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 This paper describes an adaptation of a polar code decoding technique in 

favor of the extended Golay code. Based on the bridge provided by a 

permutation matrix between the code words of these two classes of codes, 

the Golay code can be decoded by any polar code technique. Contrary to the 

successive-cancellation list technique which is characterized by a serial 

estimation of the bits, we propose in this work an adaptation of the 

simplified successive-cancellation list technique to polar codes equivalent to 

the Golay code. The simulations have achieved the performance of a 

maximum likelihood decoding, with the low decoding complexity of polar 

codes, compared to one of the universal decoders of linear codes most 

known in the literature. 
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1. INTRODUCTION  

One of the pioneers of existing error correction theory is the Golay code, which first appeared in the 

late 1940s [1]. It has a multitude of uses in communication, storage, and imaging systems [2]–[4]. In literature, 

a multitude of algebraic [5] and soft decision decoders [6]–[8] have been proposed. Golay code has gotten a 

lot of attention since its discovery because of its attractive structure and practical characteristics, and several 

construction methods have been presented over the years [9]. 

On the other hand, a class of error-correcting codes was discovered in 2009 by Arikan [10] called polar 

codes, allowing to reach, in a proven way, the channel capacity as it was described by Shannon [11] in his 

founder article. In addition, these codes have low encoding/decoding complexity using successive-cancellation 

(SC) decoding technique, which has made them a competitive coding scheme in modern wireless 

communication systems. Their constructions are inspired by the phenomenon of polarization using the Arikan 

kernel 𝑇2 = [
1 0
1 1

], which consists in transforming the channels into two categories: extremely unreliable 

channels used to forward the redundant part frozen at 0 and extremly reliable channels used to forward 

information. Their construction has been the source of inspiration for new construction of good binary linear 

codes [12], [13].  

To improve binary linear block codes decoding by utilizing low complexity polar code decoding 

algorithms, some works in the literature have focused on the bridge between linear codes and the structure of polar 

codes. In Lin et al. [14] and Khebbou et al. [15] have proposed a transformation of some binary linear block codes, 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 21, No. 3, June 2023: 477-485 

478 

namely extended Bose, Ray-Chaudhuri and Hocquenghem (EBCH), low density parity check (LDPC), and 

Golay codes, into polar codes with dynamic frozen bits (PCDF) [16], [17] for decoding them by the 

successive-cancellation list (SCL) technique, but the latter is hampered by SC decoding’s serial structure, i.e., 

the estimation of a bit depends on the estimation of the bits that precede it. To remedy this problem, 

an adaptation of the simplified-SCL technique to PCDF equivalent to EBCH and LDPC codes has been 

proposed in [18], but the proposed adaptation is limited to binary linear block codes whose length is 

𝑁 = 2𝑚 where 𝑚 is positive integer. In this work, to validate the simplified-SCL technique for binary linear 

codes of arbitrary length, an adaptation of the simplified-SCL decoding technique to the benefit of the 

extended [24,12,8] Golay code whose length 𝑁 ≠ 2𝑚, by transforming it into a polar code with frozen 

dynamic bits based on multi-kernels. 

The rest of this paper is structured as: section 2 introduces the preliminary concepts of this work. 

In section 3, a description of the proposed decoding method. Before concluding, in section 4 simulation and 

an interpretation of the results obtained using the method described in section 3 are presented. 
 
 

2. PRELIMINARIES 

2.1.  Golay code 

Golay initially introduced the Golay code as [23,12,7] code, which is a perfect code with length 23, 

dimension 𝑘 = 12, and minimum distance 𝑑𝑚𝑖𝑛 = 7. By extending the code, a [24,12,8] quasi-perfect self-dual 

binary linear code (extended Golay code) will be obtained; it encodes 12 bits of information in a 24-bit codeword. 

In Berlekamp [19], it has been revealed that the Golay code is a quadratic residue code in addition to being a cyclic 

Bose-Chaudhuri-Hocquenghem (BCH) code. By definition of a BCH code, we have the inequality 2𝑡 + 1 ≤ 𝑡, 

where 𝑡 is the number of altered symbols in a codeword. So that any error of three bits can be rectified. 
 

2.2.  Polar code 

The notation 𝛲(𝑁, 𝐾, 𝐹) denotes a polar code with length 2𝑛 where 𝑛 ≥ 1, dimension 𝐾 and a set of 

frozen bits 𝐹. The elements of 𝐹 represent the positions of the 𝑁 − 𝐾 less reliable channels, and the remaining 

𝐾 bits comprise the more reliable bit channels. When the positions of the frozen bits are fixed to 0, and the 

source information bits are organized in the remaining positions, to form the source vector 𝑢. The source 

codeword 𝑥 is obtained via the encoding process applied on 𝑢 by: 𝑥 = 𝑢 ⋅ 𝐺𝑝, so that 𝐺𝑝 is the kronecker 

product of order 𝑙𝑜𝑔2(𝑁) of the Arikan kernel, as a generator matrix of 𝛲. 
 

 

  
  

(a) (b) 
  

Figure 1. Decoding tree of (8,4, {0,1,2,4}) polar code: (a) decoding tree and (b) binary variable exchanging 

between nodes 
 

 

The SC approach, which can be described as a binary tree, as the first polar decoding algorithm 

developed. Figure 1(a) depicts the binary tree of the (8,4, {0,1,2,4}) polar code, whereas Figure 1(b) depicts 

the different variables exchanged between nodes. At each node of a stage 𝑑, the number of bits processed by 

each node is 𝑁𝑑 = 2𝑁−𝑑−1 i.e., let’s use 𝛼 = [𝛼1, 𝛼2, … , 𝛼𝑁𝑑−1], by traversing the tree in the order indicated 

in the Figure 1(b), 𝛼𝑙 and 𝛼𝑟 are obtained by the functions: 
 

𝛼 ⥂𝑖
𝑙= 𝑠𝑖𝑔𝑛(𝛼𝑖) ⋅ 𝑠𝑖𝑔𝑛(𝛼

𝑖+
𝑁𝑑
2

) ⋅ 𝑚𝑖𝑛( |𝛼𝑖|, |𝛼𝑖+
𝑁𝑑
2

|) (1) 
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𝛼 ⥂𝑖
𝑟= (1 − 2𝛽 ⥂𝑖

𝑙) ⋅ 𝛼𝑖 + 𝛼
𝑖+

𝑁𝑑
2

 (2) 

 

And at the leaf node, 𝛽𝑙 and 𝛽𝑟 are obtained by applying the binary qualification function ℎ (3): 

 

𝛽𝑣
𝑙 = ℎ(𝛼𝑣

𝑙 ) = {0 𝑖𝑓 𝛼𝑣
𝑙 ≥ 0 𝑜𝑟 𝑖𝑠 𝑓𝑟𝑜𝑧𝑒𝑛

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑎𝑛𝑑 𝛽𝑣

𝑟 = ℎ(𝛼𝑣
𝑟) = {

0 𝑖𝑓 𝛼𝑣
𝑟 ≥ 0 𝑜𝑟 𝑖𝑠 𝑓𝑟𝑜𝑧𝑒𝑛

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

The SC decoder can demonstrably reach a channel when 𝑁 → ∞. However, the error correction 

performance is poor for small lengths when compared to existing codes like Turbo codes and LDPC codes. 

The successive-cancellation list (SCL) decoder comes into the picture at this point [20]. So instead of making 

a hard decision by (3), the key concept is to make a probabilistic estimate for each possibility, by considering 

both 1 and 0, each one with a certain probability metric 𝑃𝑀𝑖  calculated by: 

 

𝑃𝑀𝑖 = {
𝑃𝑀𝑖−1 𝑖𝑓 𝛽 = ℎ(𝛼𝑖)

𝑃𝑀𝑖−1 + |𝛼𝑖| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

At any leaf node, the number of possibilities is limited by list size 𝐿, by pruning the list each time to consider 

the best 𝐿 possibilities. 

 

2.3.  Simplified-SCL decoding for polar codes 

Despite their low complexity, the SC and SCL decoders are characterized by their serial nature. 

In other words, a bit’s decoding is dependent on the decoding of the bits before it. Thus, at each instant, a bit 

can be decoded. To remedy these problems, a simplification of this technique simplified-SCL has been 

proposed in [21], to break the serial nature for some special nodes on the one hand, and to estimate all the 

leaf bits of the special node at one time on the other hand. These special nodes are described in the Figure 2. 

 

 

 
 

Figure 2. Labelled special nodes in binary tree for (8,4) polar code 

 

 

a) Rate-0 node: it is the root node of a subtree whose leaf nodes are entirely frozen bit nodes as illustrated 

in Figure 2. It is not necessary to go to the leaf node for such types of nodes, and the appropriate bits 

can be set to 0. 

b) Rate-1 node: it is the root node of a subtree whose leaf nodes are entirely information bit nodes as 

illustrated in Figure 2. Because no frozen bit nodes are providing prior information, traversing subtree 

yields no additional information. Hence it is sufficient to estimate the leaf bits at the current node. 

c) Repetition (REP) node: it is the root node of a subtree, with all leaf nodes, are frozen except the last 

node which is an information bit node as illustrated in Figure 2.  

d) Single parity check (SPC) node: the root node of a subtree whose leaf nodes are all information bit 

nodes except the first, which is a frozen bit node corresponds to the SPC node as illustrated in Figure 2.  

When encountering one of these types of special nodes, an estimation of all leaf nodes is performed, 

without having to traverse the subtree in the special node which is root. The formulas for estimating the 

different variables mentioned in Figure 1 at each special node are presented in [21], as well as the formula for 

updating the the path metrics (PM) metrics. The simplified-SCL decoder significantly reduces latency and 

complexity while achieving the error correcting performance of a SCL. 
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2.4.  Multi-kernel polar code 

Gabry et al. [22] develops a method for constructing polar codes with arbitrary lengths 𝑁 ≠ 2𝑛. 

Instead of using the Arikan kernel to generate the generator matrix, the authors recommended polar codes based 

on a multi-kernel construction. I.e.,: 𝐺𝑝 = 𝑇𝑛1
⊗ 𝑇𝑛2

⊗ … ⊗ 𝑇𝑛𝑑
 is the generator matrix of multi-kernel polar 

code and its length is 𝑁 = 𝑛1 × 𝑛2 × … × 𝑛𝑑. 
 

 

 
 

(a) 
 

 

 
 

(b) 
 

Figure 3. Decoding tree of (12,6) multi-kernel polar code: (a) decoding tree and (b) binary variable 

exchanging between nodes of the ternary kernel 
 
 

As a regular polar code, the SC decoding technique, adapted to multi-kernel polar code (12,6) is 

illustrated in the Figure 3(a) its generator matrix is 𝐺𝑝 = 𝑇2 ⊗ 𝑇3 ⊗ 𝑇2, based on the Arikan kernel 𝑇2 and 

the ternary kernel 𝑇3 (5). 
 

𝑇2 = [
1 0
1 1

]  ;  𝑇3 = [
1 1 0
1 0 1
1 1 1

] (5) 

 

The decoding of the bits corresponding to the Arikan kernel 𝑇2 is carried out, in the same way, described 

previously. Then for the ternary kernel 𝑇3, the decoding is carried out in the order mentioned in Figure 3(b). 
 

𝛼 ⥂𝑖
𝑙= 𝑠𝑖𝑔𝑛(𝛼𝑖) ⋅ 𝑠𝑖𝑔𝑛(𝛼

𝑖+
𝑁𝑑
3

) ⋅ 𝑠𝑖𝑔𝑛(𝛼
𝑖+

2𝑁𝑑
3

) ⋅ 𝑚𝑖𝑛( |𝛼𝑖|, |𝛼𝑖+
𝑁𝑑
3

| , |𝛼
𝑖+

2𝑁𝑑
3

|) (6) 
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𝛼 ⥂𝑖
𝑐= (1 − 2𝛽 ⥂𝑖

𝑙) ⋅ 𝛼𝑖 + 𝑠𝑖𝑔𝑛(𝛼
𝑖+

𝑁𝑑
3

) ⋅ 𝑠𝑖𝑔𝑛(𝛼
𝑖+

2𝑁𝑑
3

) ⋅ 𝑚𝑖𝑛( |𝛼
𝑖+

𝑁𝑑
3

| , |𝛼
𝑖+

2𝑁𝑑
3

|) (7) 

 

𝛼 ⥂𝑖
𝑟= (1 − 2𝛽 ⥂𝑖

𝑙) ⋅ 𝛼
𝑖+

𝑁𝑑
3

+ (1 − 2𝛽 ⥂𝑖
𝑙⊕ 𝛽𝑖

𝑐) ⋅ 𝛼
𝑖+

2𝑁𝑑
3

 (8) 

 

For 𝛽𝑙, 𝛽𝑐 and 𝛽𝑟, the (3) is used to calculate their values, and the value of 𝛽 returned to the parent node is 

obtained (9). 

 

𝛽𝑖 = [𝛽𝑖
𝑙 ⊕ 𝛽𝑖

𝑐 , 𝛽𝑖
𝑙 ⊕ 𝛽𝑖

𝑟 , 𝛽𝑖
𝑙 ⊕ 𝛽𝑖

𝑐 ⊕ 𝛽𝑖
𝑟] (9) 

 

 

3. ADAPTED SIMPLIFIED-SCL DECODING FOR EXTENDED GOLAY CODE 

Lin et al. [14] and Khebbou et al. [18], was the begining of the decoding of binary linear block 

codes by polar code decoding techniques. The idea is to use a permutation matrix 𝜋 to ensure a mapping 

between the codewords of a polar code and those of a binary linear block code. The polar codes obtained 

after permutation are PCDF. These were the first to be introduced into the literature as a solution to the 

problem of short minimum Hamming distance in short length regimes. As opposed to a regular polar code, 

some positions of the frozen bits are not fixed at 0 for PCDF, their values are obtained by linear functions of 

the information bits which precede them. In [16], an example is described using an extended BCH code. 

 

3.1.  Golay transformation to polar code 

The transformation proposed in [14] applied on the extended Golay code is used in this work, 

it consists in identifying the permutation matrix 𝜋 that optimizes the Bhattacharyya parameter [23], [24], 

which allows to classify the sets information bits and of frozen bits. The following notations are used: 

a) 𝑇2 and 𝑇3: the kernels mentioned in (5). 

b) 𝐺𝑝: generator matrix of polar code based on multi-kernel with 𝑁 = 24 obtained by 𝐺𝑝 = 𝑇3 ⊗ 𝑇2 ⊗ 𝑇2 ⊗ 𝑇2. 

c) 𝐺𝐺𝑜𝑙𝑎𝑦: generator matrix of extended [24,12,8] Golay code. 

d) 𝐻𝐺𝑜𝑙𝑎𝑦: parity check matrix of extended [24,12,8] Golay code. 

e) 𝐸: elimination matrix which ensures the transformation into a reduced row echelon form. 

f) 𝐸′: invertible elimination matrix which ensures the transformation into a backward reduced row echelon 

form. 

The deduction of the polar code with frozen dynamic bits, equivalent to the Golay code can be done in two 

ways. The first one, by using 𝐺𝐺𝑜𝑙𝑎𝑦  of the extended Golay code using (10). 

 

𝑅 = 𝐸 ⋅ 𝐺𝐺𝑜𝑙𝑎𝑦 ⋅ 𝜋−1 ⋅ 𝐺𝑝
−1 (10) 

 

The set of the statically frozen bits are represented by indexes of the columns of 𝑅 with values of 0 (their values 

are set to 0), the set of the information bits are represented by the columns of 𝑅 with a single value of 1, and the 

remaining columns of 𝑅 are for dynamic frozen bits (their values are linear functions of the information bits). 

The second one, by using 𝐻𝐺𝑜𝑙𝑎𝑦 of the extended Golay code using (11). 

 

𝑅′ = 𝐺𝑝 ⋅ 𝜋 ⋅ 𝐻𝐺𝑜𝑙𝑎𝑦 ⋅ 𝐸′ (11) 

 

The position of dynamic frozen bits in 𝑅’ is determined by the row index of the last non-zero 

components of multiple 1 columns, while the zero frozen bits correspond to the column index of non-zero 

components of single 1 columns of 𝑅′, and the remainders are information bits. In this work, we will 

transform the extended Golay code using the second way. To do this, let’s take the matrices. 

The matrix 𝐻𝐺𝑜𝑙𝑎𝑦  is part of the (12), so 𝑢. 𝑅′ = 0 by definition of parity check matrix. So by 

observing the result 𝑅′, we can notice that the indices of the columns {4, 5, 6, 7, 8, 9, 10, 11, 12} are static 

frozen positions. The indices of the columns {1,2,3} have multiple 1 must also satisfy 𝑢. 𝑅′ = 0 and they 

represent dynamic frozen positions, whose system below allows to define their values according to the 

information bits. The remaining positions are information bits: 

 

{

𝑢22 = 𝑢17 + 𝑢18

𝑢21 = 𝑢18

𝑢20 = 𝑢17 + 𝑢18 + 𝑢19

 (12) 
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𝜋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐻𝐺𝑜𝑙𝑎𝑦 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1 1 0 0 0 1 1 1 0 1 0 1

0 1 1 0 0 0 1 1 1 0 1 1

1 1 1 1 0 1 1 0 1 0 0 0

0 1 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 1 0 1 1 0 1 0

1 1 0 1 1 0 0 1 1 0 0 1

0 1 1 0 1 1 0 0 1 1 0 1

0 0 1 1 0 1 1 0 0 1 1 1

1 1 0 1 1 1 0 0 0 1 1 0

1 0 1 0 1 0 0 1 0 1 1 1

1 0 0 1 0 0 1 1 1 1 1 0

1 0 0 0 1 1 1 0 1 0 1 1

          I12×12 ]
 
 
 
 
 
 
 
 
 
 
 
 

,  𝐸′

=

[
 
 
 
 
 
 
 
 
 
 
 
1 0 01 1 1 11 1 1 1 1
1 1 0 1 1 0 1 1 0 0 0 0

1 0 0 1 0 0 0 0 1 1 1 1

0 1 0 1 0 0 0 0 1 1 0 1

1 0 0 1 1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0 0 1 1 1
0 0 1 1 0 0 0 0 1 0 0 1

0 1 0 1 1 1 0 1 0 0 0 0

0 1 1 1 0 1 1 1 0 0 0 0

1 1 0 1 0 0 0 0 1 0 1 1

1 1 1 1 0 0 0 0 0 1 0 1

1 0 1 1 0 0 0 0 0 0 1 1]
 
 
 
 
 
 
 
 
 
 
 

 

 

3.2.  Simplified-SCL for golay code 

After having defined the multi-kernel polar code equivalent to the [24,12,8] extended Golay code, 

having 𝑢20, 𝑢21, 𝑢22 as dynamic frozen bits, this part allows to describe the decoding of the said code, by the 

simplified-SCL decoding technique. Figure 4 shows this technique as a tree, identifying the different special 

nodes of the equivalent code. At stage 𝑑 = 2, the first and third nodes are Rep-nodes, the second, fourth and 

fifth are SPC-nodes. Therefore, it will no longer be useful to cross the sub-tree of which these special nodes 

are roots. In stage 𝑑 = 3, the first and fifth are rate-0 nodes, as well as the fourth, eighth and tenth are rate-1 

nodes, but they are excluded by their parent nodes which are already special. For REP-nodes, since all the 

bits are frozen except for the first one, its estimation is done using (13). 

 

𝛽𝑖 = ℎ(∑ 𝛼𝑖)
𝑁𝑑−1
𝑖=0  (13) 

 

And for a given list size 𝐿, the path metric 𝑃𝑀𝑖  update using the (14). 

 

𝑃𝑀𝑙 = 𝑃𝑀𝑙 +
1

2
∑ 𝑠𝑖𝑔𝑛(𝛼𝑖) ⋅ 𝛼𝑖 − (1 − 2𝛽𝑁𝑑−1) ⋅ 𝛼𝑖

𝑁𝑑−1
𝑖=0  (14) 

 

For SPC-nodes, let 𝑖𝑝𝑟be the index of the parity check bit. The bit estimations (15): 

 

𝛽𝑖 = ℎ(𝛼𝑖)  

𝛽𝑖𝑝𝑎𝑟
= ∑ 𝛽

𝑁𝑑−1
𝑖=0;𝑖≠𝑖𝑝𝑟 𝑖

 (15) 



TELKOMNIKA Telecommun Comput El Control   

 

Decoding of the extended Golay code by the simplified successive-cancellation list … (Driss Khebbou) 

483 

And 𝑃𝑀 update for the information bits is performed (16): 

 

𝑃𝑀𝑙 = 𝑃𝑀𝑙 + 𝑠𝑖𝑔𝑛(𝛼𝑖) ⋅ 𝛼𝑖 − (1 − 2𝛽𝑖) ⋅ 𝛼𝑖 (16) 

 

For the parity check bit, it is updated (17): 

 

𝑃𝑀𝑙 = {
𝑃𝑀𝑙 + |𝛼𝑖| 𝑖𝑓 𝛽𝑖 = ℎ(𝛼𝑖)
𝑃𝑀𝑙   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (17) 

 

 

 
 

Figure 4. Adapted simplified successive-cancellation list decoding tree for polar code equivalent to extended 

Golay code [24,12,8] with dynamic frozen bits based on multi-kernel 

 

 

4. RESULTS AND INTERPRETATIONS 

To compare the technique proposed in this work with existing techniques in the literature, this 

section illustrates the decoding of the Golay code by three decoding methods, i.e., ordered statistics decoding 

(OSD), maximum likelihood decoding (MLD), and the simplified-SCL adapted to multi-kernel polar decoder 

proposed in this paper. Although MLD of forwarding error correction codes is known to be the most 

accurate, it is rarely employed in practice because it is too difficult to implement efficiently, and MLD of 

arbitrary linear codes was established as an NP-hard problem [25]. The OSD is a decoder that was proposed 

in 1995 as an approximation to the MLD for linear block codes in order to reduce decoding complexity to 

𝑂(𝑛𝑘2 + 2𝑟𝑛𝑘), with 𝑟 is the order used for OSD [26]. Figure 5 is a simulation of frame-error rate (FER) for 

the extended Golay code over the additive white gaussian noise (AWGN) channel, using three techniques.  

Although both the adapted simplified-SCL with list size 𝐿 = 64 and the first-order OSD achieve the 

performance of an MLD, but the OSD requires additional effort to control its decoding flow based on the 

results of sorting symbol reliabilities, compared to the simplified-SCL complexity. Since the proposed 

technique is a derivative of SC, its decoding complexity is 𝒪(𝐿𝑁𝑙𝑜𝑔(𝑁)), which is a logarithmic complexity as 

opposed to the OSD having an exponential complexity 𝒪(𝑁𝐾2 + 2𝑟𝑁𝐾). Note that order 𝑟 = 1 represents the 

order that allows achieving the saturation of an OSD. In other words, whatever the chosen order, the performances 

will remain the same. 

Lin et al. [14] the decoding of binary linear block codes is treated by the SCL method, which 

consists in traversing the whole decoding tree. But it is characterized by its serial nature and the estimation of 

each bit is done based on the bit that precedes it. This work is the continuation of [18] which is limited to the 

adaptation of the simplified-SCL to codes of length is 𝑁 = 2𝑚 where 𝑚 positive integer, in order to 

generalize the simplified-SCL for PCDF based on multi-kernel, to take advantage of a binary linear block 

codes whose size 𝑁 ≠ 2𝑚.  

By definition, the construction of polar codes is done explicitly; i.e., the code of size 𝑁 is obtained 

starting from a code of size 𝑁/2. Thus each sub-tree of such polar code is also a polar code. For the multi-kernel 

polar code equivalent to the extended Golay code proposed in this work, we can notice from Figure 4 that the 

technique of decoding technique proposed in this paper, makes it possible to reduce the time steps and 

latency by those of 5 polar codes of size 𝑁 = 4. As illustrated in [27, Table 1], the time steps required for 

decoding an SPC node is (𝑁𝑣 + 1) for the SCL. However for the same node, the proposed technique in this 

work require only (𝑁𝑣 − 2 log(𝑁𝑣) − 2). As well as for the REP node, the time steps required for decoding is 

(2𝑁𝑣 − 1) versus 2 times steps for the proposed simplified-SCL in this work. 
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Figure 5. Frame-error rate for (24,12) extended Golay code 
 

 

5. CONCLUSION 

In this work, a less complex Golay code decoding technique has been shown compared to existing 

methods. It implements the simplified successive-cancellation list decoder adapted to multi-kernel polar code 

with frozen dynamic bits. With an appropriate selection of the permutation matrix, these algorithms can 

provide a maximum likelihood decoding for [24,12,8] extended Golay code, with a minimization of 

complexity and latency, by puncturing the tree traverse of the SCL principle. The MLD is considered as the 

most powerful decoding method but it is considered as an NP-hard problem, we compared the method 

described in this work with OSD, one of the universal decoder for linear codes known by performances close 

to those of MLD, but it has an exponential complexity. The method that we proposed is characterized by a 

logarithmic complexity that allows to reach the same performances of OSD. The constraint of the definition 

of the most optimal permutation matrix 𝜋 for an eventual binary linear block code remains a direction of 

future reflections, since currently the identification of this matrix is done by a random search between the 𝑁! 
possibilities. For that, the use of evolutionary algorithms as genetic algorithms can be an alternative to the 

direct search. 
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