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 The appearance of uncertainties and disturbances often effects the 

characteristics of either linear or nonlinear systems. Plus, the stabilization 

process may be deteriorated thus incurring a catastrophic effect to the system 

performance. As such, this manuscript addresses the concept of matching 

condition for the systems that are suffering from miss-match uncertainties and 

exogeneous disturbances. The perturbation towards the system at hand is 

assumed to be known and unbounded. To reach this outcome, uncertainties 

and their classifications are reviewed thoroughly. The structural matching 

condition is proposed and tabulated in the proposition 1. Two types of 

mathematical expressions are presented to distinguish the system with 

matched uncertainty and the system with miss-matched uncertainty. Lastly, 

two-dimensional numerical expressions are provided to practice the proposed 

proposition. The outcome shows that matching condition has the ability to 

change the system to a design-friendly model for asymptotic stabilization. 
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1. INTRODUCTION  

Dealing with dynamical systems with uncertainties is trivial. Uncertainties may introduce nonlinarity 

and need linearization to facilitate stabilization process [1]. Considering a mechanical rotational system in 

practice, the uncertainties in the modeling may be contributed by the backlash in the gearing teeth [2]. Many 

stabilization approaches available in the literature can be opted to perform tracking tasks as well as regulation 

tasks for such systems. However, the presence of uncertainties and disturbances make the objectives a 

challenging task. Among the approaches, a classical [3], [4], optimal, and robust approaches are common. 

Among the robust stabilization approaches, backstepping [5], [6] and variable structure system 

(VSS) [7]-[9] are known to be prevalent. Both techniques adopt the Lyapunov stability criteria [10]. VSS is a 

discontinuous nonlinear system. As a time-invariant system is normally denoted as �̇� = 𝜑(𝑥) with a state vector 

𝑥 ∈ ℛ𝑛, VSS on the other hand can be denoted by a piecewise function �̇� = 𝜑(𝑥, 𝑡) with 𝑡 ∈ ℛ. A concept 

discussed in [8], [9] and the references therein state that a variable structure control has become the established 

method to control or regulate VSS. A sliding mode approach has become the main subset to a variable structure 

operation. Sliding mode is one of the established nonlinear management methods which is robust to parameter 

uncertainties. As such, sliding mode concept is suitable to stabilize a system with uncertain parameters [11]. 

Nevertheless, few shortcomings of sliding mode that can be compromised by designers are the chattering 

phenomenon, and it difficultness in handling miss-match uncertainties [12]. To overcome miss-match uncertainties 

in the mathematical expression, one may augment back-stepping calculation to the sliding mode approach [13]. 

https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Variable_structure_control
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This manuscript discusses about the uncertainties and disturbances thoroughly. As such, the rest of 

the manuscript begins with thorough review on the class of uncertainties and disturbances. The distinguishing 

features between match and miss-match uncertainties are discussed in detail. Then, a numerical example on 

the match and mismatch handling will be presented to replenish understanding. 
 

 

2. UNCERTAINTIES AND DISTURBANCES 

One of the key reasons for designing a controller is to combat with the adverse effect of uncertainty that 

may appear in different forms as disturbances or as other imperfections in the system model. Uncertainty is classified 

into two categories namely disturbance signals and dynamic perturbations. Disturbance signal includes sensor noise 

(see aircraft noise in [14]), actuator noise [15] and exogenous disturbance such as intermittent wind flow in wind 

turbine [16] and gust on aircraft [17]. Dynamic perturbations due to un-modelled dynamics (usually high frequency 

dynamics) is known as unstructured uncertainty [18], [19]. Neglected nonlinearities in the system model and 

variations in system parameters are known as parametric uncertainty [18], [19]. The unstructured uncertainty 

constitutes the lumped dynamic perturbations that may occur in different parts of a system. For linear time invariant 

systems, the configuration of unstructured uncertainty can be additive perturbation, inverse additive perturbation (see 

the application in wind farms in [20]), input multiplicative perturbation, output multiplicative perturbation, inverse 

input multiplicative, inverse output multiplicative perturbation, left coprime factor perturbations and right coprime 

factor perturbations [19]. On the other hand, the parametric uncertainties affect the low-frequency range performance 

that are normally caused by dynamic perturbations due to variations of certain system parameters. In a dynamical 

system model, the uncertain term can be matched with the control input, mismatched with the control input or mixed 

matched-mismatched with the control input. Hence, emerge a class of system so-called matched uncertainty, 

mismatched uncertainty, and matched-mismatched uncertainty [21], [22].  

There is a large volume of published studies describing the method to solve a dynamical system with 

uncertainty. Numerous studies in [21]-[23] have attempted to solve matched uncertainty using a sliding mode control 

(SMC) and a variable structure control (VSC). A method to solve nonlinear system with matched uncertainty using 

Lyapunov redesign are discussed in [24], [25]. 

Mismatched and mixed matched-mismatched uncertainty are rather hard to handle as they require 

matching condition such that the uncertain term matched with the control input. An early matching condition 

using a Lyapunov min-max approach can be reviewed in [26]. Choi [27], [28], Lee and Mau [29] proposed SMC 

to stabilize linear dynamical system with mismatched uncertainty. For a system with nonlinearity and input matrix 

uncertainty, the approach has been proposed by Choi in [30]. To date, very little literature proposed a control 

approach for nonlinear system with matched-mismatched uncertainty. Amongst them, Park et al. [31] proposed 

VSC for linear system with matched-mismatched uncertainty. In Kamarudin et al. [5], proposed back-stepping 

and Lyapunov redesign approach to stabilize nonlinear system with matched-mismatched uncertainty. 

To compensate the uncertainty in the design therein, the nominal back-stepping controller is augmented with 

nonlinear damping function. 

As for linear systems, numerous studies have been revealed. For example, studies in [32] reported the use 

of linear matrix inequalities (LMI-based) approach to the analysis and design of closed-loop system under linear 

state feedback laws to maximize the disturbance rejection capability. Several studies thus far have linked the use of 

LMI-based method to the problem of disturbance tolerance and rejection for a family of linear systems subject to 

actuator saturation and 𝐿∞-disturbances [33], [34],  𝐿2-disturbance [35]-[37] or 𝐿∞/𝐿2-disturbance [38]. 

More practical treatments on the uncertainties have been discussed by Jamri [39], and overview in power system. 

Figure 1 summarizes the uncertainties phenomena and they classification.  
 
 

 
 

Figure 1. Class of uncertainties and disturbances 
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3. MISS-MATCH HANDLING 

Miss-match (or un-match) uncertainties are rather hard to handle. In certain occasion, system with 

miss-match uncertainties needs structural condition and complex mathematical manipulation. Simple 

continuous time-invariant system with miss-match exogenous disturbance is shown in (1). 
 

�̇� = 𝐹(𝑥) + 𝐺(𝑥)𝑢 + 𝐻(𝑥)𝓌 (1) 
 

Where 𝐹(∙), 𝐺(∙) and 𝐻(∙) are continuous functions, 𝑢 is the control input, and 𝓌 is the disturbance 

input. The conceptual diagram for the system is depicted in Figure 2. 
 
 

 
 

Figure 2. Conceptual diagram for system in (1) 
 
 

It is clearly shown in both (1) and Figure 2 that 𝓌 is miss-match to 𝑢; and 𝑢 does not affine in �̇�(𝐹, 𝐻). 

As such, one might simply design a stabilizing function 𝑢 under assumption that nominal system in (1) is 

stabilizable and the state is available for feedback; that is 𝑌(𝑥) = {𝑥} for output 𝑌(𝑥). However, omitting 𝓌 

in the stabilizing function 𝑢 may not realize the stabilization if 𝓌 dominate the function and has no constraint. 

Though 𝓌 constraint the closed unit ball (𝓌 ≡ ℬ), the unconstrained control function (𝑢 ≡ 𝒰) unable to 

dominate 𝓌. In this case, one might ponder a structural condition for (1) as portrayed in proposition 1. 
 

3.1.  Proposition 1 

Assume that there exists a continuous function 𝐸(𝑥) that satisfies structural condition 𝐻(𝑥) = 𝐺(𝑥)𝐸(𝑥). 

Then the matching condition can be applied to the system (1). 
 

�̇� = 𝐹(𝑥) + 𝐺(𝑥)[𝑢 + 𝐸(𝑥)𝓌] (2) 
 

Through proposition 1, 𝑢 and 𝓌 become affine in 𝐺(𝑥), and 𝓌 is said to be matched with the control 

input 𝑢. Thus 𝓌 can be combated easily provided that 𝓌 is available and observable. In case 𝓌 is unobservable, 

one might use disturbance estimator provided that the bounded of 𝓌is known (perhaps within a closed unit ball 

𝓌 ≡ ℬ). Figure 3 shows affine function (2) where 𝓌 enters through the same input channel as 𝑢. 
 

 

 
 

Figure 3. System in (1) after matching condition 
 

 

3.1.1.  Miss-match versus match uncertainties 

To replenish the understanding towards the method, two numerical systems are shown in (3) and (4). 
 

�̇�1 = 𝑥2

               �̇�2 =  𝑢 + 𝑥1
3𝓌

  (3) 

 

                �̇�1 = 𝑥2 + 𝑥1
3𝓌

�̇�2 =  𝑢
 (4) 
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Note that both systems in (3) and (4) possess identical dynamic (system matrix [
0 1
0 0

]) and input 

matrix ([0 1]𝑇). The only difference between the two is the attribute of matrix associated with 𝓌. To this 

end, system in (3) satisfies the matching condition because the disturbance can be re-grouped into a function 

𝑓(𝑢, 𝓌, 𝑥1). Whereas, system in (4) does not satisfy the matching condition. To visualize the issue, let us plug 

the numerical dynamics into the system. With simple matrix algebra, one would reach clearer visualization 

between match and miss-match appearance in the system at hand. Hence, system (3) becomes: 
 

[
�̇�1

�̇�2
] = [

0 1
0 0

] [
𝑥1

𝑥2
] + [

0
1

] [𝑢 + 𝑥1
3𝓌] (5) 

 

Whereas system (4) turns into: 
 

[
�̇�1

�̇�2
] = [

0 1
0 0

] [
𝑥1

𝑥2
] + [

0
1

] 𝑢 + [
1
0

] 𝑥1
3𝓌 (6) 

 

System (5) portrays a matched uncertainty. Whereas system (6) reveals miss-match uncertainty that 

is identical to the priorly defined system in (1). At glance, we can control the 1st state. The system is 

controllable if we consider the controllable matrix denotes as: 
 

𝐶𝑚 ≜ [𝐵 𝐴𝐵] = [
0 1
1 0

] (7) 

 

That gives the rank 2 matrix. As the systems are known to be autonomous, the null input matrix results in 

unobservable states. As both systems (5) and (6) are controllable, let design the feedback gain 𝐾 that will 

produce the control energy 𝑢 = −𝐾𝑥 under the nominal condition (that is 𝓌 = 0). To simplify the process, let 

us place the closed loop aigenvalues (𝐴 − 𝐵𝐾) in stable region, for instance 𝑒𝑖𝑔(𝐴 − 𝐵𝐾) ≡ [−1 −2]. 
The judicious choice of 𝑒𝑖𝑔(𝐴 − 𝐵𝐾) leads to the feedback gain 𝐾 = [2 3]. The history of the states 

trajectory is depicted in Figure 4. With the judicious 𝐾-value, both states return to equilibria within 3 seconds 

with initial condition 𝑥(0) = [1 1]. Figure 5 shows the control law for system in (6) with matched 

disturbance 𝓌 appeared in the system. Despite the disturbance, the system is stabilizable with only slight 

distortion in the trajectory, as depicted in Figure 6. 
 

 

  
  

Figure 4. State trajectory for system (6) without 

disturbance 𝓌 with state feedback 

Figure 5. Control law u for system (6) when 

disturbance 𝓌 occurred 
  

  

 
 

Figure 6. State trajectory for system (6) with disturbance 𝓌 and state feedback 
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3.1.2.  Example of matching condition 

To illustrate the concept of structural matching condition more literally, let consider two-dimensional 

nonlinear system of the form. 
 

�̇� = 𝑓(𝑋) + 𝑔(𝑋)𝑦 + ℎ(𝑋)𝜉(𝑋, 𝑡) (8) 
 

𝑦 = 𝑢 (9) 
 

Where [
𝑋
𝑦

] ∈ ℛ𝑛+1 are the system states with 𝑋 ∈ ℛ𝑛, 𝑋 ∈ ℛ is the single control input, 𝜉(𝑋, 𝑡) is the sum of 

uncertainties and time varying exogenous disturbances, 𝑓(∙), 𝑔(∙) and ℎ(∙) are smooth functions. As compared 

with one dimensional system in (2), the control problem for system (8) and (9) become more complicated as the 

control command 𝑢 does not directly influence 𝑥1. In addition, 𝜉(𝑋, 𝑡) is mismatches to 𝑦 and 𝑢. Therefore, 

it needs structural matching condition prior to the design steps. By using proposition 1, we introduce a continuous 

function 𝑝(𝑋) that satisfies structural condition ℎ(𝑋) = 𝑔(𝑋)𝑃(X). Then the matching condition can be applied to 

the system (8), (9). The dynamic equation in subsystem (10) eases the elimination of 𝑝(𝑋)𝜉(𝑋, 𝑡)-term via a virtual 

control 𝑦. To this end, the design objective is to eliminate 𝜉(𝑋, 𝑡) by a control law (not to be discussed in this work). 
 

�̇� = 𝑓(𝑋) + 𝑔(𝑋)[𝑢 + 𝑝(𝑋)𝜉(𝑋, 𝑡)] (10) 
 

𝑦 = 𝑢 (11) 
 
 

4. CONCLUSION 

The necessity of matching condition is emphasized in the existence of unmatched uncertainties 

(or mismatched) and exogeneous disturbances. Beforehand, the matching case and unmatching case were 

distinguished with example. The outcome showed that the structural matching condition is able to simplify the 

systems in order to facilitate control design. In the future, the application of control design will be presented in 

conjunction to the matching process discussed in this manuscript. 
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