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 In human-robot interaction, sensors are relevant in guaranteeing stability and 

high performance in real-time applications. Nonetheless, accuracy and 

portable sensors for robots usually have high costs and little flexibility to 

process signals with free software. Therefore, we propose a wearable sensor 

network to measure lower limb angular position in human-robot interaction 

systems. The methodology employed to achieve the aim consisted in 

implementing a wireless network using low-cost devices, verifying design 

requirements, and making a validation via a proof of concept. 

The requirements to design the network include low loss of information, 

real-time communication, and sensor fusion to estimate the angular position 

using a gyroscope and accelerometer. Hence, the sensor network developed 

has a client-server architecture based on ESP8266 microcontrollers. 

In addition, this network uses the standard 802.11 b/g/n to transmit angular 

velocity and acceleration measures. Furthermore, we implement the user 

datagram protocol (UDP) protocol to operate in real-time with a sample time 

of 10 ms. Finally, we implement a proof of concept to show the system’s 

effectiveness. Thus, we use the Kalman filter to estimate the angular position 

of the foot, shin, thigh, and hip. Results indicate that the implemented sensor 

network is suitable for real-time robotic applications. 
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1. INTRODUCTION  

Stroke is considered a frequent neurological emergency and constitutes the second leading cause of 

death globally, with 12.2 million cases per year and 6.55 million losses per year, respectively [1], [2]. 

In addition, this disease has become the leading cause of long-term disability affecting daily life activities. 

Moreover, this medical condition entails a socioeconomic impact with high costs in initial medical care and 

enormous difficulties for patients who usually need treatment and rehabilitation.  

Research on robotics rehabilitation has put its efforts at the service of health. There are robots 

employed in human care, which are used to recover the activity of the locomotive systems of the human 

being. Examples of these technologies are exoskeletons and robotic platforms for rehabilitation [3]. In this 

sense, robots can support physical therapist work and help the user repeat training with a controlled and 

monitored intensity to promote neurogenesis and motor control [4]. Electronic instrumentation is an area to 

be applied in this type of robot, which is growing and contributes to diminishing the cost of the same, having 

a positive impact on society, and allowing for deeper studies or significant scientific contributions [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Commercially there are systems for acquiring kinematic and biomechanical signals used in robotic 

rehabilitation. However, these devices have high costs and little flexibility to process signals with free software. 

This article proposes a wearable sensor network to measure lower limb angular position in human-robot 

interaction systems. The network consists of three inertial measurement units (IMU) to determine limb 

acceleration and angular velocity. The angular position is estimated and processed by ESP8266 

microcontrollers. Furthermore, this sensor network uses the 802.11b/g/n standard for interconnection with a 

host by the user datagram protocol (UDP). Finally, we validate the system operation by a proof of concept, 

estimating the angular position through the Kalman filter. 

Industrial communications are used to supervise physical, chemical, and environmental variables, 

among others. In this kind of system, wired networks guarantee the integrity of the data. Therefore, nodes can 

work in a distributed way and using specific protocols, such as standard wired communication protocols: 

RS-485, highway addressable remote transducer (HART), Profibus, Ethernet, and Modbus. In robotic 

applications, the selection of communication systems is also given by guaranteeing data integrity. 

Nevertheless, the device’s portability plays an essential role in adjusting sensor networks with mechatronic 

devices. Currently, communication systems use several protocols for transferring information over wireless 

means with different bandwidths and frequencies of operation, highlighting communication protocols such as 

Bluetooth, Zigbee, and WiFi, among others [6], [7]. 

Wireless sensor networks include a set of devices to measure variables of a process and transmit 

them over small or long distances [8], [9]. Sensor networks are regularly provided with a server or a base 

station that serves as a reference point for receiving information, operating in most cases with homogeneous 

devices according to the nodal distribution. These nodes generally can process and store information and 

have various sensors. However, they do not necessarily have to be the same. Conventionally, nodes have 

sensors, controllers, communication modules, and microprocessors. Depending on the purpose of 

development, the processing applications will have varying levels of complexity, either to capture the 

information or to analyze it [10]. 

Around the world, there are prototypes and commercial systems that focus on motor rehabilitation 

using robotics. These robots use a wide variety of communication protocols for sensors. Biofeedback systems 

are widely used in patients with balance disorders due to vestibular loss, stroke, or aging. In addition, patients 

often undergo continuous balance training regimens with the help of biofeedback systems that can effectively 

increase postural stability. For example, Alahakone and Senanayake [11] employ a wireless inertial sensor 

for trunk tilt angle measurements, a complete software with an interface for data acquisition, processing, and 

visualization. The system allows video recording, feedback signal generation, data analysis, and portable 

vibrating actuators to provide feedback. In [12] developed the inertia-based detection modality with increased 

biofeedback to study trunk swing and a training protocol for clinical evaluation. In [13] show a wireless 

insole sensor biofeedback and gait analysis system to rehabilitate balance control for post-stroke patients. 

The system integrates a wireless network of home and open-source electronic healthcare sensors to be used 

with mobile devices. In [14] highlight ZigBee’s higher communication efficiency and lower power 

consumption. In addition, they show a comparison between ZigBee and Bluetooth serial port profiles for 

wireless body-area sensor networks. The system called Kimera is a portable brain-computer interface (BCI) 

with wireless information transfer mechanisms that consists of two layers of hardware architecture, data 

acquisition, and wireless transmission by a Bluetooth ARM chip [15]. In [16] present a wearable multi-sensor 

system for human motion monitoring for use in rehabilitation. This system integrates five small wireless 

modules, interconnected with accelerometer data at high frequency, synchronized by an external master 

device, making the system ideal for patient monitoring. Wireless biomedical implants are the subject of 

research in wireless body area networks (WBAN). For example, the incremental relaying communication 

protocol based on mutual information (MI) is presented [8]. The communication path selection is given by 

the deeply implanted and the receiver distance. The results show that the MI-based incremental 

retransmission technique achieves better performance compared to other proposed techniques. In [17] show a 

study to validate the accuracy of the inertial measurement unit-based knee angle measurement system during 

physiotherapy exercises. The used system has a mobile application for recording these data. 

Robots for rehabilitation must measure biosignals to promote motor control and safe in human-robot 

interaction. In this context, sensors must couple on the robot and the human and transfer data by a network. 

There are several examples of this: the robotic training system for upper limb rehabilitation counts with an 

exoskeleton that allows the therapist to modify the patient’s routine. The robot supports various trajectories 

and repetitions followed by the exoskeleton in the shoulder, elbow, and wrist joints. The robot has sensors for 

angular position and electromyographic (EMG) signals and a user interface developed in LabView [18]. 

NOTTABIKE is a robot designed to investigate and promote lower limb motor control by using a platform 

that owns a bike for exercise. This device has a servo motor, angular encoders, pedals, force-torque sensors, 

and an EMG system [19]. In [20] shows the design and control of an active knee orthosis driven by a rotary 

series elastic actuator (SEA).  
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The custom rotary SEA is responsible for driving an active knee orthosis and allowing the torque 

measurement. Then, the user attaches the robot to its body and executes controlled movements [21]. The system 

robotic platform for ankle rehabilitation uses a SEA for control and force measurement, a sensor for the angular 

position, and EMG. In [4], [22] introduce a Markovian force and impedance control for human-robot 

interaction in this type of robot. The exoskeleton reported in [23] is a mechatronic device to assist in passive 

physiotherapy. The robot follows computer-generated trajectories of knee and ankle joints. Peña et al. [20] 

propose an EMG-driven adaptive impedance control to improve user engagement during the rehabilitation 

session by considering an active knee orthosis. Another example of EMG sensing where Sartori et al. [24] 

used EMG data to build a musculoskeletal model to predict stiffness in the human ankle and knee joints. 

The contribution of the estimation of angular positions in robotic rehabilitation improves the 

performance and efficiency of therapies. Some research has used the Kalman filter for this aim. In [25] is 

shown a standard angular estimation approach by Kalman filters for lower limb exoskeletons for inertial 

measurement unit (IMU) based on individual link configurations. In [26], introduce a global approach to 

estimate absolute angles of the lower limb segments by the Kalman filter. This approach uses inertial sensors 

and the exoskeleton encoder facilitating gait analysis and exoskeleton control. 

 

 

2. METHOD 

2.1.  Communication topology 

Figure 1 shows the overall configuration of the proposed network sensors. The system uses three 

nodes, each with the inertial measurement unit (IMU) sensor and a microcontroller with a communication 

wifi module. The sensors are located at the foot, shin, femur, and hip height and transmit sensors data to a 

server implemented in a microcontroller. The communication system uses the UDP protocol to transfer the 

information to a computer that stores the data in files for collection and processing. 

UDP protocol is in the transport layer of the open systems interconnection model (OSI model) and can 

be used according to standard 802.11. The protocol provides a datagram exchange service over the network; 

therefore, it cannot ensure the delivery of datagrams or packets. In this project, the UDP protocol was selected 

since it is not possible to carry out measurement retransmissions due to the strict delay requirements of the 

system. Each node (is to say, the clients) counts with an inertial measurement unit MPU6050 and an ESP8266 

microcontroller, which has an 802.11 communication module. Besides, the server uses an ESP8266 

microcontroller to establish wireless communication and send the data to the computer by a USB wire. Notice 

that the information sent from sensors in UDP datagrams does not establish a two-way connection to the server 

since we are looking for real-time one-way and not the arrival confirmation. Figure 2 shows the workflow to 

save data from the sensors. First, devices are started. The following is to establish the connection between nodes 

and the server. Then to accomplish this requirement, there is a timeout condition for server response until 30 s. 

Once establish this connection each sensor is linked and begins data detection, and data values are saved. 

 

 

 
 

Figure 1. The overall configuration of the proposed network sensors 
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Figure 2. Workflow to save data from the sensors 
 
 

2.2.  Mathematical model of acceleration and angular velocity 

IMU are attached to each segment of the body as shown in Figure 3. The angular velocity in each 

limb is modeled as: 
 

�̇�(𝑡) = 𝜃�̇�(𝑡) + 𝑏𝑔(𝑡) + 𝜂𝑔(𝑡) (1) 
 

�̇�(𝑡) = −
1

𝜏𝑔
𝑏𝑔(𝑡) + 𝜂𝑏𝑔(𝑡) (2) 

 

Where 𝜃�̇�(𝑡) is the measurement angular velocity from the gyroscope, 𝜂𝑔(𝑡) is the Gaussian noise with 

variance 𝜎𝑔
2,  𝑏𝑔(𝑡) representing the bias of the gyroscope, 𝜏𝑔 is the Markov process correlation time and 𝜂𝑏𝑔 

is the white Gaussian noise with variance 𝜎𝑏𝑔
2 . 

 
 

 
 

Figure 3. Location of IMU 
 

 

The acceleration of each link, 𝑎(𝑡), in an instant of time, 𝑡, is modeled as: 
 

𝑎(𝑡) = 𝑎𝑎(𝑡) + 𝑏𝑎(𝑡) + 𝜇𝑎(𝑡) (3) 
 

�̇�𝑎(t) = −
1

τa
ba(t) + μ𝑏𝑎(t) (4) 

 

Where 𝑎𝑎(𝑡) is the acceleration obtained from the accelerometer on the 𝑥-axis of the local coordinate system, 

𝜇𝑎(𝑡) is the Gaussian noise with variance 𝜎𝑔
2, 𝑏𝑎(𝑡) is the bias of the accelerometer, 𝜏𝑎 is the Markov process 

correlation time and 𝜇𝑏𝑎(𝑡) is white Gaussian noise with variance 𝜎𝑏𝑎
2 . 

 

2.3.  Strategy for sensor fusion 

In this section, the angular position estimation of each link is obtained from sensor fusion, using 

measures of acceleration and angular velocity. In this paper, the selected method to make sensor fusion is the 

Kalman filter. This filter uses the gyroscope signal as the primary source for position estimation. The 

accelerometer signal is considered redundant information to correct the estimated value of the gyroscope that is 

affected by integration errors. The angular velocity estimated by the gyroscope and the bias are modeled as: 
 

�̇̂�𝑔(𝑡) =  �̇�𝑔(𝑡) + �̂�𝑔(𝑡) (5) 
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�̇̂�𝑔(𝑡) = −
1

τ𝑔
 �̂�𝑔(𝑡) (6) 

 

Therefore, the difference between actual and estimated values is: 

 

Δθ̇(𝑡) = θ̇(𝑡) − θ̇̂(𝑡)  

            = 𝑏𝑔(𝑡) − �̂�𝑔(𝑡) + η𝑏𝑔(𝑡)  

            = Δ𝑏𝑔(𝑡) + η𝑏𝑔(𝑡)  (7) 

 

And, 

 

Δ�̇�𝑔(𝑡) = �̇�𝑔(𝑡) − �̇̂�𝑔(𝑡)  

              = −
1

τ𝑔
(𝑏𝑔(𝑡) − �̂�𝑔(𝑡)) + η𝑏𝑔(𝑡)  

              = −
1

τ𝑔
Δ𝑏𝑔(𝑡) + η𝑏𝑔(𝑡)  (8) 

 

Thus, the state space representation of the estimation system is given by: 

 

[
Δθ̇(𝑡)

Δ𝑏�̇�(𝑡)
] =  [

0 1

0 −
1

τ𝑔

] [
Δθ(𝑡)

Δ𝑏𝑔(𝑡)
] + [

1 0
0 1

] [
η𝑔(𝑡)

η𝑏(𝑡)
] (9) 

 

�̇� = 𝐴𝑥(𝑡) + 𝐵ω(𝑡) (10) 

 

Where 𝛥𝜃(𝑡) and Δ𝑏𝑔(𝑡) are the position estimation and offset errors of the gyroscope, respectively. The 

states of the systems are 𝑥, 𝜔 is the white Gaussian noise, and 𝐴 and 𝐵 are parametric matrices that represent 

the model (9). The angular position obtained from the accelerometer is given by: 

 

�̂�𝑎(𝑡) = arcsin (
𝑎𝑎

𝑔𝑒
) = θ(𝑡) + η𝑎(𝑡) (11) 

 

Where 𝑔𝑒 is the gravitational acceleration value on the 𝑥 axis. Notice that no is considered dynamic 

accelerations. The output equation of the state space representation is given by the difference between the 

estimated position of the accelerometer and the estimated position of the gyroscope. 

 

𝑧(𝑡) = �̂�𝑎(𝑡) −  �̂�𝑔 (𝑡),  

         =   𝜃(𝑡) +  𝜂𝑎(𝑡) − �̂�𝑔(𝑡) (12) 

         = Δθ(𝑡) + η𝑎(𝑡).  
 

Thus, the estimated values for the angular position and gyroscope error are given by: 

 

𝑧 = 𝐶𝑥(𝑡) + 𝑣(𝑡) = [1 0] [
Δθ(𝑡)

Δ𝑏𝑔(𝑡)
] + η𝑎(𝑡) (13) 

 

θ̂(𝑡) = �̂�𝑔(𝑡) + Δ�̂�(𝑡) (14) 

 

�̂�(𝑡) = �̂�𝑔(𝑡) + Δ�̂�𝑔(𝑡) (15) 

 

Where 𝐶 is a parametric matrix, 𝑣 represent a random error, and Δ�̂�(𝑡)and Δ�̂�𝑔(𝑡) are estimated angular 

position values and compensation errors, respectively.  

 

 

3. RESULTS AND DISCUSSION 

To validate the developed system, we made a test where a user walked for a straight line of 10 meters. 

The test had an approximate duration of 12 seconds. The trial started once the communication system was 

linked by wifi to the UDP server. Sensors were located at the foot, shin, femur, and hip height, as is shown in 

Figure 4(a) and Figure 4(b) shows the electronic device for each node. 
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(a) (b) 
  

Figure 4. Test for system validation: (a) ten meter test and (b) node 
 
 

3.1.  Angular position estimation using Kalman filter 

To validate the system, we perform a proof of concept. For this proof, a healthy user walked for ten 

meters while the sensors network transmitted each limb’s acceleration and angular velocity. Furthermore, we 

compared the estimation results from the Kalman filter with the estimation given by a complementary filter. 

For the calculation of the angular position from the speed measurement performed by the gyroscope, it is 

necessary to consider the resolution of the sensor. Therefore, the following conversion factor is used: 
 

𝐺𝑅 =
2𝑛

250𝑜/𝑠
 (16) 

 

Where 𝑛 = 16 is the number of bits used by the sensor, and 250 is a parameter taken from the sensor 

datasheet. Therefore, 𝜔(𝑘) =  �̅�(𝑘)/𝐺𝑅, where ω̅ is the gyroscope measure. The angular position can be 

performed from the following integrative recursion. 
 

θ𝑥𝑔(𝑘) = τ𝑠ω(𝑘 − 1) + θ𝑥𝑔(𝑘 − 1) (17) 
 

We use a sample time 𝑇𝑠 = 10 ms. Figure 5 shows the 𝜃𝑥𝑔(𝑘) angle estimation for the foot sensor 

during the experiment. We highlight that the velocity integration of the gyroscope causes an angular bias. 

For the calculation of the angular position from the measurement of the acceleration performed by the sensor, 

the resolution of the sensor should be considered, therefore the following conversion factor is used: 
 

𝐴𝑅 =
2𝑛

4×9.81𝑚/𝑠2  (18) 

 

Where 𝑛 = 16 is the number of bits used by the IMU, and 𝑔 = 9.81 m/s2 is the gravity. Thus, 

𝑎𝑥(𝑘) = �̅�𝑥(𝑘)/𝐴𝑅, where �̅�𝑥 is the acelerometer measure. The angular position relative to the 𝑥-axis can be 

estimated according with (11), as: 
 

𝜃𝑥𝑎 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑎𝑥/𝑔) (19) 
 

Figure 5 shows the result of estimating the angle from accelerometer signal 𝜃𝑥𝑎. From the bottom 

figure, it is appreciated that, although the signal has no bias, it is characterized by a large amount of noise. 

This graph shows the need for sensory fusion to perform a more accurate angular position calculation. 

The angular estimation by the Kalman filter consider the model described in (9) and (13), where 

𝛥𝜃(𝑡) = �̂�𝑎(𝑡) − �̂�𝑔(𝑡), is the difference between the angle calculated from the accelerometer and the angle 

calculated from the gyroscope. The noise produced in the acceleration measurement is modeled by 𝜂𝑎(𝑡). 

The 𝑄𝑛 and 𝑅𝑛 are weighting matrices that represent the noise covariance in the states and output signal of 

the model according to: 
 

𝑄𝑛 = [
𝜎𝑔

2 0

0 𝜎𝑏𝑔
2] ,    𝑅𝑛 =  𝜎𝑎

2  (20) 
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The parameters of the model in (9), (13), and (20) are shown in Table 1. The angular position 

estimation for each sensor is performed according to Kalman’s classic filter equation: 
 

�̂�(𝑘 + 1) = 𝐹�̂�(𝑘) + 𝐿(∆𝜃(𝑘) − 𝐶�̂�(𝑘)) (21) 
 

Where �̂�(𝑘) = [𝛥�̂�(𝑘) 𝛥�̂�𝑔(𝑘)]
′
 are the states estimated by the Kalman filter, 𝐹 is the equivalent of matrix 𝐴 

for the discrete-time with the sample-time 𝑇𝑠, 𝑘 is the discrete-time iteration and 𝐿 is de Kalman vector. 

Finally, the estimate of the angular position using sensory fusion is calculated in (22) and Table 2. 

shows the Kalman vector for each link. 
 

�̂�(𝑘) = 𝜃𝑥𝑔(𝑘)  +  ∆�̂�(𝑘|𝑘) (22) 
 

Figure 6 shows the result of the proof of concept developed to validate the sensor network. Each figure 

at the top shows signals for ∆𝜃 (blue) and ∆�̂� (red) used to estimate the angle of the respective link. At the 

bottom, each figure shows the estimation by the Kalman filter (KF in blue color) compared to a standard 

complementary filter (CF in red color). Angular position estimations for foot, shin, thigh, and hip are shown in 

Figure 6(a) to Figure 6(d) respectively. In this experiment, results indicate that for ten-meter walking test is clear 

that the two estimates are similar. However, the estimates obtained with KF result in lower amplitude peaks. 
 

 

 
 

Figure 5. Estimation of the foot angular position by gyroscope and accelerometer signals 
 

 

Figure 6(a) shows the result of estimating the angle of the foot. The sensor was placed on the user’s 

shoe so that the starting angle is -18.8° relative to the 𝑥 coordinate axis. The maximum and minimum angular 

position values obtained with the Kalman filter were 8.62° and -52.36°, respectively. The maximum and 

minimum angular position values obtained with the complementary filter were 16.76° and -61.48°, 

respectively. Figure 6(b) shows the result of estimating the angle of the shin. The starting angle is 80.5° 

relative to the 𝑥 coordinate axis. The maximum and minimum angular position values obtained with the 

Kalman filter were 103.96° and 25.8°, respectively. 

The maximum and minimum angular position values obtained with the complementary filter were 

16.76° and -61.48°, respectively. Figure 6(c) shows the result of estimating the angle of the thigh. The starting 

angle is 67.5° relative to the 𝑥 coordinate axis. The maximum and minimum angular position values obtained 

with the Kalman filter were 80.4° and 45.59°, respectively. The maximum and minimum angular position 

values obtained with the complementary filter were 82.66° and 38.51°, respectively. Figure 6(d) shows the 

result of estimating the angle of the hip. The starting angle is 59.22° relative to the 𝑥 coordinate axis. 

The maximum and minimum angular position values obtained with the Kalman filter were 65.73° and 

49.14°, respectively. The maximum and minimum angular position values obtained with the complementary 

filter were 67.51° and 46.82°, respectively. 
 

 

Table 1. Parameters for Kalman filter calculation for each inertial sensor 
Kalman filter 𝜎𝑔 𝜎𝑏𝑔

 𝜎𝑎 𝜏𝑔 

Hip 0.0103 30 46.56 839.7 

Thigh 0.0017 50 329.08 2138.5 
Shin 0.0008 96.4 100.94 1465.3 

Foot 291.2 18.594 291.29 3567.5 
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(a) (b) 
  

  

  

  

(c) (d) 
  

Figure 6. Results of estimating angular position for: (a) foot, (b) shin, (c) thigh, and (d) hip 

 

 

Table 2. Kalman vector for each link 
Kalman filter Kalman’s constant: 𝐿 

Hip [
0.0137
0.0006

] 

Thigh [
0.0055
0.0015

] 

Shin [
0.0138
0.0095

] 

Foot [
0.0113
0.0064

] 

 

 

4. CONCLUSION  

This article shows a sensor network for angle estimation of lower limbs. We highlight that this network 

configuration is proper for robotic rehabilitation environments since devices are wearables and wireless. This 

network has an ESP8266 microcontroller for processing and communication in each node. The communication 

between nodes and the server is carried out by the standard 802.11 b/g/n. We use the client-server architecture 

with UDP protocol which allows a sample time of 10 ms. The Wi-Fi use allows an intuitive connection and 

stable communication between nodes and the server. We performed a proof of concept to validate the 

implemented sensor network and used the Kalman filter to estimate the angular position of the foot, shin, 

thigh, and hip. The Kalman filter allowed sensor fusion from angular velocity and acceleration measurements 

by the MPU6050 in each node. In this sense, the Kalman filter estimates the angle error due to the numerical 

integration of angular velocity given by the gyroscope. Also, it diminishes the noise from the angular position 

coming from the accelerometer. Therefore, we compensate the actual measurement to obtain an accuracy 

angle. Results show that this sensor network is suitable for real-time robotic applications. In future works, we 

hope to use this sensor network to combine kinematic and electromyographic signals in applications for 

rehabilitation. 
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