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 In this paper, we presented two developments, the first deals with 

generalizing the modernization of the damped Dai-Liao formula in an 

optimized manner. The second development is by suggesting a monotone 

line search formula for our new algorithms. These new algorithms with the 

new monotone line search yielded good numerical results when compared to 

the standard Dai-Liao (DL) and minimum description length (MDL) 

algorithms. Through several theorems, the new algorithms proved to have a 

faster convergence to reach the optimum point. These comparisons are 

drawn in the results section for the tools (Iter, Eval-F, Time) which are a 

comprehensive measure of the efficiency of the new algorithms with the 

basic algorithms that we used in the paper. 
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1. INTRODUCTION  

Let us define the function (1):  
 

𝐹: 𝛺 ⊂ ℝ𝑛 → ℝ𝑛 (1) 
 

Then the issue that we discuss in this article is (2):  
 

𝐹(𝑥) = 0, 𝑥 ∈ 𝛺 (2) 
 

When the solution vector 𝑥 ∈ ℝ𝑛 and the function 𝐹 is continuous and satisfy the monotonous inequality i.e., 
 

[𝐹(𝑥) − 𝐹(𝑦)]𝑇(𝑥 − 𝑦)  ≥  0 (3) 
 

There are several ways to solve this problem, such as the Newton method, and the procedure of 

conjugating gradients [1], [2]. Applications around this type of method have continued to this day [3]-[5]. Here, 

we talk about monotonous equations and their solving methods for their importance in many practical 

applications. For more details see [6]. The projection technique is one of the important methods used to find the 

solution to (1). The two researchers Solodov and Svaiter [7] gave their attention to the large-scale non-linear 

equations. Recently, many researchers implemented new articles on the topic of finding solutions to some 

constraints or unconstraint monotony equations. in various methods, so it had an aspect of interest as in [8]-[15]. 

The projection technique relies on being accelerated using a monotone case 𝐹 and updating the new point 

using repetition: 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 3, June 2023: 545-555 

546 

𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 (4) 

 

As an initial iterative and the hyperplane is: 

 

𝐻𝑘 = {𝑥 ∈ ℝ𝑛|𝐹(𝑧𝑘)
𝑇(𝑥 − 𝑧𝑘) = 0} (5) 

 

To start using the projection technique, we use the update of the new point 𝑥𝑘+1 as given in the [6] 

to be the projection of 𝑥𝑘  onto the hyperplane 𝐻𝑘. So, can be evaluated (6). 

 

𝑥𝑘+1 = 𝑃𝛺[𝑥𝑘 − 𝜉𝑘𝐹(𝑧𝑘)] and 𝜉𝑘 =
𝐹(𝑧𝑘)

𝑇(𝑥𝑘−𝑧𝑘)

‖𝐹(𝑧𝑘)‖
2  (6) 

 

Specifically, this document is laid out: specifically, we present the suggested generalized damped 

Dai-Liao (GDDL) method in section 2. A novel monotone line search was proposed, and the penalty of 

generalized Dai-Liao (DL) parameters was determined in section 3. Section 4 proves global convergence. 

In section 5 we provide the results of our numerical experiments. 

 

 

2. GENERALIZED DAMPED DAI-LIAO 

“The thinking of many researchers was concerned with finding a suitable parameter for the method 

of the conjugate gradient (CG) and imposing conditions on it to make the search direction conjugate and 

reach the smallest point of the function faster and limited steps. One of these researchers was Dai-Liao who 

provided an appropriate parameter that always makes the direction of the search in a state accompanied by a 

parameter 𝜐 ∈ (0,1), for more details see [16]. 
 

𝛽𝑘
𝐷𝐿 =

𝑔𝑘+1
𝑇 𝑦𝑘

𝑑𝑘
𝑇𝑦𝑘

− 𝜐
𝑔𝑘+1
𝑇 𝑠𝑘

𝑑𝑘
𝑇𝑦𝑘

 (7) 

 

Later Abubakar et al. [17] modified (6) by using the new formula of 𝑡 and the projection technique in 

their formula. Fatemi [18] presented a generalized method for the Dai-Liao parameter and its derivation by 

applying the penalty function to the parameter to achieve a sufficient descent condition in the search direction. 

In this section we will rely on the same previous techniques with the addition of a damped quasi-Newton 

condition as in the following derivation: 
 

𝑞(𝑑) = 𝑓𝑘+1 + 𝑔𝑘+1
𝑇 𝑑 +

1

2
𝑑𝑇𝐵𝑘+1𝑑 (8) 

 

With 𝛻𝑞(𝛼𝑘+1𝑑𝑘+1), the gradient of the model in 𝑥𝑘+2, as an estimation of 𝑔𝑘+2. It is easy to see that: 
 

𝛻𝑞(𝛼𝑘+1𝑑𝑘+1) = 𝑔𝑘+1 + 𝛼𝑘+1𝐵𝑘+1𝑑 (9) 
 

Unfortunately, 𝛼𝑘+1 in (4) is not available in the current iteration, because 𝑑𝑘+1 is unknown. Thus, 

we modified (4) and set. 
 

𝑔𝑘+2 = 𝑔𝑘+1 + 𝑡 𝐵𝑘+1𝑑 (10) 
 

Where 𝑡 > 0 is a suitable approximation of 𝛼𝑘+1 . If the search direction of the CG-method. 
 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑑𝑘 (11) 
 

In an efficient nonlinear CG method, we introduce the following optimization problem based on the 

penalty function: 
 

𝑚𝑖𝑛
𝛽𝑘
[𝑔𝑘+1

𝑇 𝑑𝑘+1 + 𝑃∑ [(𝑔𝑘+2
𝑇 𝑠𝑘−𝑖)

2 + (𝑑𝑘+1
𝑇 𝑦𝑘−𝑖)

2]𝑚
𝑖=1 ] (12) 

 

If 𝑚 = 1, 2, 3, 4, 5, . . , 𝑛. Now, substituting (10), (11) in (12), and using the projection technique we obtain: 
 

𝑚𝑖𝑛
𝛽𝑘

[−‖𝐹𝑘+1‖
2 + 𝛽𝑘𝑔𝑘+1

𝑇 𝑑𝑘 + 𝑃∑ [(𝐹𝑘+1
𝑇 𝑠𝑘−𝑖)

2 + 2𝑡𝐹𝑘+1
𝑇 𝑠𝑘−𝑖  𝑑𝑘+1

𝑇𝐵𝑘+1𝑠𝑘−𝑖 + 𝑡
2(𝑑𝑘+1

𝑇𝐵𝑘+1𝑠𝑘−𝑖)
2
+𝑚

𝑖=1

(𝐹𝑘+1
𝑇 𝑦𝑘−𝑖)

2 − 2𝛽𝑘𝐹𝑘+1
𝑇 𝑦𝑘−𝑖𝑑𝑘

𝑇𝑦𝑘−𝑖 + (𝛽𝑘𝑑𝑘
𝑇𝑦𝑘−𝑖)

2]] (13) 
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After some algebraic abbreviations, we get the: 

 

𝛽𝑘 =
1

𝜑
[−𝐹𝑘+1

𝑇 𝑑𝑘 + 2𝑃∑ 𝐹𝑘+1
𝑇 𝑦𝑘−𝑖𝑑𝑘

𝑇𝑦𝑘−𝑖
𝑚
𝑖=1 + 2𝑡2𝑃∑ 𝐹𝑘+1

𝑇 𝐵𝑘+1𝑠𝑘−𝑖𝑑𝑘
𝑇𝐵𝑘+1𝑠𝑘−𝑖

𝑚
𝑖=1 −

2𝑡𝑃 ∑ 𝐹𝑘+1
𝑇 𝑠𝑘−𝑖

𝑚
𝑖=1 𝑑𝑘

𝑇𝐵𝑘+1𝑠𝑘−𝑖] (14) 

 

Where: 

 

𝜑 = 2𝑡2𝑃∑ (𝑑𝑘
𝑇𝐵𝑘+1𝑠𝑘−𝑖)

2𝑚
𝑖=1 + 2𝑃∑ (𝑑𝑘

𝑇𝑦𝑘−𝑖)
2𝑚

𝑖=1   

 

To get a new parameter, let us assume that the Hessian approximation 𝐵𝑘+1 to satisfy the extended 

damped quasi-Newton (QN) equation and with the incorporation of the use of projection technology we get: 

 

𝐵𝑘+1𝑠𝑘−𝑖  =
1

𝜉𝑘
(𝜏𝑘𝑦𝑘−𝑖 + (1 − 𝜏𝑘)𝐵𝑘𝑠𝑘−𝑖) =

1

𝜉𝑘
𝑦𝑘−𝑖
𝐷 = �̅�𝑘−𝑖

𝐷  (15) 

 

And 𝜉𝑘 is the projection step. 

 

𝜏𝑘 = {
1                                    𝑖𝑓 𝑠𝑘−𝑖

𝑇 𝑦𝑘−𝑖 ≥ 𝑠𝑘−𝑖
𝑇 𝐵𝑘𝑠𝑘−𝑖

𝜂 𝑠𝑘−𝑖
𝑇 𝐵𝑘𝑠𝑘−𝑖

𝑠𝑘−𝑖
𝑇 𝐵𝑘𝑠𝑘−𝑖−𝑠𝑘−𝑖

𝑇 𝑦𝑘−𝑖
     𝑖𝑓 𝑠𝑘−𝑖

𝑇 𝑦𝑘−𝑖 < 𝑠𝑘−𝑖
𝑇 𝐵𝑘𝑠𝑘−𝑖

 (16) 

 

Then, 

 

𝛽𝑘
𝑛𝑒𝑤 =

−𝐹𝑘+1
𝑇 𝑑𝑘

2𝑃∑ (𝑡2(𝑑𝑘
𝑇�̅�𝑘−𝑖

𝐷 )
2
+(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2
)𝑚

𝑖=1

+
∑ 𝐹𝑘+1

𝑇 𝑦𝑘−𝑖𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1

∑ (𝑡2(𝑑𝑘
𝑇�̅�𝑘−𝑖

𝐷 )
2
+(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2
)𝑚

𝑖=1

+
𝑡2∑ 𝐹𝑘+1

𝑇 �̅�𝑘−𝑖
𝐷 𝑑𝑘

𝑇�̅�𝑘−𝑖
𝐷𝑚

𝑖=1

∑ (𝑡2(𝑑𝑘
𝑇�̅�𝑘−𝑖

𝐷 )
2
+(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2
)𝑚

𝑖=1

−

𝑡 ∑ 𝐹𝑘+1
𝑇 𝑠𝑘−𝑖

𝑚
𝑖=1 𝑑𝑘

𝑇�̅�𝑘−𝑖
𝐷

∑ (𝑡2(𝑑𝑘
𝑇�̅�𝑘−𝑖

𝐷 )
2
+(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2
)𝑚

𝑖=1

 (17) 

 

So, there are two possible scenarios for this parameter such that, case I: if 𝑠𝑘−𝑖
𝑇 𝑦𝑘−𝑖 ≥ 𝑠𝑘−𝑖

𝑇 𝐵𝑘𝑠𝑘−𝑖 then 𝜏𝑘 = 1 

and �̅�𝑘−𝑖
𝐷 =

𝑦𝑘−𝑖

𝜉𝑘
. 

 

𝛽𝑘
𝑛𝑒𝑤1 =

−𝐹𝑘+1
𝑇 𝑑𝑘

2𝑃 ∑ (
𝑡2

𝜉𝑘
2(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2

+(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

+
∑ 𝐹𝑘+1

𝑇 𝑦𝑘−𝑖𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1

∑ (
𝑡2

𝜉𝑘
2(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2

+(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

+

𝑡2

𝜉𝑘
2 ∑ 𝐹𝑘+1

𝑇 𝑦𝑘−𝑖𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1

∑ (
𝑡2

𝜉𝑘
2(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2

+(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

−

𝑡

𝜉𝑘
∑ 𝐹𝑘+1

𝑇 𝑠𝑘−𝑖
𝑚
𝑖=1 𝑑𝑘

𝑇𝑦𝑘−𝑖

∑ (
𝑡2

𝜉𝑘
2(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2

+(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

 (18) 

 

Put 𝑠𝑘 = 𝜉𝑘𝑑𝑘. 

 

𝛽𝑘
𝑛𝑒𝑤1 =

∑ 𝐹𝑘+1
𝑇 𝑦𝑘−𝑖𝑑𝑘

𝑇𝑦𝑘−𝑖
𝑚
𝑖=1

∑ (𝑑𝑘
𝑇𝑦𝑘−𝑖)

2𝑚
𝑖=1

−
𝜉𝑘𝑡

(𝑡2+1)

∑ 𝐹𝑘+1
𝑇 𝑠𝑘−𝑖

𝑚
𝑖=1 𝑑𝑘

𝑇𝑦𝑘−𝑖

∑ (𝑑𝑘
𝑇𝑦𝑘−𝑖)

2𝑚
𝑖=1

−
𝜉𝑘𝐹𝑘+1

𝑇 𝑠𝑘

2𝑃1(𝑡
2+1)∑ (𝑑𝑘

𝑇𝑦𝑘−𝑖)
2𝑚

𝑖=1

 (19a) 

 

To investigate the proposed method when 𝑃1 approaches infinity, because by making this coefficient 

larger, we penalize the conjugacy condition and the orthogonality property violations more severely, thereby 

forcing the minimizer of (10) closer to that of the linear CG method. 
 

𝛽𝑘
𝑛𝑒𝑤1 =

∑ 𝐹𝑘+1
𝑇 𝑦𝑘−𝑖𝑑𝑘

𝑇𝑦𝑘−𝑖
𝑚
𝑖=1

∑ (𝑑𝑘
𝑇𝑦𝑘−𝑖)

2𝑚
𝑖=1

−
𝜉𝑘𝑡

(𝑡2+1)

∑ 𝐹𝑘+1
𝑇 𝑠𝑘−𝑖

𝑚
𝑖=1 𝑑𝑘

𝑇𝑦𝑘−𝑖

∑ (𝑑𝑘
𝑇𝑦𝑘−𝑖)

2𝑚
𝑖=1

 (19b) 

 

When compared to (6), we notice that the value is: 
 

𝜐𝑘 =
𝜉𝑘𝑡

(𝑡2+1) 
, 𝜐 ∈ (0,

1

2
) (20) 

 

Case II: if 𝑠𝑘−𝑖
𝑇 𝑦𝑘−𝑖 < 𝑠𝑘−𝑖

𝑇 𝐵𝑘𝑠𝑘−𝑖 then �̅�𝑘−𝑖
𝐷 =

𝑦𝑘−𝑖
𝐷

𝜉𝑘
 from (12) and 𝑠𝑘 = 𝜉𝑘𝑑𝑘 by projection, the technique to 

convert the 𝛽𝑘
𝑛𝑒𝑤 form to: 
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𝛽𝑘
𝑛𝑒𝑤2 = [

𝑡2∑ 𝐹𝑘+1
𝑇 𝑦𝑘−𝑖

𝐷 𝑑𝑘
𝑇𝑦𝑘−𝑖

𝐷𝑚
𝑖=1

∑ (𝑡2(𝑑𝑘
𝑇𝑦𝑘−𝑖

𝐷 )
2
+𝜉𝑘

2(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

−
𝑡𝜉𝑘  ∑ 𝐹𝑘+1

𝑇 𝑠𝑘−𝑖𝑑𝑘
𝑇𝑦𝑘−𝑖

𝐷𝑚
𝑖=1

∑ (𝑡2(𝑑𝑘
𝑇𝑦𝑘−𝑖

𝐷 )
2
+𝜉𝑘

2(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

] + [
∑ 𝐹𝑘+1

𝑇 𝑦𝑘−𝑖𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1

∑ (𝑡2(𝑑𝑘
𝑇𝑦𝑘−𝑖

𝐷 )
2
+𝜉𝑘

2(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

−

𝜉𝑘 𝐹𝑘+1
𝑇 𝑠𝑘

2𝑃2∑ (𝑡2(𝑑𝑘
𝑇𝑦𝑘−𝑖

𝐷 )
2
+𝜉𝑘

2(𝑑𝑘
𝑇𝑦𝑘−𝑖)

2
)𝑚

𝑖=1

] (21) 

 

Now using algebraic simplifications, we obtain: 

 

𝛽𝑘
𝑛𝑒𝑤2 =

1

𝜑𝑑
(∑ [𝑡1𝐹𝑘+1

𝑇 𝑦𝑘−𝑖 − 𝑡2𝐹𝑘+1
𝑇 𝑠𝑘−𝑖]

𝑚
𝑖=1 + ∑

𝑑𝑘
𝑇𝑠𝑘−𝑖

𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1 ∑ [𝑡3𝐹𝑘+1

𝑇 𝑦𝑘−𝑖 − 𝑡4𝐹𝑘+1
𝑇 𝑠𝑘−𝑖]

𝑚
𝑖=1 −

𝜉𝑘

2𝑃2∑ 𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1

𝐹𝑘+1
𝑇 𝑠𝑘) (22a) 

 

i.e., 
 

𝜑𝑑 = ∑ (𝑡2(𝑑𝑘
𝑇𝑦𝑘−𝑖

𝐷 )2 + 𝜉𝑘
2(𝑑𝑘

𝑇𝑦𝑘−𝑖)
2)𝑚

𝑖=1   
 

𝑡1 = 𝑡2𝜏𝑘
2 + 𝜉𝑘

2 and 𝑡2 = 𝑡 𝜉𝑘𝜏𝑘 − 𝑡
2𝜏𝑘(1 − 𝜏𝑘) 

 

𝑡3 = 𝑡
2𝜏𝑘(1 − 𝜏𝑘) and 𝑡4 = 𝑡 𝜉𝑘(1 − 𝜏𝑘) − 𝑡

2(1 − 𝜏𝑘)
2) 

 

As we talked about (𝑃1) then (𝑃2) when you come close to infinity, then we use the parameter 

omitted from this limit: 

 

 𝛽𝑘
𝑛𝑒𝑤2 =

1

𝜑𝑑
(∑ [𝑡1𝐹𝑘+1

𝑇 𝑦𝑘−𝑖 − 𝑡2𝐹𝑘+1
𝑇 𝑠𝑘−𝑖]

𝑚
𝑖=1 + ∑

𝑑𝑘
𝑇𝑠𝑘−𝑖

𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1 ∑ [𝑡3𝐹𝑘+1

𝑇 𝑦𝑘−𝑖 − 𝑡4𝐹𝑘+1
𝑇 𝑠𝑘−𝑖]

𝑚
𝑖=1 )(22b) 

 

To obtain better results as in section 5. We have another paper on this type of method, but without 

generalizing the original formula [17].” 

 

 

3. NEW PENALTY PARAMETER 

“Due to the importance of concomitant gradient methods in this paper, we highlight them in the 

derivation of new algorithms. Now, we will derive more coefficients of the penalty function. Although, in this 

formula, we will focus on the two new parameters defined in the (19) and (22) respectively, then we will check 

and update the derived parameters by relying on the appropriate direction of regression of the CG method: 

 

3.1.  Lemma 1 

Assume that the sequence of the solution generated by the method (19) with monotone line search, 

then for a few positive scalars 𝛿1 and 𝛿2 satisfying 𝛿1 + 𝛿2 < 1, we have: 

 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 − 𝛿1 − 𝛿2)‖𝐹𝑘+1‖

2 (23) 

 

When: 

 

|𝜉𝑘𝑡 − 1| ≤ √
2 𝛿2(𝑦𝑘

𝑇𝑠𝑘)

‖𝑠𝑘‖∑ ‖𝑠𝑘−𝑖‖
𝑚
𝑖=1

 (24) 

 

𝑃1 =
2 𝛿1‖𝐹𝑘+1‖

2 

𝑚(𝑡2+1) 𝑚𝑎𝑥
𝑖=1,..,𝑚

((𝑦𝑘−𝑖−0.5 𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2;𝜆𝑖 ≤ 1 (25) 

 

Proof: if we used (5) and (14) then: 

 

𝐹𝑘+1
𝑇 𝑑𝑘+1 = −‖𝐹𝑘+1‖

2 +
1

∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1

((𝐹𝑘+1
𝑇 𝑦𝑘)(𝑦𝑘

𝑇𝑠𝑘)(𝐹𝑘+1
𝑇 𝑠𝑘) −

𝜉𝑘𝑡

(𝑡2+1)
(𝐹𝑘+1

𝑇 𝑠𝑘)(𝑦𝑘
𝑇𝑠𝑘)(𝐹𝑘+1

𝑇 𝑠𝑘)) −

𝜉𝑘 

2𝑃1(𝑡
2+1)

(𝐹𝑘+1
𝑇 𝑠𝑘)

2

∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1

 (26) 

 

Since 𝜆𝑘 ≤ 1, implies that: 
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𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝐹𝑘+1‖

2 +
1

∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1

∑ (((𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)(𝑦𝑘−𝑖

𝑇 𝑠𝑘)(𝐹𝑘+1
𝑇 𝑠𝑘))

𝑚
𝑖=1 +  

(
1

2
−

𝜉𝑘𝑡

(𝑡2+1)
)

1

∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1

∑ (𝐹𝑘+1
𝑇 𝑠𝑘−𝑖)(𝑦𝑘−𝑖

𝑇 𝑠𝑘)(𝐹𝑘+1
𝑇 𝑠𝑘)

𝑚
𝑖=1 −

𝜉𝑘 

2𝑃1(𝑡
2+1)

(𝐹𝑘+1
𝑇 𝑠𝑘)

2

∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1

 (27) 

 

Using this inequality 𝑥𝑦 ≤
𝑡′

4
𝑥2 +

1

𝑡′
𝑦2, where 𝑥, 𝑦 and 𝑡′ are positive scalars, we have: 

 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝐹𝑘+1‖

2 +
𝑡′

4 ∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1

∑ ((𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2(𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1 +

𝑚

∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1 𝑡′

(𝐹𝑘+1
𝑇 𝑠𝑘)

2 −
𝜉𝑘 

2𝑃1∑ (𝑦𝑘−𝑖
𝑇 𝑠𝑘)

2𝑚
𝑖=1 (𝑡2+1)

(𝐹𝑘+1
𝑇 𝑠𝑘)

2 +
(𝜉𝑘𝑡−1)

2

2𝑦𝑘
𝑇𝑠𝑘(𝑡

2+1)
∑ |𝑠𝑘−𝑖

𝑇 𝐹𝑘+1|
𝑚
𝑖=1 |𝐹𝑘+1

𝑇 𝑠𝑘| (28) 

 

Let 𝑡′ = 2𝑚𝑃1(𝑡
2 + 1) , 

 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 +
𝑃1𝑚(𝑡

2+1)

2
𝑚𝑎𝑥
𝑖=1,…,𝑚

((𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2 +  

(𝜉𝑘𝑡−1)
2

2𝑦𝑘
𝑇𝑠𝑘(𝑡

2+1)
∑ |𝑠𝑘−𝑖

𝑇 𝐹𝑘+1|
𝑚
𝑖=1 |𝐹𝑘+1

𝑇 𝑠𝑘| (29) 

 

By Cauchy-Schwarz inequality implies: 

 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −[1 −

𝑚 𝑃1(𝑡
2+1)

2‖𝐹𝑘+1‖
2 𝑚𝑎𝑥
𝑖=1,…,𝑚

((𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2 −

(𝜉𝑘𝑡−1)
2

2𝑦𝑘
𝑇𝑠𝑘(𝑡

2+1)
‖𝑠𝑘‖∑ ‖𝑠𝑘−𝑖‖

𝑚
𝑖=1 ] ‖𝐹𝑘+1‖

2 (30) 

 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 − 𝛿1 − 𝛿2) ≤ −𝜌1‖𝐹𝑘+1‖

2 (31) 

 

Since 𝑡 is an approximation of the step size, we use the updated formula: 

 

𝑡 =

{
 

 𝜉𝑘 𝑖𝑓 |𝜉𝑘𝑡 − 1| ≤ √
2 𝛿2(𝑦𝑘

𝑇𝑠𝑘)

‖𝑠𝑘‖∑ ‖𝑠𝑘−𝑖‖
𝑚
𝑖=1

1 + √
2 𝛿2(𝑦𝑘

𝑇𝑠𝑘)

‖𝑠𝑘‖∑ ‖𝑠𝑘−𝑖‖
𝑚
𝑖=1

             𝑂.𝑊.

 (32) 

 

Hence, the proof is completed. 

 

3.2.  Lemma 2 

Assume that the solution sequence is generated by the new method (16) with a monotone line 

search, then for a few positive scalars 𝛿3, 𝛿4, 𝛿5 and 𝛿6 satisfying 𝛿3 + 𝛿4 + 𝛿5 + 𝛿6 < 1, we have: 

 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 − 𝛿3 − 𝛿4 − 𝛿5 − 𝛿6)‖𝐹𝑘+1‖

2 (33) 

 

|𝑡2 − 2| ≤ √
2 𝛿4𝜉𝑘

2(𝑦𝑘
𝑇𝑠𝑘)

‖𝑠𝑘‖∑ ‖𝑠𝑘−𝑖‖
𝑚
𝑖=1

  & |𝑡4 − 2| ≤ √2 𝛿6𝑡
2(1 − 𝜏𝑘)

2 (34) 

 

And  
 

𝑃2𝑎 =
2 𝛿3‖𝐹𝑘+1‖

2 

𝑚 max
𝑖=1,..,𝑚

((𝑡1 𝑦𝑘−𝑖−0.5 𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2
 
 and 𝑃2𝑏 =

2 𝛿5‖𝐹𝑘+1‖
2 

𝑚 max
𝑖=1,..,𝑚

((𝑡3 𝑦𝑘−𝑖−0.5 𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2
 
 (35) 

 

𝜆𝑖 ≤ 1 is a scalar. 
 

Proof: we substituting (16) in (9) and multiplying by 𝐹𝑘+1 that: 
 

𝐹𝑘+1
𝑇 𝑑𝑘+1 = −‖𝐹𝑘+1‖

2 +
1

𝜑𝑑
(∑ [𝑡1(𝐹𝑘+1

𝑇 𝑦𝑘−𝑖)(𝑦𝑘−𝑖
𝑇 𝑠𝑘)(𝐹𝑘+1

𝑇 𝑠𝑘) − 𝑡2(𝐹𝑘+1
𝑇 𝑠𝑘−𝑖)(𝑦𝑘−𝑖

𝑇 𝑠𝑘)(𝐹𝑘+1
𝑇 𝑠𝑘)]

𝑚
𝑖=1 +

∑
𝑑𝑘
𝑇𝑠𝑘−𝑖

𝑑𝑘
𝑇𝑦𝑘−𝑖

𝑚
𝑖=1 ∑ [𝑡3(𝐹𝑘+1

𝑇 𝑦𝑘−𝑖)(𝑦𝑘−𝑖
𝑇 𝑠𝑘)(𝐹𝑘+1

𝑇 𝑠𝑘) − (𝐹𝑘+1
𝑇 𝑠𝑘−𝑖)(𝑦𝑘−𝑖

𝑇 𝑠𝑘)(𝐹𝑘+1
𝑇 𝑠𝑘)]

𝑚
𝑖=1 ) −

𝜉𝑘

2𝑃2𝜑
𝑑
(𝐹𝑘+1

𝑇 𝑠𝑘)
2 (36) 



                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 3, June 2023: 545-555 

550 

𝐹𝑘+1
𝑇 𝑑𝑘+1 = −‖𝐹𝑘+1‖

2 +
1

𝜑𝑑
∑ ((𝑡1𝑦𝑘−𝑖 −  0.5𝜆𝑖𝑠𝑘−𝑖)

𝑇𝐹𝑘+1)(𝑦𝑘−𝑖
𝑇 𝑠𝑘)(𝐹𝑘+1

𝑇 𝑠𝑘)
𝑚
𝑖=1 +

1

𝜑𝑑
[
1

2
−

 𝑡2] ∑ (𝐹𝑘+1
𝑇 𝑠𝑘−𝑖)(𝑦𝑘−𝑖

𝑇 𝑠𝑘)(𝐹𝑘+1
𝑇 𝑠𝑘)

𝑚
𝑖=1 +

1

𝜑𝑑
∑ ((𝑡3𝑦𝑘−𝑖 −  0.5𝜆𝑖𝑠𝑘−𝑖)

𝑇𝐹𝑘+1)(𝑠𝑘
𝑇𝑠𝑘)(𝐹𝑘+1

𝑇 𝑠𝑘)
𝑚
𝑖=1 +

1

𝜑𝑑
[
1

2
− 𝑡4] ∑ (𝐹𝑘+1

𝑇 𝑠𝑘−𝑖)(𝑠𝑘
𝑇𝑠𝑘)(𝐹𝑘+1

𝑇 𝑠𝑘)
𝑚
𝑖=1 −

𝜉𝑘

2𝑃2𝜑
𝑑
(𝐹𝑘+1

𝑇 𝑠𝑘)
2 (37) 

 

By following the same steps in lemma 3.1 we get: 
 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝐹𝑘+1‖

2 + 𝑃2𝑎 ∑ ((𝑡1𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2𝑚
𝑖=1 +

(𝑡2−2)
2

2𝜉𝑘
2𝑦𝑘

𝑇𝑠𝑘
∑ |𝑠𝑘−𝑖

𝑇 𝐹𝑘+1|
𝑚
𝑖=1 |𝐹𝑘+1

𝑇 𝑠𝑘| +

𝑃2𝑏 ∑ ((𝑡3𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
𝑇𝐹𝑘+1)

2𝑚
𝑖=1 +

(𝑡4−2)
2

2𝑡2(1−𝜏𝑘)
2𝑠𝑘
𝑇𝑠𝑘

∑ |𝑠𝑘−𝑖
𝑇 𝐹𝑘+1|

𝑚
𝑖=1 |𝐹𝑘+1

𝑇 𝑠𝑘| (38) 

 

By Cauchy-Schwarz inequality implies: 
 

𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −[

1 − 𝑚𝑃2𝑎 max
𝑖=1,…,𝑚

(𝑡1𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
2 − 

(𝑡2−2)
2

2𝜉𝑘
2𝑦𝑘

𝑇𝑠𝑘
‖𝑠𝑘‖∑ ‖𝑠𝑘−𝑖‖

𝑚
𝑖=1 −

𝑚𝑃2𝑏 max
𝑖=1,…,𝑚

(𝑡3𝑦𝑘−𝑖 − 0.5𝜆𝑖𝑠𝑘−𝑖)
2 −

(𝑡4−2)
2

2𝑡2(1−𝜏𝑘)
2𝑠𝑘
𝑇𝑠𝑘
‖𝑠𝑘‖∑ ‖𝑠𝑘−𝑖‖

𝑚
𝑖=1

] ‖𝐹𝑘+1‖
2 (39) 

 

Then, 𝐹𝑘+1
𝑇 𝑑𝑘+1 ≤ −(1 − 𝛿3 − 𝛿4 − 𝛿5 − 𝛿6)‖𝐹𝑘+1‖

2 ≤ −𝜌2‖𝐹𝑘+1‖
2 

 

The proof is completed. In the next paragraph we talk about the Algorithm 1 (minimum description length 

conjugate gradient (MDL-CG)) used for numerical comparison which is an update of the Dai-Liao algorithm: 
 

Algorithm 1. MDL-CG [19] 

Given 𝑥0 ∈ Ω, 𝑟, 𝜎 ∈ (0,1), stop test 𝜖 > 0, set 𝑘 = 0. 

Step 1: evaluate 𝐹(𝑥𝑘) and test if ‖𝐹(𝑥𝑘)‖ ≤ 𝜖 stop else goes to step 2. 

Step 2: evaluate 𝑑𝑘 by (9) and substitute 𝛽𝑘
𝑀𝐷𝐿 =

𝐹𝑘+1
𝑇 𝑦𝑘

𝑦𝑘
𝑇𝑠𝑘

− 𝜈𝑘
𝐹𝑘+1
𝑇 𝑠𝑘

𝑦𝑘
𝑇𝑠𝑘

 and 𝜈𝑘 = 𝑝
‖𝑦𝑘‖

2

𝑠𝑘
𝑇𝑦𝑘

− q
𝑠𝑘
𝑇𝑦𝑘

‖𝑠𝑘‖
2. 𝑑𝑘 = 0, 

is the stopping criterion. 

Step 3: compute 𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, with the step-size 𝛼𝑘 = 𝑟𝑚𝑘 . 
 

−𝐹(𝑥𝑘 + 𝑟
𝑚𝑑𝑘)

𝑇𝑑𝑘 > 𝜎𝑟
𝑚‖𝐹(𝑥𝑘 + 𝑟

𝑚𝑑𝑘)‖‖𝑑𝑘‖
2 (40) 

 

Step 4: check if 𝑧𝑘 ∈ Ω and ‖𝐹(𝑧𝑘)‖ ≤ 𝜖 stop.  

Step 5: let 𝑘 = 𝑘 + 1 and go to step 1. 
 

The new Algorithm 2 (GDDL-CG) is a generalization according to the value of m and it is an update and 

suppression of the Dai- Laio algorithm as in the steps: 
 

Algorithm 2. GDDL-CG 

Given 𝑥0 ∈ Ω, r, 𝜎, 𝜇, 𝛾 ∈ (0,1), stop test 𝜖 > 0, set 𝑘 = 0. 

Step 1: evaluate 𝐹(𝑥𝑘) and test if ‖𝐹(𝑥𝑘)‖ ≤ 𝜖 stop else goes to step 2. 

Step 2: when 𝑦𝑘
𝑇𝑠𝑘 ≥ 𝑠𝑘

𝑇𝑠𝑘 compute 𝑃1 from (25) and if 𝑃1 ≠ ∞ then 𝛽𝑘
𝑛𝑒𝑤1 from (19a) else (19b). 

Step 3: when 𝑦𝑘
𝑇𝑠𝑘 < 𝑠𝑘

𝑇𝑠𝑘 compute 𝑃2 from (35) and if 𝑃2 ≠ ∞ then 𝛽𝑘
𝑛𝑒𝑤2 from (22a) else (22b). 

Step 4: compute 𝑑𝑘 by (9) and stop if 𝑑𝑘 = 0. 
Step 5: set 𝑧𝑘 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, where 𝛼𝑘 = 𝑟𝑚  with 𝑚 to be the shortest positive number 𝑚 so: 
 

−𝐹(𝑥𝑘 + 𝛾𝑟
𝑚𝑘𝑑𝑘)

𝑇𝑑𝑘 > 𝜎𝛾𝑟𝑚𝑘 [𝜇‖𝑑𝑘‖
2 + (1 − 𝜇)

‖𝑑𝑘‖
2

‖𝐹𝑘‖
2] (41) 

 

Step 6: if 𝑧𝑘 ∈ 𝛺 and ‖𝐹(𝑧𝑘)‖ ≤ 𝜖 stop, else compute the point 𝑥𝑘+1 from (6). 

Step 7: let 𝑘 = 𝑘 + 1 and go to step 1.” 
 

 

4. GLOBAL CONVERGENCE 

In the previous section, we gave a preface to the proof of convergence condition by establishing the 

property of sufficient descent through lemmas 3.1 and 3.2. In the beginning, there are a set of assumptions 

that we mention in this section, and then we move on to theories. Adding several lemmas for the step length 

of the new algorithm. Now we need some assumption, to begin with, the proof of convergence condition, 

which is illustrated thus: 
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4.1.  Assumption 

Suppose 𝐹 fulfills the following assumptions: 

a) The solution group of (2) is non-empty. 

b) The function 𝐹 is Lipschitz continuous, i.e., 
 

‖𝐹(𝑥) − 𝐹(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ , ∀ 𝑥, 𝑦 ∈ ℝ𝑛 (42) 
 

c) 𝐹 satisfies, 
 

〈𝐹(𝑥) − 𝐹(𝑦), 𝑥 − 𝑦〉 ≥ 𝑐‖𝑥 − 𝑦‖2 , ∀ 𝑥, 𝑦 ∈ ℝ𝑛 , c>0 (43) 
 

4.2.  Lemma 1 

Assume (�̅� ∈ ℝ𝑛) satisfy 𝐹(�̅�) = 0 and {𝑥} is generated by the new algorithm GDDL-CG. 

If lemmas 3.1 and 3.2, hold, then ‖𝑥𝑘+1 − �̅�‖
2 ≤ ‖𝑥𝑘 − �̅�‖

2 − ‖𝑥𝑘+1 − 𝑥𝑘‖
2 , and 

 

∑ ‖𝑥𝑘+1 − 𝑥𝑘‖
∞
𝑘=0 < ∞ (44) 

 

4.3.  Lemma 2 

Suppose {𝑥} is generated by the new algorithm GDDL-CG then: 
 

lim
𝑘→∞

𝛼𝑘‖𝑑𝑘‖ = 0 (45) 

 

Proof: since the sequence {‖𝑥𝑘 − �̅�‖} is not increasing; {𝑥𝑘} is bounded, and 𝑙𝑖𝑚
𝑘→∞

‖𝑥𝑘+1 − 𝑥𝑘‖ = 0. From (3) 

using a line search, we have:  
 

‖𝑥𝑘+1 − 𝑥𝑘‖ =
|𝐹(𝑧𝑘)

𝑇(𝑥−𝑧𝑘)|

‖𝐹(𝑧𝑘)‖
2

‖𝐹(𝑧𝑘)‖ =
|𝛼𝑘𝐹(𝑧𝑘)

𝑇𝑑𝑘|

‖𝐹(𝑧𝑘)‖
 ≥ 𝛼𝑘‖𝑑𝑘‖ ≥ 0 (46) 

 

Then the proof is completed.” 
 

4.4.  Theorem 

Let {𝑥𝑘} and {𝑧𝑘} be the sequences generated by the new algorithm GDDL-CG then: 
 

𝑙𝑖𝑚 𝑖𝑛𝑓  
𝑘→∞

‖𝐹(𝑥𝑘)‖ = 0 (47) 

 

Proof: case I: if 𝑙𝑖𝑚 𝑖𝑛𝑓 ‖𝑑𝑘‖
𝑘→∞

= 0, then 𝑙𝑖𝑚 𝑖𝑛𝑓  
𝑘→∞

‖𝐹(𝑥𝑘)‖ = 0. The sequence {𝑥𝑘} has some accumulation 

point �̅� such that 𝐹(�̅�) = 0. Hence, {‖𝑥𝑘 − �̅�‖} converges to �̅�. Case II: if 𝑙𝑖𝑚 𝑖𝑛𝑓 ‖𝑑𝑘‖
𝑘→∞

> 0, then 

𝑙𝑖𝑚 𝑖𝑛𝑓  
𝑘→∞

‖𝐹(𝑥𝑘)‖ > 0. Hence 𝑙𝑖𝑚
𝑘→∞

𝛼𝑘 = 0. Using the line search. 

 

−𝐹(𝑥𝑘 + 𝛾𝑟
𝑚𝑘𝑑𝑘)

𝑇𝑑𝑘 > 𝜎𝛾𝑟
𝑚𝑘 [𝜇‖𝑑𝑘‖

2 + (1 − 𝜇)
‖𝑑𝑘‖

2

‖𝐹𝑘‖
2] (48) 

 

And the boundedness of {𝑥𝑘}, {𝑑𝑘}, yields 
 

−𝐹(�̅�)𝑇�̌� ≤ 0 (49) 
 

From (17) and (23) we get: 
 

−𝐹(�̅�)𝑇�̌� ≥ 𝜌𝑖  ‖𝐹(�̅�)‖
2 > 0 (50) 

 

The (31) and (32) indicates a contradiction for 𝑖 = 1, 2. So, 𝑙𝑖𝑚 𝑖𝑛𝑓  
𝑘→∞

‖𝐹(𝑥𝑘)‖ > 0 does not hold and the 

proof is complete. 
 
 

5. NUMERICAL PERFORMANCE 

In this section, we present our numerical results that explain the importance of the new algorithm 

GDDL-CG compared to the MDL-CG algorithm [19] using Matlab R2018b program in a laptop calculator 

with its CoreTMi5 specifications. The program finds the results on several non-derivative functions through 

several two initial points. In Table 1, we review the details of the initial points used to compare algorithms as 

shown in Table 1. 
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Table 1. Number of initial points 
Name of variable Number  

𝑥1 (1,1,1, . . ,1)𝑇 

𝑥2 (rand, rand, rand, . . , rand)𝑇 

 

 

Table 2. Information of test functions [20]-[26] 
Name of functions Details Reference 

𝐹1 𝐹𝑖(𝑥) = 2 𝑥𝑖 − sin|𝑥𝑖| [21] 

𝐹2 𝐹𝑖(𝑥) =  𝑥𝑖 − sin(𝑥𝑖) [21] 

𝐹3 𝐹𝑖(𝑥) =  𝑒
𝑥𝑖 − 1 [22] 

𝐹4 𝐹𝑖(𝑥) = √𝑐(𝑥1 − 1), 𝑓𝑜𝑟 𝑖 = 2,3, . . , 𝑛 − 1 

𝐹𝑛(𝑥) =
1

4𝑛
∑𝑥𝑗

2

𝑛

𝑗=1

−
1

4
 

𝑓𝑜𝑟 𝑐 = 1 ∗ 10−5 

[22] 

𝐹5 𝐹𝑖(𝑥) = ln( |𝑥𝑖| + 1) −
𝑥𝑖
𝑛

 [20] 

𝐹6 𝐹𝑖(𝑥) = min(min(|𝑥𝑖|, 𝑥𝑖
2) ,max(|𝑥𝑖|, 𝑥𝑖

3)) [23] 

𝐹7 
𝐹1(𝑥) = 𝑥1 − 𝑒

cos(𝑥1+𝑥2)
𝑛+1  

𝐹𝑖(𝑥) = 𝑥𝑖 − 𝑒
cos(𝑥𝑖+1+𝑥𝑖+𝑥𝑖−1)

𝑛+1 , 𝑓𝑜𝑟 𝑖 = 2,3, . . , 𝑛 − 1 

𝐹𝑛(𝑥) = 𝑥𝑛 − 𝑒
cos(𝑥𝑛−1+𝑥𝑛)

𝑛+1  

[24] 

𝐹8 
𝐹𝑖(𝑥) =  

𝑖

𝑛
𝑒𝑥𝑖 − 1 

[21] 

𝐹9 𝐹1(𝑥) = 𝑒
𝑥1 − 1, 𝐹𝑖(𝑥) =  𝑒

𝑥𝑖 − 𝑥𝑖−1 − 1 [20] 

𝐹10 
𝐹𝑖(𝑥) =∑|𝑥𝑖|

𝑖

𝑛

𝑖=1

 
[25] 

𝐹11 
𝐹𝑖(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

 
[25] 

𝐹12 𝐹𝑖(𝑥) = max
𝑖=1,..,𝑛

|𝑥𝑖| [25] 

𝐹13 
𝐹𝑖(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

 𝑒−∑ sin(𝑥𝑖
2)𝑛

𝑖=1  
[25] 

𝐹14 
𝐹𝑖(𝑥) =∑|𝑥𝑖 sin(𝑥𝑖) + 0.1 (𝑥𝑖)|

𝑛

𝑖=1

 
[26] 

𝐹15 
𝐹𝑖(𝑥) =∑|𝑥𝑖|

𝑖+1

𝑛

𝑖=1

 
[26] 

 

 

The 𝑛-dimensional versions of these techniques are implemented here (1000, 2000, 5000, 7000, 

12000). The stopping criterion is ‖𝐹(𝑥𝑘)‖ < 10−8. All algorithms of this kind may be distinguished from 

one another based on their performance in terms of (Iter): the number of iterations, (Eval-F): the number of 

evaluations of functions, (Time): in seconds measured by the CPU, and (Norm): the approximate solution 

norm. In Table 2, we mention the details of the test problems 𝐹(𝑥) = (𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛)
𝑇 used with the 

references from which they were taken, the points 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)
𝑇, and 𝛺 = ℝ+

𝑛 . 
 

 

  

  

(a) (b) 
  

Figure 1. Performance of the seven algorithms with respect to (Iter): (a) about 𝑥1 and (b) about 𝑥2 
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Using style for figures as in [19], the following three figures are for comparison between the old DL 

and MDL algorithms with the new algorithm when switching the value of the generalization i.e., from 1 to 5 to 

get 5 new algorithms. New algorithms are considered generalizations and can generalize to more than 5. 

To accurately know the impact of algorithms, we drew the following figures. 

Figure 1 shows the effect of the new algorithms when taking the iterations tool as a measure of the effect, 

and the figure was divided into two parts, i.e., Figure 1(a) when calculating the point 𝑥1, and Figure 1(b) when 

calculating the point 𝑥2. As for Figure 2, it shows the effect of the new algorithms when taking the function 

number calculation tool as a measure of the effect, and the figure was divided into two parts, i.e., Figure 2(a) when 

calculating the point 𝑥1, and Figure 2(b) when calculating the point 𝑥2. Finally, Figure 3 shows the effect of the 

new algorithms when taking the time spent in calculations tool as a measure of impact, i.e., Figure 3(a) when 

calculating the point 𝑥1, and Figure 3(b) when calculating the point 𝑥2. 

 

 

  

  

(a) (b) 
  

Figure 2. Performance of the seven algorithms with respect to (Eval-F): (a) about 𝑥1 and (b) about 𝑥2 

 

 

  

  

(a) (b) 
  

Figure 3. Performing the seven algorithms with respect to (Time): (a) about 𝑥1 and (b) about 𝑥2 
 

 

Through the use of the three figures, we can conclude that the new algorithms are superior to the 

two algorithms with which we compared our work. Furthermore, we have discovered that the random starting 

point with which we began our work brought to light the significance of the new algorithm when 

generalizing 𝑚 = 2 when calculating the number of iterations and was the best of the new algorithms when 

calculating the number of times, the function is calculated. The algorithm with the value of 𝑚 equal to one 

performed the best and was superior to the others. In conclusion, when considering the amount of effort 

invested in developing these algorithms, the two algorithms with 𝑚 equal to 5 performed the best. 
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6. CONCLUSION 

Our numerical results in the previous section, represented by three numbers, show the efficiency of 

the generalized algorithm GDDL when compared with the previous two algorithms. Its efficiency is better 

when we take the randomly generated point as a starting point and this will increase the efficiency when the 

dimensions used in the variables increase, which shows greater stability and makes the new generalized 

algorithm more suitable than other previous algorithms for the existence of the limit containing the penalty 

parameter in the new generalized algorithm. Theoretical proofs of the new algorithm give the proposed 

algorithms more power than the previous algorithms. This is why these algorithms are considered successful 

in both theoretical and numerical aspects. 
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