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 In this work, high-speed transmission over the long-haul optical channel 

using orthogonal frequency division multiplexing (OFDM) was investigated. 

Furthermore, we recommend mixing polarization division multiplexing 

(PDM) with coherent OFDM (CO-OFDM) and quadrature amplitude 

modulation (16-QAM) to improve spectral efficiency (SE) while 

transmitting over a wavelength division multiplexing (WDM) system. 

An 800 Gb/s WDM PDM-CO-OFDM-16QAM transmission system with 

various channel spacing of 100 GHz, 50 GHz, and 25 GHz is examined 

utilizing the OptiSystem (2021) version 18.0 software package over ten 

spans of 60 km standard single-mode fiber (SSMF). Different channel 

spacing WDM systems have been compared in terms of performance and 

SE. The results reveal that the WDM system with 100 GHz channel spacing 

has a longer transmission range and needs minimal optical signal to noise 

ratio (OSNR) at the reception. The 25 GHz channel spacing WDM system 

exceeds the others in terms of SE. Further, the effect of ultra-low loss and 

large effective area fiber in lowering span loss and nonlinear effects for 

25 GHz channel spacing WDM system is investigated. The findings show 

that the system performance with the new fiber outperforms the SSMF. 

The acceptable bit error rate (BER) for this study is 0.033 (20% 

concatenated forward error correction (FEC) threshold). 
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1. INTRODUCTION  

In recent years, the accelerating growth of internet traffic has become a vital challenge for high-rate 

optical networks. Consequently, optical orthogonal frequency division multiplexing (OFDM) is becoming 

extremely relevant to dealing with the effects of chromatic dispersion and polarization mode dispersion 

(PMD) while simultaneously increasing spectral efficiency (SE) [1], [2]. Rather than sending one wideband 

signal, OFDM technology sends several little sub-bands orthogonally [3]. Furthermore, using the coherent 

detection method with OFDM might compensate for connection defects digitally [4]. The use of polarization 

division multiplexing (PDM) and higher-order modulation schemes are two additional ways to improve the 

system’s spectral efficiency [5], [6]. 

One of the most appropriate methods for increasing the data transfer rate in optical transmission 

systems is wavelength division multiplexing (WDM). When sending multiple optical data flows together and 

at the same time through one optical cable, the transmission capacity increases typically without the need to 

add another cable [7]–[9]. The resulting signal is then transmitted via optical fiber. The optical flows are 

separated individually on the receiving side to extract original data from the independent receiving devices. 

https://creativecommons.org/licenses/by-sa/4.0/
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Assuming 𝑁 optical single-channel lines with data rates 𝐵1, 𝐵2, ... 𝐵𝑁 are all at the same time sent across a 

fiber of finite length, the overall data rate of the WDM connection as in (1). 
 

𝐵𝑇 =  𝐵1 +  𝐵2 + ⋯ 𝐵𝑁  (1) 
 

The total capacity of the transmission system is enhanced by a factor of 𝑁 when all lines have the same 

data rates. The total count of lines 𝑁, the data rates 𝐵 of every line, and the frequency spacing 𝛥𝜈𝑐ℎ  between 

two adjacent channels are the most critical design factors for a WDM system. The term (𝑁 × 𝐵) refers to 

system capacity, and the (𝑁 × 𝛥𝜈𝑐ℎ) accounts for the overall bandwidth used by a WDM system [10], [11]. 

The (2) is the description of spectral efficiency (𝜂𝑠). 
 

𝜂𝑠 =  𝐵 ∆𝜈𝑐ℎ⁄  (2) 
 

A WDM transmission system’s capacity can be raised in various methods, including utilizing a 

broader optical bandwidth, enhancing spectral efficiency, or combining the two. Using a broader optical 

bandwidth often necessitates the installation of farther optical amplifiers and other optical elements; thus, 

increasing spectral efficiency seems to be the most cost-effective option. For the best SE WDM system, 

spacing between adjacent channels must be minimized; hence the fiber nonlinearity impacts such as self-phase 

modulation (SFM), cross-phase modulation (XPM), four-wave mixing (FWM), and stimulated Raman scattering 

(SRS) in parallel with crosstalk effect, increases and degraded the transmission performance [12], [13]. 

The fast development in optical fiber has lately created a new age of potentials: ultra low loss fiber [14] 

and large-effective-area fiber [15]. Compared with SSMF, the optical signal to noise ratio (OSNR) for ultra 

low loss fiber systems will be improved by reducing fiber loss. Additionally, the appropriate optical power 

increases as the optical cable’s effective area increases, which is essential to improving the received OSNR. 

Consequently, a low loss with large effective area fiber could be an excellent alternative for improving a 

high-speed optical network transmission performance [16]. It has been completed and deployed for undersea 

installations, as stated in ITU-T recommendation G.654. The ITU-T gives the G.654.E definition as a new 

ultra-low-loss fiber with a large effective area capable of supporting high-speed transmission for terrestrial 

use. Various systems and practical tests [17]–[23] include the G.654. E fiber to decrease the nonlinearity effect 

and losses in single and multi-channel transmission systems. 

This work aims to analyze the effect of channel spacing on spectral efficiency and transmission 

performance for an (8×100 Gbps) WDM-PDM-CO-OFDM-16QAM system across (10×60 km) link of SSMF 

using the optisystem 18 software. Three-channel spacings of 100 GHz, 50 GHz, and 25 GHz are used in this 

investigation. Further, we will replace the SSMF with G.654E fiber for a narrower channel spacing WDM 

system with higher SE to enhance the long-haul transmission performance by decreasing the nonlinearity 

effect and attenuation in the transmission medium. The OSNR, launching power effectiveness on BER, 

constellation diagrams, and eye diagrams were the focus of our attention. The suggested system is examined 

using an inline Erbium-doped fiber amplifier (EDFA) and dispersion compensation fiber (DCF) to boost the 

optical signal and mitigate the dispersion, respectively. The reference BER used in this study is 0.033 (20% 

overhead concatenated forward error correction (FEC) threshold) [19]. 
 

 

2. RESEARCH METHOD 

As shown in Figure 1, the 800 Gb/s WDM PDM-CO-OFDM-16QAM transmission system is 

designed using numerical simulation software, optisystem 18. The suggested system is divided into three 

parts: transmitter, optical channel, and receiver. Table 1 shows the global simulation settings. 
 

 

Table 1. Global simulation parameters 
Parameters Value 

Data rate (Gb/s) 100 

Symbol rate (GS/s) 12.5 
Sequence length (bit) 32768 

 

 

2.1.  Transmitter setup 

Before adopting 16-QAM encoding, a pseudo-random binary sequence (PRBS) generator produced 

100 Gb/s data bits that were divided into odd and even data streams using a serial to parallel adapter. 

The OFDM modulator modulates the resulting signal. Then the in-phase and quadrature parts of the OFDM 

signal pass through a low pass filter (LPF). After that, two Mach-Zehnder modulators (MZM) were used to 

convert the RF-OFDM signal from the electrical to an optical domain for each polarization component of a CW 
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laser beam. A polarization beam combiner (PBC) joins the two perpendiculars modulated optical signals, 

achieving PDM. The optical multiplexer is then used to simultaneously send all eight PDM-CO-OFDM-16QAM 

optical signals to the optical channel. Table 2 shows the transmitter parameters. 

 

 

 
 

Figure 1. Proposed model of 8 channel WDM-PDM-CO-OFDM-16QAM optical communication system 

 

 

Table 2. Transmitter parameters 
Parameters Value 

− CW laser for central channel 

Frequency (THz) 193.1 
Linewidth (MHz) 0.1 

Power (dBm) Variable 

− OFDM modulator and demodulator 

Total number of subcarriers 128 

Number of carrying subcarriers 80 
Number of pilot symbols 6 

Number of training symbols 10 

Number of prefix point 10 
Average OFDM power (dBm) 15 

− Mux/Demux 

Frequency spacing (GHz) 100, 50, and 25 

Bandwidth (GHz) 25 

Insertion loss (dB) 2 
Filter type Gaussian 

Filter order 4 

 

 

2.2.  Optical channel 

Ten spans of SSMF cable or G.654.E fiber cable make up the optical channel. The DCF is utilized 

to compensate for the dispersion effect in each loop. Also, two optical amplifiers (EDFA’s) in every loop 

equalize the attenuation of SSMF or G.654.E fiber with the corresponding DCF. Table 3 shows the channel 

characteristics. 
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Table 3. Optical channel characteristics 

Parameter 
SSMF G.654E [23] 

Value 

Span length (km) 60 60 

Attenuation coefficient (db/km) 0.2 0.168 

Dispersion coefficient (ps/nm/km) 16.75 21 

Fiber nonlinearity (m2/W) 0.075 0.07 

Fiber nonlinearity (m2/W) 26 × 10−21 22 × 10−21 

Effective area (μm2) 80 125 

 EDFA-1 

Gain (dB) 12 10.08 
Noise figure (dB) 4 4 

 DCF 

Span length (km) 11.8 14.8 
Attenuation coefficient (db/km) 0.5 0.5 

Dispersion coefficient (ps/nm/km) -85 -85 

Dispersion slope coefficient (ps/nm2/km) -0.375 -0.375 

Dispersion slope coefficient (ps/nm2/km) 26 × 10−21 26 × 10−21 

Effective area (μm2) 22 22 

 EDFA-2 

Gain (dB) 5.9 7.4 
Noise figure (dB) 4 4 

 

 

2.3.  Receiver setup 

The eight PDM-CO-OFDM-16QAM incoming optical signals were passed through an optical 

Demultiplexer to separate them individually. After that, a polarization beam splitter (PBS) splits each signal 

into two polarization components, which are then fed into a coherent detector to capture the RF-OFDM 

signal with the assistance of a local oscillator (LO) laser, with settings as shown in Table 4. The OFDM 

demodulator retrieves the original symbols and then the original bits by the 16-QAM decoder. Lastly, the digital 

data stream is collected by parallel to the serial converter. The OFDM demodulator,16-QAM decoder, and 

Demultiplexer settings are identical to those of the transmitter. 
 

 

Table 4. LO settings for a center channel of the WDM system 
Parameters Value 

Frequency (THz) 193.1 

Linewidth (MHz) 0.1 

Power (dBm) 10 
 
 

3. RESULTS AND DISCUSSION  

To understand the approximate transmission distance that can be reached with various channel 

spacing WDM systems. The transmission performance of the PDM-CO-OFDM-16QAM system was first 

simulated for 100 Gb/s single-channel, then 800 Gb/s multi-channel with 100, 50, and 25 GHz channel 

spacing. As shown in Figure 2, The WDM system had a shorter transmission distance than the single-channel 

system. Also, as the channel spacing decreases for WDM, the system’s BER worsens. 
 

 

 
 

Figure 2. BER vs transmission distance for single channel and multi-channel systems with different channel 

spacing at center channel of 193.1 THz 
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Figure 3 to Figure 6 depict the optical transmission spectrum for single-channel and WDM systems on 

transmission and reception end after 718 km of SSMF and DCF: Figure 3(a), Figure 3(b) for single-channel 

system; Figure 4(a), Figure 4(b) for 100 GHz channel spacing WDM system; Figure 5(a), Figure 5(b) for 50 GHz 

channel spacing WDM system; and Figure 6(a), Figure 6(b) for 25 GHz channel spacing WDM system. 

Concerning WDM systems, each has a different spectral bandwidth corresponding to the distance between 

adjacent channels. For 100 Gbps single-channel data rate, the allowable SE for 100, 50, and 25 GHz channel 

spacing WDM systems are 1, 2, and 4 bits/sec/Hz, respectively. To put it more simply, a WDM system with 

25 GHz spacing can transfer the highest data rate within restricted optical bandwidth, followed by 50 GHz 

and 100 GHz, respectively. 
 

 

  
  

(a) (b) 
 

Figure 3. Optical spectrum of single channel at (a) transmitted end and (b) received end 
 
 

  
  

(a) (b) 
 

Figure 4. Optical spectrum of 100 GHz channel spacing WDM system at (a) transmitted end and (b) received end 
 
 

So over 718 km link, Figure 7 shows the influence of launching power on BER for both single-channel 

and WDM systems. For specific launching power values, the single-channel system has BER values above 

the 1.48 dB FEC limit, whereas the WDM system exceeds a threshold limit for just some power values. 

The single-channel system also addresses the best BER, allowing for a longer transmission distance. 

100 GHz channel spacing WDM system has a better BER value than 25 GHz and 50 GHz channel spacing 

systems. Similarly, the BER performance of 50 GHz is better than that of 25 GHz. The performance gap 

between systems can be attributed to crosstalk between adjacent channels, which causes the BER for WDM 

systems to degrade steadily. Furthermore, when the nonlinear effect increases in WDM systems, the optimum 

optical power required to launch in fiber decreases, resulting in a shorter transmission connection. Briefly, as 

the distance between adjacent channels reduces, more channels can be sent within a restricted bandwidth, and 

the system’s SE rises; extra crosstalk and phase shift effects occur, leading to additional bits error and short 

transmission length. 
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(a) (b) 
 

Figure 5. Optical spectrum of 50 GHz channel spacing WDM system at (a) transmitted end and (b) received end 

 

 

  
  

(a) (b) 
 

Figure 6. Optical spectrum of 25 GHz channel spacing WDM system at (a) transmitted end and (b) received end 

 

 

  
  

Figure 7. BER vs launching power for single channel 

and multi-channel with different channel spacing at 

center channel of 193.1 THz 

Figure 8. Effect of OSNR level on BER for single 

channel and multi-channel system with different 

channel spacing 
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Figure 8 depicts the BER’s reliance on received OSNR of center channel = 193.1 THz for a 

single-channel back-to-back and over 718 km link systems. Irrespective of the number of channels delivered, 

the graph shows that increasing OSNR improves the system’s BER for B2B and SSMF transmission. 

Furthermore, the OSNR tolerance for the desired BER = 0.033 seems lower in the 25 GHz WDM system. 

This appears to be in accordance with the concept that the needed OSNR for a WDM system is inversely 

proportional to the distance between adjacent channels. As a result, the WDM system delivering extra 

channels within limited bandwidth should have a narrower spacing value with a higher OSNR level. 

The required OSNR to reach a BER of 0.033 for single-channel B2B transmission and over 718 km link is 

22 dB and 23 dB, respectively. On the other side, the required OSNR over SSMF transmission for 100 GHz, 

50 GHz, and 25 GHz channel spacing WDM systems has risen to 23.7 dB, 24.3 dB, and 25 dB, respectively. 

The results show that a single channel system has a minor OSNR requirement, followed by 

100 GHz, 50 GHz, and 25 GHz channel spacing WDM systems, respectively. That difference in OSNR 

tolerance on desired BER is due to the decreased spacing between adjacent channels, increased crosstalk, and 

phase shift effects, restricting the detectability to retrieve the information accurately. Table 5 displays the 

constellation diagrams with eye diagrams for single-channel and WDM systems at SSMF transmission. 

According to the above analyses, the WDM system with 25 GHz channel spacing has the best SE 

but a lower transmission length ability. We will do additional research on 25 GHz channel spacing to see if 

we can get a longer distance with higher transmission performance while keeping the SE high. The G.654.E 

fiber will be the alternative for this enhancement in this investigation. 

Figure 9 compares the maximum transmission reach over SSMF and G.654.E fiber versus the 

optical power necessary to meet FEC BER. Compared to SSMF, the G.654.E fiber offers a longer transmission 

distance over a greater input power level. The G.654.E has an adequate launch power of -4.5 dBm, which is 1 dB 

higher than the SSMF’s. The variation in the effective area between G.654.E fiber and SSMF accounts for this 

increase. The large area fiber helps distribute optical power in the core and reduces optical power density in 

the center, which should not exceed a certain threshold. Another meaning, additional optical power disperses 

along with a wider core and collects before the nonlinear threshold is reached. 

Figure 10 describes the relation between OSNR and transmission range for an 800 Gb/s WDM 

PDM-CO-OFDM-16QAM system with 25 GHz channel spacing over SSMF and G.654.E fiber. We can 

observe that the OSNR value at the receiving point drops as the range expands for both fiber types. For all 

transmission distances, the G.654.E fiber has a 2 dB higher OSNR than SSMF. This increase can be 

attributed to a 1 dB gain in launching power and a 1 dB reduction in span loss. Consequently, G.654.E fiber 

can deliver an extended transmission range while improving performance. Compared with SSMF, the G.654.E 

fiber gives a clearer constellation plot and a broader opened eye diagram, as shown in Figure 10 and Figure 11, 

respectively. 

 

 

  
  

Figure 9. Launched optical power required to reach 

maximum distance with BER = 0.033 for 800 Gb/s 

WDM PDM-CO-OFDM-16QAM system over SSMF 

and G.654.E Fiber link at center channel of 193.1 THz 

Figure 10. Received OSNR vs transmission distance for 

800 Gb/s WDM PDM-CO-OFDM-16QAM system over 

SSMF and G.654.E fiber at center channel of 193.1 THz 

(inset: received constellation plot) 

 

 

Table 6 compares related works. It was determined that our system outperformed previous attempts in 

terms of spectral efficiency. In contrast to those other works, ours had a maximum SE of 4 bit/sec/Hz at 25 GHz 

channel spacing over a suitable long-haul range. 
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Table 5. Received constellation plots with eye diagrams for (8×100) Gbps WDM PDM-CO-OFDM-16QAM 

for different channel spacing and single-channel after 718 km link at center channel of 193.1 THz 

 

 

Table 6. Comparison between our work with previous works 

Technology Capacity 
Δ𝜈𝑐ℎ 

(GHz) 

SE 

(bit/sec/Hz) 
BER at center channel 

Maximum 

reach (km) 

WDM CO-OFDM-4QAM [24] 20 𝜆 × 50 Gbps 50 1 1 × 10−2 1800 

WDM PDM-CO-OFDM-QPSK [25] 16 𝜆 × 100 Gbps 50 2 1 × 10−3 1440 

WDM PDM-CO-OFDM-16QAM [26] 8 𝜆 × 100 Gbps 50 2 1 × 10−12 480 

WDM CO-OFDM-4QAM [27] 4 𝜆 × 10 Gbps 50 0.2 1 × 10−4 600 

WDM CO-OFDM-16QAM [28] 4 𝜆 × 10 Gbps 100 0.1 2.9 × 10−3 120 

WDM CO-OFDM-4QAM [29] 4 𝜆 × 25 Gbps 50 0.5 0 120 

DWDM DP-DD-DQPSK [30] 64 𝜆 × 14 Gbps 100 0.14 − 720 

WDM PDM-CO-OFDM-16QAM (present work) 8 𝜆 × 100 Gbps 25 4 3.3 × 10−2 1271 

 
 

 
 

Figure 11. Eye diagram at receiver side for 25 GHz channel spacing WDM system after ten spans of G-654.E fiber 

System 
type 

𝛥𝜈𝑐ℎ 

(GHz) 

SE 
(bit/s/Hz) 

OSNR 
(dB) 

BER 
(dB) 

Eye diagram 
at receiver side 

Recovered constellation diagram at receiver 

X-polarization Y-polarization 

Single-

channel 
− 8 27 -2.19 

   

Multi-
channel 

100 1 26.5 -1.92 

   

Multi-

channel 

50 2 26 -1.77 

   

Multi-
channel 

25 4 25.5 -1.55 
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4. CONCLUSION 

This research proposed a multi-channel 800 Gbps transmission system that employs a mixture of 

PDM and CO-OFDM technologies to enhance spectral efficiency and reduce the connection effect. 

The performance of the proposed eight-channel WDM PDM-CO-OFDM-16QAM system over a 60 km 

SSMF span is investigated for different channel spacings. The research reveals that the WDM system with 

100 GHz channel spacing had the lowest OSNR need and the maximum transmission distance. On the other 

hand, the spectral efficiency of the 25 GHz channel spacing WDM system is the highest. Further, the impact 

of ultra-low loss with large effective area fiber on multi-channel PDM-CO-OFDM-16QAM system performance 

over 25 GHz channel spacing is examined, with results showing successive transmission of 800 Gbps traffic; 

over a distance of 1271 km. Fiber loss will decrease when ultra-low loss fiber with a large effective area is 

employed, and more optical power is available to control OSNR falls. As a result, as opposed to a system 

using SSMF, the G-654.E Fiber system achieved more transmission range and superior BER performance. 

For future work, a different number of transmitted channels (16 and 32 channels) through narrower channel 

spacing WDM System (12.5 GHz and even less) could be used in parallel with high order modulation 

formats (64-QAM,128-QAM, and 256-QAM) across G.654.E fiber for ultra-high data rate transmission over 

long haul distance. 
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