primary signal; it allows good detection 

at low signal to noise ratio (SNR) and it overcomes the noise problem encountered in the case of energy  

detector [10]-[12]. In the MED technique, in order to formulate the detection algorithm based on the sample 

covariance matrix of the received signal, the random matrix theory (RMT) is used. 

Let L be the number of consecutive samples,  �̂�(n) an estimation of the received signal, �̂�(n) an 

estimation of primary signal to be detected and �̂�(n) an estimation of the noise. We define the following vectors 

form:  
 

    (9) 
 

The approximated statistical covariance matrix �̂�𝑥 is defined by [14] as:  
 

�̂�𝑥 (𝑁𝑠) =  

[
 
 
 

𝜉(0) 𝜉(1) … 𝜉(𝐿 − 1)

𝜉(1) 𝜉(0) … 𝜉(𝐿 − 2)

𝜆( ⋮ ) 𝜆(⋮) 𝜆(⋮) 𝜆(𝐿 ⋮ 2)

𝜉(𝐿 − 1) 𝜉(𝐿 − 2) … 𝜉(0)]
 
 
 

     (10) 

 

where 𝜉(𝑙) is the sample auto-correlations of the received signal. It is described as: 
 

𝜉(𝑙) =
1

𝑁𝑀𝐸𝐷
 ∑ 𝑥(𝑚)𝑥(𝑚 − 𝑙) , 𝑙 = 0,1, … , 𝐿 − 1

𝑁𝑀𝐸𝐷−1
𝑚=0     (11) 

 

where NMED is the number of available samples. Based on RMT, the equation of the probability of false alarm 

for maximum eigenvalue detection is expressed as follow [11]:  
 

Pfa ≈ 1-F1 ( 
𝜆𝑀𝐸𝐷 𝑁𝑀𝐸𝐷−µ

𝜗
 )        (12) 

 

where F1 represents the Tracy-Widom cumulative distribution function of order 1 and 𝜇 and 𝜗 are given 

respectively by the following expressions: 
 

𝜇 = ( √(𝑁𝑀𝐸𝐷 − 1) + √𝐿 )²       (13) 
 

𝜗 = (√(𝑁𝑀𝐸𝐷 − 1) + √𝐿)(
1

√(𝑁𝑀𝐸𝐷−1)
+ 

1

√𝐿
)  1/3     (14) 

 

The threshold used to make a decision can be calculated for a given 𝑃𝑓𝑎, 𝑁𝑀𝐸𝐷 and L using the formula  

above [14], [25]:  
 

𝛾 =
(√𝑁𝑠+√𝐿)²

𝑁𝑠
(1 +

(√𝑁𝑠+√𝐿)−2/3

(𝑁𝑠𝐿)1/6  𝐹1
−1(1 + 𝑃𝑓𝑎))     (15) 

 

where F1
-1 can be computed at certain points by means of Table 1. 
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Table 1. The Tracy-Widom distribution of order 1 
t -3.90 -3.18 -2.78 -1.91 -1.27 -0.59 0.45 0.98 2.02 

F1(t) 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99 

 

 

4. RESULTS AND ANALYSIS  

The purpose of this section is to evaluate the proposed approach of spectrum sensing and compare it 

with the uniform sampling case. The block diagram of the simulation is shown in Figure 3. After digitizing the 

generated signal, we calculate all the frequencies of the multi-band signal and we select the band of interest 

using the SVD direct algorithm. We then analyze the occupancy of the radio frequency spectrum using the 

two-spectrum sensing studied methods (ED and MED). In order to characterize the detection performance of 

the receiver, we estimated the detection and the false alarm probabilities for band occupancy, by using Monte 

Carlo simulation. In this application, the test signal used is a multi-band signal which is composed of five 

carriers spaced by 80 Hz, modulated with QPSK and then filtered by a raised cosine filter with a rounding 

coefficient (roll-off) of 0.5. Each carrier has a symbol rate of R = 40 sym/s. The values considered are suitable 

for our compute power. 
 

 

 
 

Figure 3. Block diagram of simulation 
 

 

We evaluated the performance of the proposed approach in terms of Receiver Operating 

Characteristics curves (ROC) that plots the evolution of the probability of detection Pd as a function of the 

probability of false alarm Pfa for different threshold values, also in terms of Pd for different values of the SNR. 

In our tests, we considered two central frequency values which are as follows: a center frequency value within 

the allowed bands (AB) and a center frequency value within the forbidden bands (FB). The approach was tested 

by both modes of sampling: uniform sampling and random sampling to show the benefit and utility of the 

proposed approach. The AB is the band of sampling frequencies on which there is no spectrum aliasing [18]. 

The Figures 4 and 5 represent the ROC curves for both spectrum sensing methods ED and MED, using 

uniform sampling (Figure 4) as well as random sampling (Figure 5) for a SNR= -18db and a smoothing factor 

L= 8. From Figure 4, we can note that, in the case of uniform sampling, we have two cases of ROC curves: 

− For a central frequency value that is inside the allowed bands, good performance is obtained as it is possible 

to find a trade-off between Pfa and Pd which explains the ROC curves form inside these bands. 

− For a central frequency value that is inside the forbidden bands, a spectrum aliasing occurs within the channel 

of interest and hence a great energy is present within this channel even when this channel is free. This 

explains the obtained ROC curves which are reduced to a unique point (Pd = Pfa = 1), meaning that the two 

studied detectors do not work properly. 

On the other side, by using the random sampling (Figure 5), we noticed that we have a good 

performance (the reconstruction process is efficient) regardless of the value of the central frequency. The use 

of the random sampling overcomes the constraint of the forbidden bands imposed in the uniform sampling 

case. This explains the obtained ROC curves which are almost similar for a same detector. We may also notice 

that the MED allows a good detection compared to the ED method [24]. 

As mentioned above, the performance of our proposed approach is also evaluated in terms of the 

detection probability as a function of the SNR, using both sampling modes and two central frequency values: 

a center frequency value within the allowed bands (AB) and a center frequency value within the forbidden 

bands (FB). The achieved results are presented in Figure 6 and Figure 7. From these figures, we can note that 

using a uniform sampling, for a center frequency value that is inside the forbidden bands, a spectrum aliasing 

occurs within the channel of interest. This explains that the detection probability is always equal to 1 even if this 
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channel is free. This constraint is overcome by applying a random sampling mode. The detection probability 

curves are almost similar to the two chosen values of central frequencies and the probability of detection 

increases with increasing SNR. 
 

 

  
 

Figure 4. ROC curves of the studied methods using 

a uniform sampling mode at two different central 

frequency values 

 

Figure 5. ROC curves of the studied methods using 

a random sampling mode at two different central 

frequency values 
 

 

  
 

Figure 6. Pd vs. SNR of the ED and the MED 

methods using a uniform sampling mode 

 

Figure 7. Pd vs. SNR of the ED and the MED 

methods using a random sampling mode 
 
 

5. CONCLUSION  

In this work, we were interested in spectrum sensing which is an important and crucial function in 

cognitive radio systems. We investigated the effect of random sampling on spectrum sensing. Two spectrum 

sensing approaches were considered: The energy detection (ED) method and the maximum eigenvalue 

detection (MED).  

The obtained results show that random sampling makes it possible to overcome forbidden band 

restriction encountered with uniform sampling mode. Therefore, we can note that random sampling associated 

with the energy detector and the maximum eigenvalue detector represents an interesting solution in cognitive 

radio systems. This work is a theoretical part of a future work that will be a practical implementation to confirm 

these simulation results. 
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