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 This article discusses the progressive learning for structural tolerance online 

sequential extreme learning machine (PSTOS-ELM). PSTOS-ELM can save 

robust accuracy while updating the new data and the new class data on the online 

training situation. The robustness accuracy arises from using the householder 

block exact QR decomposition recursive least squares (HBQRD-RLS) of the 

PSTOS-ELM. This method is suitable for applications that have data 

streaming and often have new class data. Our experiment compares the 

PSTOS-ELM accuracy and accuracy robustness while data is updating with 

the batch-extreme learning machine (ELM) and structural tolerance online 

sequential extreme learning machine (STOS-ELM) that both must retrain the 

data in a new class data case. The experimental results show that PSTOS-ELM 

has accuracy and robustness comparable to ELM and STOS-ELM while also 

can update new class data immediately. 
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1. INTRODUCTION 

The extreme learning machine (ELM) is a fast data training algorithm with the single-hidden layer 

feed-forward networks (SLFNs) structure proposed [1]-[3]. In addition, the ELM has the least-squares solution to 

lead to satisfactory accuracy. However, the ELM relies on a batch-mode learning mechanism. When batch-mode 

ELM trains new data, batch-mode ELM has to retrain all of the data in the dataset, including trained data and the 

new coming data. For example, ELM recognized 1,000 samples. And there is the new samples 10 samples for 

training. ELM must train 1,010 samples (all samples) to update their knowledge. It will always happen when 

new data updating. Therefore, this convention requires multiple times to retrain the data. 

Online learning [4] is a method of machine learning that can update the training data in sequential order. 

However, the batch learning methods can create the machine learning model by learning here on the entire training 

data set at once. That online learning can take machine learning to learn from new data close to real-time and is 

used in many applications such as intrusion detection [5] and facial expression recognition [6], [7]. 

In the case of ELM with online learning, Liang et al. [8] proposed the online sequential ELM (OS-ELM) 

that enables online data update capability with comparable accuracy to ELM. The online update capability brings 

OS-ELM can update the new training data without retraining the trained data. However, OS-ELM may have a 

loss of information problem when updating the data continuously. When the OS-ELM has completed the new 

https://creativecommons.org/licenses/by-sa/4.0/
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data updating process of each training, the weight and bias matrix of OS-ELM are stored and updated in the 

memory. By the memory limitation, the memory has to finite the long decimal places by rounding that may 

affect the weight and bias loss information. This situation is called a round-off error. The round-off error will 

accumulate depending on the number of updating data. Therefore, The error in the data update process has to 

be determined to reduce the OS-ELM generalization [9]. 

Horata et al. [10] proposed structural tolerance OS-ELM (STOS-ELM), which is the applied OS-ELM 

to handle the OS-ELM robustness problem while updating the data. STOS-ELM works with the householder 

block exact QR decomposition recursive least squares (HBQRD-RLS) to enable online learning. Besides, 

HBQRD-RLS can reduce the effect of the rounded-off error and improve robustness in the STOS-ELM online 

update situation [10]-[12]. 

OS-ELM and STOS-ELM are matched for applications with the dataset in that they have to learn a 

new class of data by retraining all of the data. It might not support the applications that work with real-time 

arrived data where the nature of training data is unknown. Therefore, a learning technique must be adapted to 

this situation [9]. 

The progressive learning has inspiration from the human learning paradigm. Human learning can 

continue to learn whenever a new phenomenon has encountered. Human can resume, adapt, and grow to learn 

the phenomenon while still keeping existing knowledge learned thus far. Progressive learning is used in many 

applications such as vegetable disease recognition [13] and COVID-19 diagnosis [14]. 

Venkatesan and Er [15] proposed the progressive learning technique for OS ELM (POS-ELM) is OS-ELM 

worked with progressive learning technique. This technique can support new class data OS-ELM learning by 

retaining the knowledge of previous class data. It is like human learning theory. POS-ELM can break the number of 

class constraints of the OS-ELM in the data updating process. However, POS-ELM still has the round-off error as 

same as OS-ELM. 

This article discusses the problems and proposes progressive learning for structural tolerance OS-ELM 

(PSTOS-ELM), which aims to improve the robustness of STOS-ELM in a new class data updating situation. Our 

experiment shows that PSTOS-ELM has higher accuracy and more robustness than POS-ELM. That effect from 

PSTOS-ELM has a progressive learning technique. 

This article is structured as: materials and methods section describes the details of ELM, OS-ELM, 

STOS-ELM, and the proposed algorithm PSTOS-ELM. The experiment section explains the experimental 

details and results. And the last section is the conclusion. 
 
 

2. METHOD 

2.1.  Extreme learning machine 

The ELM is a fast data training algorithm [1], [2]. Given ELM have 𝐾 hidden nodes with the 𝐷-dimension 

input. The samples could be formatted as (𝑥𝑖 , 𝑡𝑖), 𝑖 = 1,2, . . . , 𝑁 where 𝑥𝑖 ∈ 𝑅𝐷  is the training sample members 

of 𝑋𝑁×𝐷 and 𝑡𝑖 ∈ 𝑅𝐶  is the target sample members of 𝑇𝑁×𝐶  by 𝐶 is the number of classes. ELM can be expressed 

in least squares form: 
 

𝛽𝐾×𝐶 = 𝐻𝐾×𝑁
† 𝑇𝑁×𝐶 (1) 

 

Where 𝛽𝐾×𝐶 = [𝛽𝑗1, 𝛽𝑗2, . . . , 𝛽𝑗𝐶]
𝑇

, 𝑗 = 1,2, . . . , 𝐾 is a matrix of output weights. 𝐻† is the pseudo-inverse 

of 𝐻 that can calculate from the Moore-Penrose formulation. The ELM’s input formulation is a linear equation 

that has the following description: 
 

𝐻 = 𝑔(𝑋𝑊 + 𝐵) = [ℎ𝑖𝑗] = [𝑔(𝑥𝑖 ⋅ 𝑤𝑗 + 𝑏𝑗)] (2) 
 

Where 𝑔(⋅) is activation function and input weights 𝑊𝐷×𝐾 = [𝑤1𝑗 , 𝑤2𝑗 , . . . , 𝑤𝐷𝑗]𝑇 , 𝑗 = 1,2, . . . , 𝐾 and 

biases 𝐵𝑁×𝐾 = [𝑏𝑗 , 𝑏𝑗 , . . . , 𝑏𝑗]𝑇 , 𝑗 = 1,2, . . . , 𝐾 be randomly generated in the range [0,1] and [-1,1], respectively. 
 

2.2.  Online sequential extreme learning machine 

An OS-ELM [8] can update its knowledge by training exclusively on new data. The OS-ELM 

calculation can be summarized. In case of the number of hidden nodes 𝐾 is less than or equal to the number of 

samples 𝑁(𝑁𝑘−1 + 𝑁𝑘) samples, the previously trained samples (𝑋𝑘−1(𝑁𝑘−1×𝐷), 𝑇𝑘−1(𝑁𝑘−1×𝐶))𝑁𝑘−1 samples 

and newly delivered samples (𝑋𝑘(𝑁𝑘×𝐷), 𝑇𝑘(𝑁𝑘×𝐶))𝑁𝑘 samples, the output weights 𝛽𝑘 are formulate. 
 

𝛽𝑘 = 𝐾𝑘
−1 [

𝐻𝑘−1

𝐻𝑘
]

𝑇

[
𝑇𝑘−1

𝑇𝑘
] (3) 
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Where 𝑘 is an index of newly delivered data and 𝑘 − 1 is the index of previously trained data. 
 

𝐾𝑘 = [
𝐻𝑘−1

𝐻𝑘
]

𝑇

[
𝐻𝑘−1

𝐻𝑘
] (4) 

 

For sequential learning, in (4) can be rewritten as the conditions of 𝐾𝑘−1 as: 
 

𝐾𝑘 = 𝐾𝑘−1 + (𝐻𝑘
𝑇𝐻𝑘) (5) 

 

Thus, the result of the combination of (3) and (5) is: 
 

𝛽𝑘 = 𝛽𝑘−1 + 𝐾𝑘
−1𝐻𝑘

𝑇(𝑇𝑘 − 𝐻𝑘𝛽𝑘−1) (6) 
 

In (5) can be rewritten using the Woodbury formula [16] to calculate 𝐾𝑘
−1: 

 

𝑃𝑘 = 𝑃𝑘−1 − 𝑃𝑘−1𝐻𝑘
𝑇(𝐼 + 𝐻𝑘

𝑇𝑃𝑘−1𝐻𝑘)−1𝐻𝑘𝑃𝑘−1 (7) 
 

Where 𝑃𝑘 = 𝐾𝑘
−1. 

 

2.3.  Structural tolerance sequential extreme learning machine 

STOS-ELM [10] allows robust sequential learning to ELM by using the HBQRD-RLS to store and 

update the square root factor covariance matrix (�̃�𝑘−1
−1 ) for the output weight (𝛽𝑘) updating. When new data is 

delivered, STOS-ELM calculation steps are described. Initial phase, beginning with the calculation of �̃�𝑘−1
−1  at 

time 𝑘 = 1 where �̃�0
−1 ≈ 𝐻0

†
 by: 

 

�̃�0
−1 = 𝑅0

−1𝑄𝑇  (8) 
 

From 𝑄𝑇𝐻𝛽 = 𝑄𝑇𝑇 by 𝑄𝑅 = 𝐻, this process is called QR decomposition. 𝑄 is an orthogonal matrix 

that have property 𝑄𝑇𝑄 = 𝐼𝑁×𝑁 where 𝑄 ∈ 𝑅𝑁×𝑁 and 𝑅 is 𝑁 × 𝐾 upper triangular matrix that has the same 

values as the square root of 𝐻𝑇𝐻 or 𝑅𝑇𝑅 = 𝐻𝑇𝐻. As a result, in (8) can be solved in the triangular system [17]. 

That the initial output weight (𝛽0) can be calculated by: 
 

𝛽0 = �̃�0
−1𝑇0 (9) 

 

Sequential phase, STOS-ELM uses the HBQRD-RLS to produce the relational matrix: 
 

𝐺𝑘 = −�̃�𝑘−1
−𝑇 𝐻𝑘

𝑇  (10) 
 

Where 𝐺𝑘 is the relational matrix between newly delivered data and previously trained data. 

The next step is to store and update the square root factor covariance matrix �̃�𝑘
−1 for 𝐹𝑘 and 𝐸𝑘

𝑇 producing. 

By applying Lemma 1 in [18], HBQRD-RLS was working based on householder transformation [19], [20], 

to produce an orthogonal matrix 𝑈(𝑘) such that. 
 

𝑈(𝑘) [
𝐼𝑁𝑘×𝑁𝑘

0𝑁𝑘×𝐾

𝐺𝑘(𝑁0×𝑁𝑘) (�̃�𝑘−1(𝑁0×𝐾)
−1 )𝑇] = [

𝐹𝑘(𝑁𝑘×𝑁𝑘) 𝐸𝑘(𝑁𝑘×𝐾)
𝑇

0𝑁0×𝑁𝑘
(�̃�𝑘(𝑁0×𝐾)

−1 )𝑇
] (11) 

 

Where 𝐼 is the identity matrix and 0 is the zero matrix. The last step is to update the new output weight 𝛽𝑘: 
 

𝛽𝑘 = 𝛽𝑘−1 + 𝐸𝑘(𝐹𝑘
−1)𝑇(𝑇𝑘 − 𝐻𝑘𝛽𝑘−1) (12) 

 

Where (𝑇𝑘 − 𝐻𝑘𝛽𝑘−1), 𝐹𝑘 and 𝐸𝑘
𝑇 are called Kalman gain. 

 

2.4.  Progressive structural tolerance online sequential extreme learning machine (the proposed method) 

PSTOS-ELM is STOS-ELM that can learn a new class by maintaining the old knowledge (trained class). 

In the training phase, while the 𝑃 new class data is coming to PSTOS-ELM, the output weight matrix at 𝑘 − 1 

time 𝛽𝑘−1 is recalibrated to support the new class by using a recalibrated matrix 𝛥𝛽𝑘 that can be written. 
 

𝛽𝑘−1 < −[𝛽𝑘−1 𝛥𝛽𝑘] (13) 
 

The recalibrated matrix (𝛥𝛽𝑘) is the output weight matrix value of the not trained class that is 

calculated by multiple of the square root factor covariance matrix of the newly delivered data (�̑�𝑘
−1). 
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𝛥𝛽𝑘 = �̑�𝑘(𝐾×𝑁𝑘)
−1 [

−1 ⋯ −1
⋮ ⋱ ⋮

−1 ⋯ −1
]

𝑁𝑘×𝑃

 (14) 

 

Where �̑�𝑘
−1 = 𝑅𝑘

−1𝑄𝑇  that 𝑄 is 𝑄 of �̑�𝑘in QR decomposition. PSTOS-ELM is summarized in Algorithm 1. 
 

 

Algorithm 1. PSTOS-ELM algorithm 

Initial phase 

1. Define parameters in 𝐾 hidden nodes and set 𝑘 = 1.  

2. Calculate initial data 𝑋𝑘−1 to the hidden layer output matrix 𝐻𝑘−1 by using (2).  

3. Initial �̃�𝑘−1
−1 ≈ 𝐻𝑘−1

†
 and corresponding solution 𝛽𝑘−1 = 𝑅𝑘−1

−1 𝑄𝑇𝑇𝑘−1. 

Sequential phase 

4. When a new sample set 𝑋𝑘 come to the system, 𝑋𝑘 has calculated to 𝐻𝑘 by (2). 

5. If new classes are introduced, update 𝛽𝑘−1 by using (13). 

6. Calculate 𝐺𝑘 as in (10). 

7. Store and update �̃�𝑘
−1, 𝐹𝑘 and 𝐸𝑘

𝑇 by using (11). 

8. Update the output weights 𝛽𝑘 at the k time of the new data is coming as in (12). 

9. Plus 𝑘 to 1 when the new sample set is coming to the training process, and then go to step (4). 

End 
 

 

3. RESULTS AND DISCUSSION 

3.1.  Experimental setup 

This section is the experimental setup that will describe the details of the datasets and how to prepare 

them, start with the dataset. The six datasets are from the University of Irvine, California (UCI) [21] repository 

and were selected the same as Venkatesan and Er’s experiment [15]. The dataset details are shown in Table 1. 
 

 

Table 1. The dataset 
Dataset A number of classes A number of features 

Iris 3 4 

Balance 3 4 

Waveform 3 32 
Wine 3 13 

Satellite 5 36 

Optdigits 10 63 

 
 

The datasets are used to evaluate the the performance of the methods. All methods are run in 

MATLAB version R2014a on a computer with the environment Core i3 3.40 GHz RAM 8.00 GB. Training 

and testing data preparation in our experiments can be described. 

a) Separate the data of each class into two groups: 70 percent and 30 percent are training data and testing 

data, respectively [22].  

b) Sort the training data by the number of the class in ascending order. 

c) Define the two first classes of data to the initial data and the remaining class data to the sequential data. 

This process is used to validate the performance in a new class data update situation that depends on the 

random input weights and biases with ten rounds. For each round, the input weights and biases will be generated 

in one set for all methods. The numbers of the hidden nodes of all methods are varied in the range of [1,200]. 
 

3.2.  Results 

3.2.1. Accuracy of PSTOS-ELM 

This section reports the performance result of ELM, OS-ELM, POS-ELM [15], STOS-ELM, and 

PSTOS-ELM. The five methods are evaluated by their performance by using the following: the average accuracy 

of the 10-round test, max accuracy of the 10-round test, min accuracy of the 10-round test, standard deviation 

(SD) of the 10-round test, and the number of the hidden node that take the best accuracy to the methods as shown 

in Table 2. The bold letters show the best value of each dataset (the meta-metrics evaluation [23]-[24]). 

Table 2 shows the performance of the methods over the six datasets. The results show that PSTOS-ELM 

has average accuracy, max accuracy, and min accuracy slightly lower than STOS-ELM, which has the highest 

accuracy on average accuracy. The difference between the average, max, and min accuracy of STOS-ELM and 

PSTOS-ELM are 0.0017, 0.0019, and 0.0033, respectively. 
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Table 2. The performance of methods 
Dataset Method Accuracy Max Min SD A number of node 

Balance ELM 0.9143 0.9206 0.9101 0.0033 15 
OS-ELM 0.9143 0.9206 0.9101 0.0033 15 

STOS-ELM 0.9143 0.9206 0.9101 0.0033 15 

POS-ELM 0.8360 0.8889 0.7831 0.0402 58 
PSTOS-ELM 0.9122 0.9206 0.8995 0.0062 17 

Iris ELM 0.9667 0.9778 0.9333 0.0157 21 

OS-ELM 0.9622 1.0000 0.9111 0.0235 105 
STOS-ELM 0.9689 0.9778 0.9333 0.0155 21 

POS-ELM 0.9622 0.9778 0.9111 0.0211 104 

PSTOS-ELM 0.9644 0.9778 0.9333 0.0187 21 
Optdigits ELM 0.8200 0.8215 0.8186 0.0009 195 

OS-ELM 0.5785 0.6525 0.5201 0.0390 28 

STOS-ELM 0.8199 0.8209 0.8186 0.0008 194 
POS-ELM 0.3471 0.5437 0.2417 0.0881 118 

PSTOS-ELM 0.8198 0.8209 0.8186 0.0007 194 

Satellite ELM 0.7342 0.7378 0.7311 0.0020 200 

OS-ELM 0.5251 0.5959 0.4514 0.0569 89 

STOS-ELM 0.7342 0.7378 0.7311 0.0020 200 

POS-ELM 0.4771 0.6054 0.2912 0.1181 86 
PSTOS-ELM 0.7342 0.7372 0.7311 0.0020 200 

Waveform ELM 0.8580 0.8594 0.8568 0.0009 190 
OS-ELM 0.8211 0.8354 0.7808 0.0203 184 

STOS-ELM 0.8578 0.8594 0.8568 0.0008 190 

POS-ELM 0.7783 0.8315 0.6749 0.0524 147 
PSTOS-ELM 0.8577 0.8588 0.8561 0.0008 190 

Wine ELM 0.9836 1.0000 0.9818 0.0057 42 

OS-ELM 0.9855 1.0000 0.9818 0.0077 42 
STOS-ELM 0.9855 1.0000 0.9818 0.0077 42 

POS-ELM 0.9818 0.9818 0.9818 0.0000 28 

PSTOS-ELM 0.9818 0.9818 0.9818 0.0000 12 
Average accuracy ELM 0.8795 0.8862 0.8719 0.0040 − 

OS-ELM 0.7978 0.8341 0.7592 0.0258 − 

STOS-ELM 0.8801 0.8861 0.8719 0.0040 − 

POS-ELM 0.7304 0.8032 0.6473 0.0505 − 

PSTOS-ELM 0.8784 0.8828 0.8701 0.0050 − 

 

 

3.2.2. Robustness with the best-hidden node when data updating 

This experiment simulates randomization of weight and bias situations that aims to analyze the 

robustness and accuracy of the methods on a 10-rounds test with different weights and biases in data updating 

situations. The methods use the best-hidden node that is shown in Table 2. Figure 1(a) to Figure 1(e), Figure 2(a) 

to Figure 2(e), and Figure 3(a) to Figure 3(e) show the average accuracy (red line), max accuracy (green line), 

and min accuracy (blue line) of ELM, OS-ELM, STOS-ELM, POS-ELM, and PSTOS-ELM with the appropriate 

number of the hidden node. Each figure demonstrates the accuracy of three datasets: optdigits, satellite, and 

balance. The 𝑥-axis in the figure shows the percent of data updating that starts with data in the third class of 

the dataset. If the dataset has more than three classes, the red line will have appeared in the percent that the 

new class data has trained. 

From Figure 1 to Figure 3, the results can be divided into 2 groups as follows. In the first group (Figure 1 

to Figure 2), ELM (Figure 1 to Figure 2(a)), STOS-ELM (Figure 1 to Figure 2(c)), and PSTOS-ELM (Figure 1 to 

Figure 2(e)) have accuracy that tends to grow with robustly. POS-ELM (Figure 1 to Figure 2(d)) has an accuracy 

trend to grow, but POS-ELM has less accuracy and robustness than ELM. For OS-ELM (Figure 1 to Figure 2(b)), 

the accuracy trend is like POS-ELM, but the min accuracy trend is lower than. Optdigits, satellite, and waveform 

datasets are in the first group. In the second group (Figure 3), all of the methods have the same growth trends. 

Balance, iris, and wine are in the second group. 

The extra case of the satellite dataset has one different point from the first group (Figure 2). After OS-ELM 

updates the data on the fifth class to OS-ELM (Figure 2(b)), OS-ELM has a down accuracy trend. On the other hand, 

POS-ELM (Figure 2(d)) has an up-accuracy trend. However, OS-ELM has accuracy comparable to POS-ELM. 
 

3.2.3. Robustness over a different number of nodes when data updating 

This experiment simulates the accuracy of each hidden node. The experiment aims to analyze the 

robust and accuracy of the methods in the different numbers of hidden nodes. Figure 4 to Figure 6 show the 

accuracy of ELM, OS-ELM, STOS-ELM, POS-ELM, and PSTOS-ELM in each percent of updated data 

(𝑥-axis) with the different numbers of hidden nodes. Each figure demonstrates the accuracy in three datasets: 

satellite, iris, and wine. 
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From Figure 4(a) to Figure 6(e), the results can be seperated into three groups as follows. In the first 

group (Figure 4), ELM (Figure 4(a)), STOS-ELM (Figure 4(c)), and PSTOS-ELM (Figure 4(e)) have accuracy 

that tends to grow in all hidden nodes. On the other hand, OS-ELM (Figure 4(b)) and POS-ELM (Figure 4(d)) 

accuracy trend up slightly and then drop in some hidden nodes. Satellite, balance, optdigits, and waveform 

datasets are in the first group. 

In the second group (Figure 5), STOS-ELM (Figure 5(c)) and PSTOS-ELM (Figure 5(e)) have an 

accuracy trend to grow in all hidden nodes. On the other hand, ELM (Figure 5(a)), OS-ELM (Figure 5(b)), and 

POS-ELM (Figure 5(d)) accuracy trend up slightly and then drop in some hidden nodes. Iris dataset is in the 

second group. 

In the third group (Figure 6), OS-ELM (Figure 6(b)), POS-ELM (Figure 6(d)), STOS-ELM (Figure 6(c)), 

and PSTOS-ELM (Figure 6(e)) have an accuracy trend to grow in all hidden nodes. Only ELM (Figure 6(a)) has an 

accuracy trend that grows slightly, drops sharply, and then rises at 100 hidden nodes. And at 150 and 200 hidden 

nodes, ELM trend accuracy is less grower than the other method. Iris dataset is in the third group. 

As seen in Figure 4 to Figure 6, accuracy in some hidden nodes has a downtrend. It noticed how final 

accuracy has robustness in a wide range of the number of hidden nodes. The notice will be issued to find in the 

next section. 
 

 

  
  

(a) (b) 
  

  

  
  

(c)  (d)  
  

  

 
 

(e)  
 

Figure 1. The accuracy of the methods while data updating with their best hidden node in optdigits dataset: 

(a) ELM, (b) OS-ELM, (c) STOS-ELM, (d) POS-ELM, and (e) PSTOS-ELM 
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(a) (b) (c) 
   

   

  
  

(d) (e)  
  

Figure 2. The accuracy of the methods while data updating with their best hidden node in satellite dataset: 

(a) ELM, (b) OS-ELM, (c) STOS-ELM, (d) POS-ELM, and (e) PSTOS-ELM 

 

 

   
   

(a) (b) (c) 
   
   

  
  

(d)  (e)  
  

Figure 3. The accuracy of the methods while data updating with their best hidden node in balance dataset: 

(a) ELM, (b) OS-ELM, (c) STOS-ELM, (d) POS-ELM, and (e) PSTOS-ELM 
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Figure 4. Accuracy of the methods with different number of hidden nodes in satellite dataset: (a) ELM,  

(b) OS-ELM, (c) STOS-ELM, (d) POS-ELM, and (e) PSTOS-ELM 

 

 

   
   

(a) (b) (c) 

   

   

  
  

(d)  (e)  

  

Figure 5. Accuracy of the methods with different number of hidden nodes in iris dataset: (a) ELM, 

(b) OS-ELM, (c) STOS-ELM, (d) POS-ELM, and (e) PSTOS-ELM 
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(d)  (e)  
  

Figure 6. Accuracy of the methods with different number of hidden nodes in wine dataset: (a) ELM, 

(b) OS-ELM, (c) STOS-ELM, (d) POS-ELM, and (e) PSTOS-ELM 

 

 

3.2.4. Robustness when the number of hidden nodes varied in a wide range 

This experiment aims to extend more information from the previous section by analysing the 

accuracies of the methods of hidden nodes in the range of 1 to 200 hidden nodes. The result is shown in  

Figure 7. Our dataset selection according to 3 groups in section 3.2.3 that selected dataset for each group is the 

waveform, iris, and wine dataset, respectively. 

 

 

   
   

(a) (b) (c) 
   

Figure 7. The accuracies of the methods while the number of hidden nodes varied in the range of 1 to 200 

hidden nodes: (a) waveform dataset, (b) iris dataset, and (c) wine dataset 

 

 

For group 1 in Figure 7(a), ELM, STOS-ELM, and PSTOS-ELM have accuracy that tends to grow and 

be stable. OS-ELM and POS-ELM have accuracies that trend lower than ELM, STOS-ELM, and PSTOS-ELM. 

In addition, OS-ELM and POS-ELM have fluctuating accuracy trends. 

For group 2 in Figure 7(b), ELM, STOS-ELM, and PSTOS-ELM have a similar accuracy trend. But ELM 

has low accuracy trend than STOS-ELM and PSTOS-ELM in between 80 to 200 hidden nodes. For OS-ELM and 

POS-ELM, their accuracy trends to drop sharply between 10 to 20 hidden nodes. After that the accuracy trends to 

go up to their accuracy is higher than ELM, OS-ELM, and STOS-ELM since above 80 hidden nodes.  
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For group 3 in Figure 7(c), all methods have similar accuracy trend. But OS-ELM and POS-ELM 

have accuracy that tends to drop and up between 83-100 hidden nodes. And ELM has lower accuracy trend 

than other methods since above 100 hidden nodes. From the result, if the number of hidden nodes has too much, 

overfitting will happen that the decision boundary is too fit with the data. On the opposite, the model will not 

match the complex data.  

Therefore, selecting the appropriate number of hidden nodes is required for the best performance of ELM. 

However, the number of hidden node selections does not have the principle. So, the model validation has been used. 

The method can help ELM find the appropriate node by testing the ELM with the validation data (the data separate 

from the training data) and selecting the best number of hidden nodes that takes the best accuracy. 

 

3.2.5. Performance comparison between PSTOS-ELM and the other ELMs with progressive learning 

In this section, our experiment aims to compare the performance of PSTOS-ELM and the other ELM 

with progressive learning. The other ELMs are PL-MCCIP, PL-MCCRP, PL-MCCMP [25], POS-ELM [15], 

and S-ELM [26]. The performance comparison consists of the accuracy and robustness of all ELM methods 

are shown in Table 3.  

The first line in the table shows the best accuracy of the ELM methods with the best-hidden node in 

the range [1,200]. The second line is the area under the curve of each accuracy from the data updating that the 

area under the curve can calculate from the trapz function in MATLAB. The bold letters show the best value 

of each dataset. 
 
 

Table 3. The performance of PSTOS-ELM and the other ELMs with progressive learning 
Dataset PL-MCCIP PL-MCCRP PL-MCCMP POS-ELM S-ELM PSTOS-ELM 

Balance 0.8571 0.4762 0.8571 0.8571 0.9206 0.9206 
169.4339 99.8386 169.4339 169.5556 170.8360 169.0212 

Iris 0.9778 0.9333 0.9778 0.9556 1.0000 0.9778 

31.1111 21.6000 31.1111 31.5000 33.4556 32.0000 
Optdigits 0.3966 0.1537 0.5875 0.3972 0.6200 0.8191 

1190.2444 438.2402 1117.4557 1191.2878 1434.3735 1701.3286 

Satellite 0.4838 0.4196 0.5250 0.4838 0.5257 0.7351 
968.5703 422.8419 973.9280 968.5439 837.5622 1246.4811 

Waveform 0.8314 0.7442 0.8314 0.8314 0.8388 0.8588 

928.6935 735.6985 928.6935 928.5456 891.3468 927.2332 
Wine 1.0000 0.3091 1.0000 0.9818 1.0000 1.0000 

29.8909 10.8818 29.8909 32.2727 32.5727 32.5727 

Average 0.7578 0.5060 0.7965 0.7512 0.8175 0.8852 
552.9907 288.1835 541.7522 553.6176 566.6911 684.7728 

 

 

Table 3 shows that PSTOS-ELM has the highest average accuracy and the area under the curve. The result 

has some points of interest. As clearly seen, the other ELMs with progressive learning have low accuracy and area 

under the curve on optdigits and satellite datasets. Both datasets have number of class higher than three classes which 

may cause low accuracy. However, that problem does not affect STOS-ELM. 

 

3.3.  Discussion 

This article presents PSTOS-ELM that can improve robust accuracy while updating the new data and the 

new class data on the online training situation. The robustness accuracy arises from using the HBQRD-RLS. 

HBQRD-RLS is supported by PSTOS-ELM performance as shown in the experimental results in 3 aspects. 

a) Accuracy and robustness: PSTOS-ELM has accuracy comparable to the batch ELM and STOS-ELM. 

Furthermore, PSTOS-ELM also keeps the robust property in hidden node changing and data updating 

situations. That is creditable to the key of PSTOS-ELM in using the HBQRD-RLS. 

b) Effect of progressive learning: the other ELMs with progressive learning cannot achieve robustness, 

especially in the dataset that has several classes. On the other hand, PSTOS-ELM almost has similar 

accuracy to STOS-ELM. That means PSTOS-ELM does not affect progressive learning. 

c) Computation: while new class samples come, STOS-ELM must recalculate the initial model by setting 

𝐻0:𝑘  to the recent samples include the new class samples and using �̃�0:𝑘
−1 𝑇0:𝑘  (9) to calculate 𝛽0:𝑘−1 . 

The samples updating complexity of STOS-ELM is 𝐾 × 𝑁0:𝑘 × 𝑁0:𝑘 × 𝐶  And PSTOS-ELM uses 

𝛥𝛽𝑘 = �̃�𝑘
−1 [

−1 ⋯ −1
⋮ ⋱ ⋮

−1 ⋯ −1
]

𝑁𝑘×𝑃

 (14) to update the new class samples and uses (12) to concatenate this 

with the old beta 𝛽𝑘−1 . The data updating complexity of PSTOS-ELM is 𝐾 × 𝑁𝑘 × 𝑁𝑘 × 𝑃 +  little 

calculation for 𝛽𝑘−1 concatenating (12). The massive difference in updating complexity between STOS-ELM 
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in (9) and PSTOS-ELM (14) is the size of the class (𝐶 and 𝑃) and samples (𝑁0:𝑘 and 𝑁𝑘) that PSTOS-ELM 

uses only the new coming samples for training. Therefore, PSTOS-ELM uses computation less than 

STOS-ELM in new class data updating. 
 

 

4. CONCLUSION 

This article discussed the PSTOS-ELM based on the HBQRD-RLS algorithm. PSTOS-ELM can retain 

robust accuracy while updating the new data and the new class data on the online training situation. The results 

showed that PSTOS-ELM accuracy and robustness are comparable to the batch learning ELM and STOS-ELM. 

Furthermore, PSTOS-ELM can reduce the complexity of STOS-ELM when updating the new class data. 
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