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Abstract 
The manuscript is a review of basic essentials to ozone gas sensing with optical methods. Optical 

methods are employed to monitor optical absorption, emission, reflectance and scattering of gas samples 
at specific wavelengths of light spectrum. In the light of their importance in numerous disciplines in 
analytical sciences, necessary integral information that serves both as a basis and reference material for 
intending researchers and others in the field is inevitable. This review provides insight into necessary 
essentials to gas sensing with optical fibre sensors. Ozone gas is chosen as a reference gas. Simulation 
results for ozone gas absorption cross section in the ultraviolet (UV) region of the spectrum using 
spectralcalc.com simulation have also been included. 
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1. Introduction 

In the field of analytical sciences, optical methods have become very relevant to 
numerous disciplines [1]. Optical methods are employed to monitor optical absorption, emission, 
reflectance and scattering of gas samples at specific wavelengths of light spectrum [2]. 
Newton’s discovery of the solar spectrum in 1966 is considered to be the beginning of 
spectroscopy [3]. The entire spectrometric methods solely rely on emission or absorption of 
electromagnetic radiation [4]. Optical method relevance to science and other disciplines has 
made it necessary to put together in one piece essential fundamentals which could be a ready 
guide for all users. The necessity of a review manuscript which is intended to be a reference 
material is inevitable. This review provides insight into vital fundamentals to gas sensing with 
optical fibre sensors. It is comprised of optical sensor mechanism [5], advantages of optical 
sensors [6, 7], optical sensor classification [8], optical gas cells classification [9], Beer-Lambert 
law [10] and ozone gas and its research challenges [11-13]. Ozone is a trace gas in the 
atmosphere [14] and is discovered in 1839 [15]. Ozone is a useful gas, but it is a threat to 
human life [16-19]. Ozone gas relevance has been previously emphasised by the authors [13]. 
Significant volume of research activities which are not just limited to detection and monitoring 
are devoted to ozone gas [20-28]. These activities are summarised in Figure 1. Relevant 
simulation software (spectracalc.com) was used to obtain simulation results for ozone gas 
absorption cross section.  
 
 
2. Mechanism of Optical Sensors 

“An Optical Sensor (OS) is a photonic system in which an input signal (Ui), modulates 
certain characteristics (absorption, dispersion, reflection, transmission, etc) of light in an optical 
system, such that after detection at the receiver, it is also processed and conditioned, the 
system will deliver an output electrical signal (Uo), which will be an exact reproduction of the 
object variable. If any of the processes or parts of it use fibre optic technology, a subgroup of 
the optical sensor known as Optical Fibre Sensors (OFS) or Fibre-Optic Sensors (FOS), is 
created" [29]. 
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Figure 1. Research Activities on Ozone gas 
 
 

The interaction of light with matter can be in any one of the following ways: absorption, 
diffraction, dispersion, reflectance, and interference [1]. Electromagnetic radiations are 
absorbed by chemical compounds containing covalent bonds. This is as a result of different 
mechanisms whose effects are seen throughout the electromagnetic spectrum [5]. Absorption of 
light by a molecule at a given frequency is caused by electron resonance at that given 
frequency [5, 30]. Light absorption by ozone gas in ultra violet (UV) region (200 to 400 nm, 6.2 
to 3.0 electron volt ((eV)) as well as in the visible region (400 to 780 nm, 3.1 to 1.6eV) of the 
light spectrum [5, 31] is caused by excitation of valence electrons in the atoms of molecules. 
Light absorption in microwave region (0.3 to 300 cm,) is due to a change in rotation of the bonds 
in a molecule. Absorption of light in the infrared region (3 to 50 μm, 0.4 to 0.025 eV) and  near 
infrared (0.78 to 3 μm, 1.6 to 0.4 eV) occurs due to the vibration of the bonds of a molecule [32].   

While discussion of this paper is focus on absorption spectroscopy, there are other 
classes of optical sensors such as: 
 Reflection  spectroscopy [33, 34] 
 Luminescence intensity spectroscopy [35] 
 Fluorescence lifetime spectroscopy [36] 
 Refractive index spectroscopy [37] 
 Surface Plasmon resonance or ellipsometric spectroscopy [38] 

The classifications are meant to give a clear picture and are not discussed further. 
Ozone, the gas of interest in this article, absorbs light intensity and hence absorption 
spectroscopy is dwelled upon in other sections of this article. 

Measurement of radiation absorbed by atoms is described as atomic absorption 
spectroscopy (3). The history of optical sensors can be traced back to when pH indicator strips 
were developed by immobilizing pH-sensitive indicators on cellulose. The absorption spectrum 
of each species is unique and can be used to identify and quantify presence of that specie.  

 
 

3. Merits of Fibre Sensors 
The authors have previously [13] highlighted quite a number of different methods for 

detecting ozone gas such as: cavity enhanced absorption spectroscopy (CEAS) [39, 40], cavity 
ring down spectroscopy [41], chemiluminescence [42, 43], electrochemical concentration cells 
[44], photo-acoustic sensors [45, 46], photo reductive [47], solid  state  sensors [48] and UV 
absorption [49]. Authors of reference  [50] have shown the compatibility of fibre sensors with 
optical communication systems and their application in electrical noisy systems and explosion 
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prone scenarios. They offer good resistance to corrosion prone environments and high-voltage 
and high-temperature environments. In Table 1, we compare the performance of optical 
spectroscopy with other sensing methods.  
 
 

Table 1. Gas sensors comparison 
Sensor Type Merits Demerits  
Photo acoustic 
Spectroscopy 

 High sensitivity 
 Response time is fast 
 Measurement is free from background 

noise 
 Requires no reference as a result of 

noise(51) 

 Selectivity is poor for photo acoustic 
system that utilises infrared light 
sources  (52) 

Photo reductive 
gas sensor 

 Good sensitivity 
 Short response time 
 Inexpensive 

 Temperature requirement is high 
 Energy dissipation is high (53, 54) 

Electro-chemical 
Sensors 

 They are portable 
 Exhibits high sensitivity. 
 They are inexpensive (55) 

 There is the depletion of electrolyte 
when used for sensing high ozone 
concentrations. 

 It requires frequent maintenance 
(56, 57) 

Metal oxide ozone 
sensors 

 Broad range of application (58) 
 

 High temperature requirements  of 
detectors which translate into:  

 High energy consumption.  
 High cost 
 Fabrication and size limitations 
 (55, 56, 59) 

Solid State  Consumes less energy 
 Good sensitivity 
 Fast response time 
 Inexpensive 
 Light weight 

 Characteristic activity is high 
 Film sensor thickness requirement is 

large when applied for ozone sensing 
(56, 60, 61) 

Chemilumines-
cence. 

 Fast response time 
(43) 

 Requires to be calibrated within every 
one hour (every 1 to 60 minutes) (43). 
It is not absolute. 

Optical 
spectroscopy  
 

 It is a rapid and direct means of sensing 
gases with good cross sensitivity (57) 

 Require no consumables either for 
calibration or operation  

 Anti-electric magnetic interference,  
 Excellent electrical insulativity, and 
 Suitability of long-distance online 

measurement  

 Gas sample must be able in a distinct 
manner to either absorb, emit, or 
scatter transmitted light rays at specific 
region of the light spectrum  (7, 57, 62); 

 Expensive 
 Large in size (6) 

 
 
4. Sensor Classification 

Fibre optic sensors can be classified based on method of fibre application in sensor 
system and modulation mechanism [8]. The classification is illustrated in Figure 2. 

 

Figure 2. Optical sensor classification 
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4.1. Classification Based on Fibre Application  
Fibre optic sensors are categorised into intrinsic and extrinsic types. 

 
4.1.1. Intrinsic Optical Sensors 

In an intrinsic fibre optic sensor, light is restricted within the optical fibre and modulation 
of the light signal is within the fibre [8, 63]; it is illustrated in Figure 3. 
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Figure 3. An Intrinsic Fibre Optic Sensor 
 
 

4.1.2. Extrinsic Optical Sensors  
 In an extrinsic sensor, interaction between light signal (i.e. light signal modulation) and 
the sample to be measured takes place outside the optical fibre cable in a gas cell generally 
referred to a cuvette [8, 64]. It is illustrated in Figure 4. 
 
 

 
 

Figure 4. An Intrinsic Fibre Optic Sensor 
 

 
4.2. Classification Based on Modulation Mechanism 

In the application of light for sensing in fibre optic sensors, different characteristics of 
light are modulated to achieve sensing. These characteristics include: intensity, phase, 
polarization and wavelength [8]. Ozone gas measurement with optical absorption spectroscopy 
is detected by light intensity modulation. 
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5. Basic Experimental Setup for Ozone Detection via Optical Absorption Spectroscopy 
A typical absorption spectroscopic experimental setup is made up of the following 

components: source of light radiation, a monochromator (except when light source is a laser). 
Light sources can either be broadband or chromatic [65]. Light emanating from a broadband 
light source must be propagated through a collimating lens to eliminate scattering effects. Light 
coupler, waveguide (fibre, fibre bundle, planar wave guide), variable attenuator, lenses (optical), 
cuvette (absorption cell or gas cell), light detection unit (spectrometer, photo detector), amplifier, 
secondary filter, transducer, data acquisition unit, data processing unit, and  display unit [1, 66]. 
Figure 5 is a typical experimental setup for ozone measurements using optical absorption 
spectroscopy. It is the typical extrinsic setup. 
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Figure 5. A basic layout of an optical absorption spectroscopy for ozone measurements 

 
 
5.2. Classification of Gas Cells  

The design of an optical gas cell in absorption spectroscopy is a major factor that 
affects the overall system performance in the form of sensitivity and speed of response.  
Authors of reference [9] have classified gas cells based on the principles of light transmission. 
The classification includes transmission type, reflective type, slow light and refractive index 
periodic change. More information on this can be obtained from reference [9]. 
 
 
6. Beer-Lambert Law 

Absorption spectroscopy is the quantification of the energy that molecules absorb and 
and is translated to the bending and stretching of the bonds between the atoms in the molecules 
[67].  The working principle of gas cells in optical gas sensor is based on the Beer- Lambert law. 
According to Beer and Lambert, the concentration of a sample can be determined by detecting 
the intensity of the output light. Beer-Lambert law describes the relation of the input light and the 
output light that are affected by the measuring gas.  

Beer’s law: it states that the fraction of the incident light absorbed is proportional to the 
number of the absorbing molecules in the light-path and will increase with increasing 
concentration or sample thickness [10]. 

Lambert’s law: it states that the fraction of monochromatic light absorbed by a 
homogeneous medium (sample) is independent of the intensity of the incident light and each 
successive unit layer absorbs an equal fraction of the light incident on it [10].  

The combination of the two laws together yields the Beer-Lambert law. If radiation of 
intensity I0 (zero sample concentration) is directed at a sample in a path length ܮ, radiation of 
intensity It leaves the sample [68].  Beer-Lambert law shows the mathematical expression of the 
relation between the absorbing samples concentration (c) and absorbance (A). It written as 
follow: 
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ܣ ൌ 	ε ൈ ܿ	 ൈ  (1)         ܮ
 
Where: 
ε = molar absorption coefficient (m2 mol-1) 
c = sample concentration (mol m-3) and 
 optical path length in (m) = ܮ

In an experimental scenario, measurements are obtained in the form of transmittance T 
defined as: 
 

ܶ ൌ ݁ିఌ௖௟	 ൌ
ூ೟
ூబ

         (2) 

 

The ratio  
ூ೟
ூబ

  is defined as the transmittance T: 

From equation 2, absorbance A can also be defined as:  
 

	A ൌ ln
ூబ
ூ೟
ൌ  Optical density (D),optical depth (69) or optical thickness (70) (3) = ܮܿߝ

 
 
7.  Absorption of Light by Ozone 

Ozone gas detection via optical absorption spectroscopy is generally accepted [71]. 
This method has an inherent advantage to measure ozone absolutely without the requirement 
for consumables to operate or calibrate [7]. Whereas, ozone measurement with the method of 
chemiluminescence is not absolute, it has to be frequently calibrated. Chemiluminescence 
technique requires to be calibrated every 1 to 60 minutes [43]. Ozone absorbs light  in  the 
Hartley band (200–310 nm) [72], the Huggins band (310–375 nm), the Chappius band (375–603 
nm), and the Wulf band (beyond 700 nm). It has peak absorption at 253.65nm (ߪଶହଷ.଺ହ ൌ
1.147	 ൈ 10ିଵ଻ܿ݉ଶ/molecule) (73) and 603nm (ߪ଺଴ଷ ൌ 5.18	 ൈ 10ିଶଵܿ݉ଶ/molecule) (64).  
 
7.1. The Absorption Cross Section of Ozone  

Error free measurement of ozone gas is dependent upon ozone gas absorption cross 
section [74]. Hence, lots of research efforts are devoted to investigate the accurate value of 
ozone absorption cross section [64, 75-78]. Spectralcalc.com simulator has been used in this 
review to show the effect of temperature on absorption cross section in the Hartley band. Figure 
6 shows absorption cross section of ozone gas obtained by simulation with spectralcalc.com at 
temperatures of 200 K and 300 K respectively. Ozone gas absorption cross section at 253.65 
(actual spectral line is 253.6526 nm) is 1.16	 ൈ 10ିଵ଻ܿ݉ଶ/molecule and 1.14	 ൈ 10ିଵ଻ܿ݉ଶ/
molecule at temperatures of 200 K and 300 K respectively. Absorption cross section decreases 
with increase in temperature from 200 K to 300 K.  The percentage decrease is 0.95 % at a 
measurement wavelength of 253.6 nm. Malicet et al reported a decrease of 1 % in absorption 
cross section for a temperature rise from 218 K to 295 K [79]. Similarly, Serdyuchenko et al 
reported a slight decrease in absorption cross section with temperature increase in the Hartley 
band [80]. The result thus obtained is in good agreement with previous works. 
 
 
8. Materials Compatibility with Ozone 

Not all materials are compatible with ozone gas. Ozone gas compatibility with common 
materials used for ozone sensing in literature is compared in Table 2. 
 The rating in the table depicts chemical effect of ozone on the listed materials. A 
material rated "A" (excellent) implies ozone has no effect; "B" (good) ozone has minor effect. 
Other categories not included in the table are "C" (fair), which implies ozone effect is moderate 
and "D" means ozone has a severe effect on the material. The rating as defined by Ozone 
solutions is for ozone gas concentrations greater than 1000 ppm [81]. 
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Figure 6. Spectralcalc.com simulation of ozone absorption cross section at 200K and 300K 
 
 

Table 2. Materials compatibility with ozone (81) 
Material  Rating  Example of applications  
Aluminium B - Good (64) 
Brass B - Good (82) 
Glass A - Excellent (53, 83) 
PTFE (Teflon®) A - Excellent (30) 
Silicone A - Excellent (84, 85) 
Stainless steel - 304 B - Good/Excellent (86) 
Stainless steel - 316 A - Excellent (86) 
Viton® A - Excellent (87) 

  
 
9. Research Challenges 

Recent research activities on ozone gas sensing with optical absorption spectroscopy 
include sensitivity enhancement through optical path length and ozone gas absorption cross 
section optimization [88] and effect of noise reduction on absorption cross section of ozone gas 
in the visible spectrum [89]. Redefinition of the value of ozone gas absorption cross section in 
the UV for accurate measurements of ozone gas [90] and preservation of linearity of Bear-
Lamberts law by measuring ozone gas concentration at an alternate sampling wavelength of 
279.95 nm [85, 91]. Ozone gas measurement in the visible spectrum using LED as a light 
source at 605 nm [92] and sensitivity enhancement through light propagation at incident angle 
[93]. Temperature and pressure dependence of ozone gas absorption cross section in the UV 
and visible spectrums [80, 94]. Performance indicators/metrics of ozone sensors and sensors in 
general include selectivity, sensitivity, accuracy, resolution, response time, fabrication cost, 
dynamic range, precision and linearity [58, 95-99]. Sensor requirements either in performance, 
physical, or  cost, are application dependent [100]. Research activities on sensors in general 
and ozone sensors in particular, are aimed towards meeting recent sensing requirements, 
strengthening and upgrading some or all of the aforementioned parameters [11, 12, 49].   
 
 
10. Conclusions 

The review paper summarises necessary information. It is a ready reference material 
for new researchers in the field of absorption spectroscopy for ozone sensor application. Issues 
discussed include basic operating principles of optical sensors and its mechanism. Optical 
sensors as well as optical gas cells were classified. Specific properties of ozone gas were also 
highlighted. Recent research activities have been enumerated. Spetralcalc.com simulation 
software was used to demonstrate possibility of obtaining preliminary results before experiments 
are conducted. 
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