588

An Optimum Database for Isolated Word in Speech Recognition System

Syifaun Nafisah^{*1}, Oyas Wahyunggoro², Lukito Edi Nugroho³

^{1,2,3}Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada ¹Department of Library and Information Science, Islamic State University Sunan Kalijaga Yogyakarta, Jalan Grafika No. 2, Yogyakarta 55281, 62 274 552305

*Corresponding author, e-mail: syifaun@yahoo.com¹, oyas@ugm.ac.id², lukito.nugroho@gmail.com³

Abstract

Speech recognition system (ASR) is a technology that allows computers receive the input using the spoken words. This technology requires sample words in the pattern matching process that is stored in the database. There is no reference as the fundamental theory to develop database in ASR. So, the research of database development to optimize the performance of the system is required. Mel-scale frequency cepstral coefficients (MFCCs) is used to extract the characteristics of speech signal and backpropagation neural network in quantized vector is used to evaluate likelihood the maximum log values to the nearest pattern in the database. The results shows the robustness of ASR is optimum using 140 samples of data reference for each word with an average of accuracy is 99.95% and duration process is 27.4 msec. The investigation also reported the gender doesn't have significantly influence to the accuracy. From these results it concluded that the performance of ASR can be increased by optimizing the database.

Keywords: Optimum, Database, ASR, Backpropagation, MFCCs

Copyright © 2016 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

An automatic speech recognition (ASR) uses the process and related technology for converting speech signals into a sequence of words or other linguistic units using an algorithm which was embedded as a computer program. Speech understanding systems presently are capable for vocabularies of thousands of words in operational environments. ASR has some ability for special purposes such as a machine translation. Now, ASR was armed with vast amounts of example translations and powerful computers to proving a significant progress for achieving the dream. The one algorithm for constructing an automatic machine translation system is using statistical analysis of bilingual parallel corpora. It is the best algorithm, part of speech (PoS) is used as feature to improve the quality of this machine [3]. In this study, the experiments were conducted on long sentence (30 words). The results show that the average of increase in accuracy of the translation uses grammar PoS on before the use of PoS is 2.23%. The accuracy is increases about 4.13% or the accuracy is achieving up to 6.45% when the machine using PoS computing.

ASR consists of two major steps. First, DSP-style operations to convert the signal from analog to digital and the signal will extracted to get the key feature vectors. The key feature vectors are passed into pattern matching phase. In this step, ASR requires the data samples that are stored as database. Although this technology has been widely used, it still requires human review and intervention to ensure the accuracy rate of up to 100%. Several studies have documented that error rates are for vocabulary sizes of 200 is 3%, 5000 is 7% and more than 100000 is 45% [4]. Rabiner and Juang (2006) also explained word error rates for range of ASR such as described in Table 1 [5].

There are some methods to improve the performance of ASR. The normalized Euclidian distance can be used as a method for matching process. In this method, the recognition process was performed using the nearest neighbor and sum of absolute error. Overall, the accuracy of the method is 96.36% [5]. Hidden Markov model (HMM) is also the widely used method in speech recognition. However, the accuracy using HMM was strongly influenced by the optimalization of extraction process and modelling methods. The experiments

on the hybrid HMM-genetic algorithm (GA) to optimizing the Baum-welch method in the training process increase the accuracy from 20% to 41%. It is proved that these combinations give more optimal results than HMM method [6]. Linear predictive Coding (LPC) and dynamic time wrapping (DTW) also ever used as a technique in the matching process. The conclusion is state that these techniques are useful for Speaker Dependent & Speaker Independent in ASR [7]. Other method that is used to recognize the speech so that the system becomes faster, efficiently and accurately is combination between mel frequencies cepstral coefficients (MFCCs) and distance minimum techniques. Based on the experiments, it found that these combinations give the best performance results accurately in most of the cases with an overall efficiency of 95%. The study also reveals that the HMM algorithm achieves the effeciency of the system up to 98% to identify the most commonly used isolated word [8].

•••	There enter faces for a re	ange er epecen recegin ach	,
	Vocabulary size	Word Error Rate	
	11	0.3% - 5.0%	
	1000	2.0%	
	2500	2.5%	
	64000	6.6%	
	210000	~ 15%	
	28000 - 45000	~ 27% - 35%	

Table 1. Word error rates for a range of speech recogni tion systems

Will speech-processing system ever reach human transcriber accuracy? Realistically, this will not happen. Wankhede *et al.* determined the dimension that affect the accuracy of speech recognition system. These dimensions are vocabulary size, confusability of word, dependence/independence speaker, isolated/discontinuous/continuous speech, read/spontaneous speech and adverse conditions [4]. It will produce a various pattern in data reference in database. The various pattern in database makes the training phase is difficult to do when tested using various sample groups. How to minimize the effects of these dimensions in database is becomes a chore that is constantly scrutinized by research in ASR. Based on this consideration, this paper will present the proposed method by developing an optimum database to produce the robustness speech recognition system in order to generate recognition accuracy approaching 100%.

2. Proposed Method

The main goal of this study is to develop the database for isolated word. The investigation covers how many data speech and the impact of gender in the database to improve the accuracy of ASR. It includes the algorithm that will be used in the development of database for data reference. The block diagram in the Figure 1 shows the proposed model.

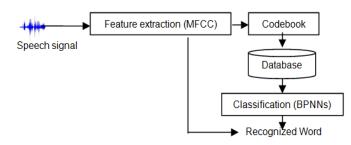


Figure 1. Block Diagram of System

3. Research Method

3.1. Speech Data Selection

In this section, the steps was involved to develop a database in ASR was detailed. The database was compiled by 30 respondents that is consisting of 20 male and 10 female

speakers. First, the recording process was done to acquire data that was constructed using isolated word in Indonesian language. The recording must be clean with minimal background disturbance. Any mistakes made while recording have been undone by re-recording or by making the corresponding changes in the transcription set. To ensure the minimal disturbances, the process was performed in a sound treated audiometric booth using vocal microphone PG48-LC, mini mixer EuroRack UB1002FX that was connected to computer. The distance between the mouth to microphone was carefully maintained at one inch from the left hand corner of the mouth and duration of pronounciation for each word about two second [9]. The data testing was arouped into four dataset and will tested using the combination such as shown in Table 2.

Table 2. The combinations of data set						
Combination	Training set	Testing set	Combination	Training set	Testing set	
1	Set I	Set II	6	Set II	Set IV	
2	Set I	Set III	7	Set III	Set I	
3	Set I	Set IV	8	Set III	Set II	
4	Set II	Set I	9	Set III	Set IV	
5	Set II	Set III				

Set I consists of the males data speech, Set II is females data speech and Set III is combination between males and females speakers. Set I, II and III are the speakers who fill as data reference in the database. Set IV consist of combination between males and females speakers who is not fill the database as data reference. All of the data set will tested by other data set to evaluate the accuracy of the system. The speaker ranging from 15-22 years of age. They asked to utters a set of words in a normal manner which the utterance was repeated 12 times in a low-noise environment to reduce acoustic interference and only the first eight repetitions were used in the training/testing phase [10]. The data was segregated individually and stored as *.wav files using Cool Edit Pro 2.0. The set of word are listed in Table 3.

No		the	e variation of words		
NO	Family Members (1)	Numbers (2)	The name of city (3)	Noun (4)	Human body (5)
1	a-yah	sa-tu	ja-kar-ta	ro-ti	ma-ta
2	i-bu	du-a	ban-dung	na-si	gi-gi
3	a-dik	ti-ga	se-ma-rang	ke-ju	pi-pi
4	ka-kak	em-pat	yog-ya-kar-ta	bo-la	hi-dung
5	sa-ya	li-ma	su-ra-ba-ya	to-pi	ta-ngan
6	ne-nek	e-nam	den-pa-sar	bu-ku	ka-ki
7	ka-kek	tu-juh	ma-ka-sar	me-ja	le-her
8	bi-bi	de-la-pan	me-dan	kur-si	pung-gung
9	pa-man	sem-bi-lan	pon-ti-a-nak	pin-tu	ping-gang
10	sa-u-da-ra	se-pu-luh	jem-ber	sen-dok	bi-bir

3.2. Feature Extraction

The first step in feature extraction process is segmented the signal to get specific parts of the utterances by listen the wave file of each data to look the boundary of the specific parts, then cut the wave file to extract the specific parts manually. For example, the word 'Pintu', will cut into 'Pin' and 'Tu' waves files. Another sample is the word 'Jakarta' will segmented into 'Ja', 'Kar' and 'Ta' From the recording process, this study have 13230 final words, and after the segmentation step, from 13230 final words, there are 26850 wave files as data reference in the database such as described in Table 4.

Table 4.	The final words of data speech				
Speech Data	Utterances	Segmented Files			
Female	8380	17900			
Male	4850	8950			
Total	13230	26850			

In this process, the MFCCs was used for acoustic features because it takes human perception sensitivity with respect to frequencies. Figure 2 shall explain the step-by-step computation of MFCCs in this investigation [11-12].

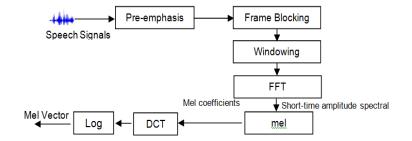


Figure 2. Block Diagram of Speech Analysis Procedure

3.2.1. Pre-emphasis

The 1st step in MFCC algorithm is send the speech signal s(n) to a high-pass filter using the following equations:

$$s_2(n) = s(n) - a * S(n-1)$$
 (1)

Where $s_2(n)$ is the output signal and the value of *a* which used in this study is between 0.9 and 1.0. The z-transform of the filter is:

$$H(z) = 1 - a * z^{-1} \tag{2}$$

The goal of pre-emphasis is to compensate the high-frequency part that was suppressed during the sound production mechanism of humans. The result of this process will be used as the input in the frame blocking process.

3.2.2. Frame Blocking

After the pre-emphasis process, the signals were segmented into frames. In this study, the sample rate is 44.1 kHz and the frame size is 1024 sample points, so the duration is:

$$\frac{1024}{44100} = 0.02 \sec = 20 \, msec$$

Based on this caluculation, the speech data will segment during 20 msec with overlap 50% of each frame. If the overlap is 512 points, then the frame rate is:

$$\frac{44100}{(1024 - 512)} = 86.12 \, frames \, per \, second$$

In this process, the signals needed a zero padding process into the length value = 50000 as the nearest length of power of two frames.

3.2.3. Windowing

The next process is windowing all of the frames. In this step, each frame has to be multiplied with a function of window to keep the continuity first and last points of the frame. If the signal in a frame is denoted by s(n), n = 0, ..., N - 1, then the signal after windowing is:

$$s(n,a) = s(n) * w(n) \tag{3}$$

Where w(n) is the function of window. In this study, a rectangle window was chose as a function of window because it produces the highest accuracy than the other function such as presented in Figure 3.

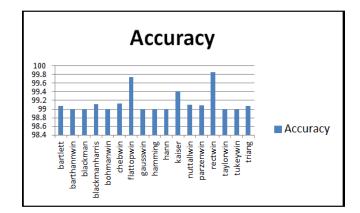


Figure 3. The accuracy based on the various function of windows

w(n) defined by:

$$w(n) = RECT\left[\frac{n}{0.97N}\right], 0 \le n \le N - 1$$
(4)

In practice, the value is set to 0.97. MATLAB also provides the command rectangle for generating the curve of a Rectangle window.

3.2.4. Fast Fourier Transform (FFT)

After windowing, spectral analysis shows that different timbres in speech signals corresponds to different energy distribution over frequencies. To obtain the magnitude frequency response of each frame, FFT was performed. In this process, the signal is assumed a periodic, and continuous when wrapping around. If this is not the case, the signals can still perform FFT but the incontinuity at the frame's first and last points is likely to introduce undesirable effects in the frequency response. To deal with this problem, the signals are multiply each frame by a rectangle window to increase its continuity at the first and last points. If the input frame consists of three identical fundamental periods, then the magnitude frequency response will be inserted two zeros between every two neighboring points of the frequency response is generally caused by the repeating fundamental periods in the frame. However, in this study, to extract envelop-like features, this step uses the triangular bandpass filters, as explained in the next step.

3.2.5. Mel

After the coefficients were kept, this investigation will compute the DCT of the log filterbank energies. There are two main reasons this is performed. The first reason is the filterbanks in this study are all overlapping and the second reason is the filterbank energies are quite correlated with each other. To compute the DCT of the log filterbank energies, the frequency of the signal should convert into Mel scale using the following equations:

$$M(f) = 2595\log_{10}(1 + f/700)$$

(5)

The result of this step is the diagonal covariance matrices can be used to model the features in the classifier. From this step, the matrices composed by 96 cepstral coefficients per feature which were consist of 47 MFCCs coefficients, 47 MFCCs delta features that indicate the degree of spectral change, one energy feature, and one delta-energy feature. In recognizer, Cepstral-mean-subtraction (CMS) of the MFCCs coefficients was done to remove some of the effects of noise.

3.2.6. Discrete Cosine Transform (DCT)

The next step is apply DCT on the 20 log energy E_k obtained from the triangular bandpass filters to have L mel-scale cepstral coefficients. The formula for DCT is shown next.

$$C_m = S_{k=1}^{N} \cos[m * (k - 0.5) * p/N] * E_k$$
(6)

Where N is the number of triangular bandpass filters, L is the number of MFCCs. In this step, the investigation set N=20 and L=12.

3.2.7. Log Energy

After mel-filter bank processing, log processing will be done. The energy within a frame is also an important feature that can be easily obtained. Hence this step adds the log energy as the 13rd feature to MFCCs.

3.2.8. Delta Cepstrum

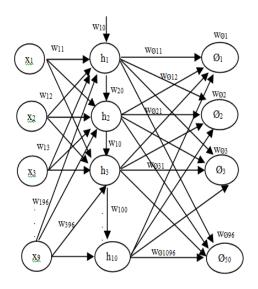
It is also advantagous to have the time derivatives of energy and MFCCs as new features, which shows the velocity and acceleration of both. The equations to compute these features are:

$$\Delta C_m = \left[S_{t=-M}{}^{M} C_m(t+t)t \right] / \left[S_{t=-M}{}^{M} t^2 \right]$$
(7)

The value of M is set to 2. In this study, this study add the velocity, the feature dimension is 26, so the acceleration, the feature dimension is 96-dimensional features for recognition.

3.3. Classifier

The final step of this study is send the features to the classifier. In this study, the BPNNs have 96 input nodes, 10 hidden nodes, and 50 output nodes which was trained using 4364 samples from each word. The architecture of classifier shown in Figure 4.



 $\begin{array}{c} 0.2 \\ 0.15 \\ 0.1 \\ 0.05 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array}$

Figure 4. 96-10-50 BPNNs Architecture

Figure 5. The MSE of recognizer using various numbers of hidden nodes

The experiments fixed that the number of hidden layer to ten. Figure 5 shows the Mean Square Error (MSE) of the utterance type recognizer with one hidden layer and various number of hidden nodes.

4. Results and Discussion

In the testing phase, 45 repondents had been tested to measure the performance of system. Of that number, 30 respondents are speakers who fill as data reference in the database, while 15 respondents are unrecognized speakers. The procedure of test using

593

scenario such as already shown in Table 1. All of the data was trained using the BPNNs algorithm. The number of iterations use an epoch that will be set as a variable. The variable was needed because the system iterated until all the errors were below the threshold of 0.5, or until the number of iterations reached 1,000,000. An epoch was trained with a fixed training set until all the errors that was produced by the data pairs were below a threshold. Every epoch comprised a variable number that were resulted by backpropagation iterations. The data testing will be tested using one respondent and the system will be calculated the accuracy and the number of respondent will be added to be two, three, etc until ASR is finding the number of respondent in the database which will produced the robust system for recognition. Based on the experiments, the result of the test shown in Table 5 and Table 6.

As explanation of Table 5 and Table 6, (1), (2), (3), (4) and (5) is the group of words that have been previously described in Table 2. Based on experiments in Table 4 and Table 5, the number of respondents in the database generates the difference of accuracy. For example, by using one respondent, the experiments noted that the average of accuracy that is produced by each group are 99.98%, 66.65%, 72.21%, 79.61% and 85.67%. The processing times are 13 msec, 10 msec, 14 msec, 12 msec dan 10 msec. Based on these values, the accuracy of system using one respondent is 80.82% on average and the average of duration of process is 11.8 msec.

The investigation noted the occurrence of fluctuations of the accuracy that occurs when the number of respondents in the database is increased. For example, when the number of respondents is increased up to six respondents, the accuracy has increased for all groups up to 90.48% with the duration of process is 20 msec on average, but this accuracy is not stable. It can be seen from the decrease in accuracy on some groups while the number of respondents is increased up to twelve respondents. The investigations noted that when data reference in database is increased up to twelve respondents, the accuracy of each groups are 99.98%, 83.31%, 83.31%, 88.87% and 79.61%. Based on this result, it can calculated the average of accuracy is 87.02% and the duration of process that is needed is 22 msec on average. In other words, there has been a decrease in accuracy by 3.46%.

The accuracy				∑ segmented	∑ data	Σ			
	Average	(5)	(4)	(3)	(2)	(1)	files	reference	respondent
	80.82	85.67	79.61	72.21	66.65	99.98	985	486	1
	90.87	99	88.84	99.98	66.56	99.98	1868	921	2 3
	87.02	79.61	88.87	83.31	83.31	99.98	2673	1317	
	85.81	72.21	89.21	83.82	83.82	99.99	3586	1767	4
	89.08	89.9	88.87	83.32	83.32	99.98	4493	2214	5
	90.48	65.71	99.99	86.71	99.99	99.99	5280	2601	6
	90.90	99	88.87	83.32	83.32	99.97	6163	3036	7
	95.45	90.71	99.96	86.67	99.96	99.96	7076	3486	8
	91.08	72.21	99.96	99.96	99.96	83.31	7977	3930	9
	91.16	66.67	99	99	93,52	99.97	8890	4380	10
	98.72	99	99.97	95.67	99.97	99	9803	4830	11
	87.02	79.61	88.87	83.31	83.31	99.98	10656	5250	12
	96.73	99	99.96	99	99.96	85.71	11563	5697	13
	91.10	99.98	88.88	83.32	83.32	99.98	12428	6123	14
	97.57	99	99.98	89.9	99.98	99	13341	6573	15
	99.95	99.98	99.96	99.96	99.89	99.98	14224	7008	16
	98.36	99	99.98	92.86	99.98	99.96	15107	7443	17
	96.73	90.9	99.94	99.98	92.86	99.98	16014	7890	18
	99.59	99	99.98	99.98	99	99.98	16927	8340	19
	99.31	97.64	99.98	99.94	99	99.98	17840	8790	20
	99.77	99.94	99.98	99.98	99.96	99	18681	9204	21
	97.56	99	99.97	90.91	99.96	97.98	19570	9642	22
	99.38	99	99.96	99.98	99.98	97.98	20483	10092	23
	99.58	99.97	99.96	99	99.98	99	21396	10542	24
	98.39	99.98	99.98	99.98	99	93	22309	10992	25
	98.10	99.96	99.98	99	93.91	97.64	23216	11439	26
	99.13	99.94	99.98	99.98	99.98	95.78	24111	11880	27
	99.95	99.98	99.96	99.98	99.97	99.87	25024	12330	28
	97.54	99.98	99.98	99.92	89.91	97.89	25937	12780	29
	99.54	99.98	98.86	99	99.96	99.89	26850	13230	30

Table 5. The accuracy of ASR

Σ no on on do not	∑ data	\sum segmented				essing	time	
∑ respondent	reference	files	(1)	(2)	(3)	(4)	(5)	Average
1	486	985	13	10	14	12	10	11.8
2	921	1868	13	13	13	13	15	13.4
3	1317	2673	13	13	15	13	15	13.8
4	1767	3586	14	25	25	21	22	21.4
5	2214	4493	15	13	15	15	10	13.6
6	2601	5280	17	23	23	21	16	20
7	3036	6163	17	10	10	12	26	15
8	3486	7076	21	17	21	22	19	20
9	3930	7977	22	19	22	15	21	19.8
10	4380	8890	24	18	18	20	27	21.4
11	4830	9803	26	27	26	20	18	23.4
12	5250	10656	23	18	17	25	27	22
13	5697	11563	27	16	13	22	12	18
14	6123	12428	26	23	42	15	21	25.4
15	6573	13341	13	32	27	40	23	27
16	7008	14224	28	26	28	28	27	27.4
17	7443	15107	42	105	105	84	67	80.6
18	7890	16014	36	42	106	42	156	76.4
19	8340	16927	42	143	143	109	89	105.2
20	8790	17840	42	56	56	51	37	48.4
21	9204	18681	156	142	135	144	138	143
22	9642	19570	143	87	103	167	93	118.6
23	10092	20483	132	156	167	132	89	135.2
24	10542	21396	156	101	108	136	106	121.4
25	10992	22309	143	91	106	196	123	131.8
26	11439	23216	101	167	104	78	88	107.6
27	11880	24111	140	67	197	54	105	112.6
28	12330	25024	142	136	156	67	56	111.4
29	12780	25937	98	104	165	101	83	110.2
30	13230	26850	147	107	145	54	108	112.2

Table 6. The duration of process

Table 5 and Table 6 shows that the ASR produces the robust system by using at least 7008 sample of utterance as data reference in the database. In this study, 7008 data samples were collected from 16 respondents and it produces the accuracy up to 99.95% with the duration of process is 27.4 msec. This study shows that the number of data samples in the database with a minimal amount of reference data as much as 7008 can produce a more reliable system. The Accuracy that is generated using the number of samples less than 7008 is 90.92% on average with the lowest accuracy is 80.82% and the highest accuracy is 98.86%. While accuracy using a data samples least than 7008 is 98.69%. The lowest accuracy is 95.94% and the highest accuracy reaches 99.95%. It means that if 50 words need 7008 sample of syllables to produce the robustness of ASR, so for each word, the system requires about 140 samples of syllables that are collected from 16 respondents.

The determination of an optimum database in this study is not only chosen based on accuracy. The duration of process also used as a consideration. It is used to determine whether the composition of database is reasonable to use in real applications. As can be seen in Table 6, the average time that is required to process the data in ASR were divided into two major groups based on the average of accuracy. The 1st group is a group using less than 7008 samples data and the 2nd group is a group using least 7008 samples. The study noted, the duration of the proces that is required of the 1st group is 19.1 msec while the 2nd group is 103 msec on average. It can be concluded that the accuracy of 1st group lower than 2nd group but the processing time that is needed by 1st group faster than 2nd group. The investigations also noted that the system would be more reliable both in accuracy and duration of process on the number of data samples as much as in 7008 for all types of isolated words. The resulting accuracy is 99.95% with the duration of the process is 27.4 msec on average. After the number of respondent is known, the next step is find out the impact of gender in database. The experiments noted that the impact of gender to the accuracy is presented in the Table 7.

Table 7. The im	Table 7. The impact of gender to the accuracy					
Gender of Trainer Accuracy						
Gender of Trainer	Male	Female	All Data			
Male	99.76	99.76	99.76			
Female	99.56	99.56	99.56			
Male+Female	99.69	99.67	99.66			

The experiment shows that the male speaker is produce the accuracy higher than female speaker with the difference of 0.2%. It is not the significant values. The combination of males and females speaker in database also shows the small difference value only around 0.1%. It means that the composition of gender in database does not affect the accuracy of system. Based on the experiments, the main conclusion is the accuracy of speech recognition system will generate an optimum value almost to 100% by performing the processing of data reference that will be stored in the database. The processing of data reference will reach an optimum value by developing an optimum database. The development not only in the parts of the ASR process but it covers all of the processes. If we compare the results that have been done by some researchers to improve the performance of ASR, it is clearly visible that the efforts of improvemnet by using an emphasis on one process can not produce optimal value of ASR such as describe in Table 8.

Part of Process in ASR	Method	Accuracy
Segmentation	Contour analysis [15]	82.63%
Normalization	Fuzzy logic [16]	86.36
	1. Function of window [17]	
	a. Hanning Window	67.65
Windowing	b. Hamming Window	66.2%
windowing	c. Blackman Window	68.5%
	d. Gaussian Window	68.5%
	Non standard window [18]	83.75%
Feature Extraction	1. Extreme Learning Machine [14]	92.1%
Feature Extraction	Mel-Frequencies Cepstral Coefficients (MFCC) [8]	95%
	 Support Vector Machine (SVM) [14] 	80.86%
Matching Process	Euclidean Distance [5]	96.36%
Matching 1 10cess	Hybrid Hidden Markov-Genetic Algorithm [6]	increasing 20% - 40%
	4. Hidden Markov Model	98%
	Combination between :	
	a. Windowing (Rectangle function)	up to 99.95%
Optimum Database	b. Feature Extraction (MFCC)	(98.86% on average)
	c. Pattern Recognition (BPNNs)	(30.00 % off average)
	 Number og data reference 	

Table 8. Comparation performance between proposed method and other method

5. Conclusion

Based on the experiments results, it can be concluded that an optimum database has a significant effect on ASR. An optimum database in this context consists of the method in all main process in ASR including windowing, feature extraction, classifier and how the composition of data reference in database. The parameter of performance that is used in this study is measured by accuracy and the duration of process. The results shows that the development of a database using the rectangle window function (rectwin) in frame blocking process and the MFCCs in feature extraction process will able to improve the performance of ASR. This performance will be optimized using BPNNs algorithm in pattern matching process. To overcome the difficulties of the matching process, it can be solved by providing speech data reference in database. Based on experiments on 50 type of word, an optimum performance will be achieved using least 7008 number of data reference. It produces the accuracy up to 99.95% and the duration process is 27.4 msec. It is means that ideally the numbers of data reference that are provided in the database for each word as many as 140 samples. In the next study, the research will be developed using different languages. It is important to do to ensure the composition of database that can optimize the accuracy of ASR. It is hoped that the result can be used as fundamental theory in the development of ASR.

Acknowledgements

The authors would like to thank for the support given to Ministry of Religious Affairs of the Republic of Indonesia for the scholarship of doctoral degree program.

References

- [1] Koehn P. Statistical Machine Translation. New York: Cambridge University Press. 2010.
- [2] Peng L. A Survey of Machine Translation Methods. *TELKOMNIKA Indonesian Journal of Electrical Engineering*. 2013; 11(12): 7125-7130.
- [3] Sujaini H, Kuspriyanto, Arman AA, Purwarianti A. A Novel Part-of-Speech Set Developing Method for Statistical Machine Translation. *TELKOMNIKA Indonesian Journal of Electrical Engineering*. 2014; 12(3): 581-588.
- [4] Wankhede HS, Chhabria SA, Dharas RV. Human Computer Interaction Using Eye and Speech: The Hybrid Approach. International Journal of Emerging Science and Engineering (IJESE). 2013; 1(7): 54-58.
- [5] Rabiner LR, Juang BH. Speech Recognition: Statistical Methods. *Elsevier*. 2006: 1-18.
- [6] Emillia NR, Suyanto, Maharani W. Isolated Word Recognition Using Ergodic Hidden Markov Models and Genetic Algorithm. *TELKOMNIKA Indonesian Journal of Electrical Engineering*. 2012; 10(1): 129-136.
- [7] Shinde RB, Pawar VP. Isolated Word Recognition System based on LPC and DTW Technique. International Journal of Computer Applications. 2012; 59(6): 1-4.
- [8] Swamy S, Ramakrishnan KV. An Efficient Speech Recognition System. Computer Science & Engineering: An International Journal (CSEIJ). 2013; 3(4).
- [9] Goss B. Listening as information processing. *Communication Quarterly*. 1982; 30(4).
- [10] Polur PD, Gerald ME. Effects of high-frequency spectral component in computer recognition of dysarthric speech based on Mel-cepstral stochastic model. *Journal of Rehabilitation Research & Development (JRRD)*. 2005; 42(3): 363-372.
- [11] Doman G. What To Do About Your Brain-injured Child. Square One Publishers. 2005.
- [12] Tiwari V. MFCC and its applications in speaker recognition. *International Journal on Emerging Technologies*. 2010: 19-22.
- [13] Furui S. Digital Speech Processing: Synthesis and Recognition. Second edition. CRC Press. 2000.
- [14] Hardy, Cheah YN. Question Classification Using Extreme Learning Machine on Semantic Features. *Journal of ICT Research and* Applications. 2013; 7(1): 36-58
- [15] Kurniawan F, Mohd Rahim MS, Sholihah N, Rakhmadi A, Mohamad D. Characters Segmentation of Cursive Handwritten Words based on Contour Analysis and Neural Network Validation. *Journal of ICT Research and Applications.* 2011; 5(1): 1-16.
- [16] Suyanto, Putro AE. Automatic Segmentation of Indonesian Speech into Syllables using Fuzzy Smoothed Energy Contour with Local Normalization, Splitting, and Assimilation. *Journal of ICT Research and* Applications. 2014; 8(2): 97-112.
- [17] Favero RF. *Comparison of mother wavelets for speech recognition*. International Conference Speech Science and Technology. 1994: 336-341.
- [18] Rozman R, Kodek DM. Improving speech recognition robustness using non-standard windows. *European Science Fiction Convention.* Ljubljana, Slovenia. 2003