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ABSTRACT

An application of moving-horizon strategy for nonlinear systems with possible
outliers in measurements is addressed. With the increased success of moving-
horizon strategy in the state estimation for linear systems with outliers acting on
the measurement, investigating the nonlinear approach is highly required. In this
paper we applied the nonlinear version which has been presented in the literature
in term of discrete-time linear time-invariant systems, where the applied strategy
considers minimizing a least-squares functions in which each measure possibly
contaminated by outlier is left out in turn and the lowest cost is propagated.
The moving horizon filter effectiveness as compared with the extended Kalman
filter is shown by means of simulation example and estimation error comparison.
The moving horizon filter shows the feature of resisting outliers with robust
estimation.
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1. INTRODUCTION
One of the main serious challenges when dealing with measurement of state variables is the large

noise or what is called outliers. Such gross errors might be due to many reasons, starting from the field
device malfunction to simple large noise. These abnormal signals which are usually called as outliers or
anomalies attracting attention in various fields, such as data quality in process control [1]–[3] which affect
as well the accuracy of the predictive models, health care [4]–[6] network intrusion [7]–[10] where many
approaches have been investigated and developed to defend against network attacks, environmental monitoring
[11]–[15], positioning estimation [16], cloud management [17]–[19], and fault detection[20]–[22]. Hence,
various methods have been investigated and proposed to detect outliers in different applications [23]–[25]. In
this paper, we developed the nonlinear approach of well-established algorithm to deal with estimating state
variables of a nonlinear system containing measures that are possibly corrupted by outliers. This estimation
will be performed using a moving-horizon estimation approach, which has been set in the preliminary result by
Alessandri and Awawdeh [26] for discrete-time linear systems.

The Kalman filter (KF) is considered to be the best estimator when quadratic estimation error needs
to be reduced or minimized. The recurring estimator works on the principle of iterating the estimated update
depending on the current residual to generate the new output. Checking for outliers is a crucial task to ensure
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estimator robustness [27]; where robustness is a key factor in designing of filters particularly improving the
kalman filter robustness in the presence of outlier is required [28]. More investigation on the development of
statistical tests and for the purpose if identification can be found on [29]–[32]. Moving-horizon estimation
(MHE) utilizes most recent information by minimizing least squares function which is originally presented
by [33] and MHE results were obtained initially for linear systems [34], [35] and then they were extended
for nonlinear systems and large-scale systems [36]–[40]. Based on the preliminary results by Alessandri and
Awawdeh [26], the stability scheme is driven from [37]. The approach of this paper focuses on moving-horizon
estimator for a nonlinear systems with measures containing outliers by adopting the worst-case cost functions,
the moving horizon estimator stability conditions for uncertain linear systems are reported in [41] and original
linear version of such approach is addressed in [26]. The approach includes minimizing a set of least squares
functions while the measurement that is possibly affected by outlier is excluded, which ensure the generating
of a the lowest cost each time, hence propagating the the estimate to the next instant.

The organization of the paper is as follows: in section 2 the investigation of the moving-horizon
estimation method is discussed. Finding of stability and robustness are briefed, in sections 3. Respectively, in
sections 4 to 6 simulation results are described and discussed. Finally, the conclusion is drawn in section 7.

2. NONLINEAR MOVING-HORIZON ESTIMATION APPROACH
In this section, and following the success of the linear approach of moving horizon estimation in

solving the problem of outliers in industrial systems, we propose the the nonlinear framework of such developed
approach. Considering a nonlinear system, with t = 0, 1, . . .

xt+1 = f(xt, ut) + ξt (1a)

yt = h(xt) + ηt (1b)

Where xt ∈ X ⊂ Rn is the continuous state, ut ∈ U ⊂ Rm is the control vector, yt ∈ Y ⊂ Rp

is the output, ξt ∈ W ⊂ Rn is the disturbance of system, and ηt ∈ V ⊂ Rp is disturbance of measurement,
assuming ξt and ηt as unknown deterministic variables. Since, in this paper we are introducing the nonlinear
theme of our preliminary works mentioned earlier; so we refer the reader to [26], and [42] and reference therein
for a complete understanding of the assumption and pre-definition.

The proposed approach (see Figure 1) can be summarize as for a given measurement batch t =
1, 2, 3, . . . N + 1, a cost function Jt is to be minimized with the constrains.

x̂i+1|t = f
(
x̂i|t, ui

)
, i = t−N, . . . , t− 1. (2)

The cost function is defined for two possible cases (assumption), as follow:
− Case 1: measurement is contaminated by an outlier (k − thmeasure), the function Jt which leaves out

the contaminated measure is defined as:

Jk
t (x̂t−N,t) = µ ∥ x̂t−N,t − x̄t−N ∥2 + 1

N

t∑
i=t−N

i̸=t−N+k−1

(yi − h(x̂i,t))
2 (3)

− Case 2: measurement is free of outlier, the function Jt is :

J0
t (x̂t−N,t) = µ ∥ x̂t−N,t − x̄t−N ∥2 + 1

N + 1

t∑
i=t−N

(yi − h(x̂i,t))
2 (4)

Where the tuning parameter µ > 0 and Jk
t is minimized under (2). The approach is summarized as solving a

problem as follow.
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min
x∈ℜn s.t. (2) holds

Jk
t (x) , k = 0, 1, . . . , N + 1

The estimate of xt−N at time t is:

x̂t−N |t ∈ argmin
x∈ℜn s.t. (2) holds

Jt (x̂)

and accordingly,

x̂k
t−N ∈ argmin

x∈ℜn s.t. (2) holds
Jk
t (x)

k(t)∗ ∈ argmin
k=0,1,...,N+1

Jk
t

(
x̂k
t−N

)
In case, X is known, the cost can be minimized on X , i.e., x̂ ∈ X . By comparing case 1 and case 2, the
optimal cost is propagated for t+ 1, t+ 2, . . .. the estimate. Recalling that, a solution exists by assuming that
X is compact and f(., u), h(.) and Jt(.) are continuous. The sketch given in Figure 1, illustrate the approach
of leave-one-out MHE strategy for nonlinear systems.

Figure 1. Scheme of MHE approach for nonlinear systems when moving from t to t+ 1

With reference to [41] and [43], (3) and (4) are considered to compare with k(t∗). Concerning the
extension of the proposed approach to the case with multiple outliers in the batch, the assumption of N +1 can
adjusted with a more general setting. If k outliers affect the N+1 measurements, we consider all permutations
of k measurements taken from the set of the N + 1 ones in the batch. Thus, for example, we need to consider
a number of:

n2 =

(
2

N + 1

)

Moving-horizon estimation approach for nonlinear systems with ... (Moath Awawdeh)
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Costs to discriminate among the various cases with two outliers. Of course, we need to consider the
“no outlier” setting and all the case that corresponds to “one outlier” in the batch. In general, we have to
account for up to k outliers in the batch by using:

n0,1,...,k =

k∑
i=0

(
i

N + 1

)

Costs to perform the comparisons, considering the estimate of xt−N at t. The stability of estimation
error is investigated, supposing to perform a perfect or approximate minimization with fact that error is bounded
[37]. In next section, a brief of estimation error stability with necessary recall of assumptions which were
investigated in the preliminary work [42] and original assumption proposed by Alessandri et al. [37].

3. ESTIMATION ERROR - RECALL OF STABILITY
With the assumption that X , U , W , and V are compact set (introduced in section 2), assume that

f(., u) and h(.) are C2 on X .

ytt−N |k = Hk(xt−N ) +Dξk(xt−N )ξt−1
t−N |k + ηtt−N |k

where:

HN

(
xt−N , ut−1

t−N

)
:=


h ◦ fut−1 ◦ · · · ◦ fut−N (xt−N )
h ◦ fut−2 ◦ · · · ◦ fut−N (xt−N )

...
h ◦ fut−N (xt−N )

h (xt−N )

 (5)

Dξ

(
xt−N , ut−1

t−N

)
:=



∂h◦f
ξt−N
(1)

∂ξt−N
0 · · · 0

∂h◦f
ξ
t−N+1
t−N

(2)

∂ξt−N

∂h◦f
ξ
t−N+1
t−N

(2)

∂ξt−N+1
· · · 0

...
...

. . .
...

∂h◦f
ξ
t−1
t−N

(N)

∂ξt−N

∂h◦f
ξ
t−1
t−N

(N)

∂ξt−N+1
· · ·

∂h◦f
ξ
t−1
t−N

(N)

∂ξt−1


(6)

Following the assumption that; while the system is X observable, there exists a K-function φ(·), such that:

φ (|x′ − x′′|) ≤ |HN (x′, u)−HN (x′′, u)| (7)

for all that x′ ∈ X , x′′ ∈ X , and u ∈ U . Moreover,

δ := inf
x′,x′′∈X ; x′ ̸=x′′

φ
(
|x′ − x′′|2

)
|x′ − x′′|2

> 0 (8)

under perfect minimization/approximate minimization with bounded error, if µ ≥ 0 is chosen such that:

8Lfµ

µ+ δ
N+1

< 1 (9)
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where Lf is the lipschitz constant (f, X).
The estimation error is exponentially bounded and the optimal cost can be:

J∗
t (x̂t−N ) = µ ∥ x̂t−N − x̄t−N ∥2 +

{
1

N+1

∥∥ytt−N −H0 (x̂t−N )
∥∥2 if k∗ = 0

1
N

∥∥ytt−N |k∗ −Hk∗ (x̂t−N )
∥∥2 if k∗ ∈ {1, . . . , N + 1}

(10)

4. SIMULATION EXAMPLE
In this section we prove the approach robustness and efficiency by the meaning of simulation, consid-

ering an undamped oscillator with a pulsation equal to ω, the damping coefficient ζ is assumed to be unknown
and a constant.

x3(t) = ζ

The discrete nonlinear system and linear observation equations are:

xt+1
1 = xt

1 + Txt
2

xt+1
2 = −ω2Txt

1 + (1− 2ωTxt
3)x

t
2 + 12T + Tξt

xt+1
3 = xt

3

yt = xt
1 + ηt

where T > 0 is the sample time.
Specifically, we choose ζ = 0.2, ω = 5 rad/s, and T = 0.01 s. The distributions of initial state, system

and measurement noises were taken according to (add Kalman book reference, example 5.3, page 173), i.e.,
they are zero-mean white Gaussian processes with covariances P0|−1 = diag(2, 2, 2), Q = diag(0, 0, 4.47),
and r = 0.01 except in case of outliers, for which the covariance was chosen much larger than r, i.e., equal to
10.

Outliers were generated randomly with dispersion σ = 10, and randomly-positioned over 100 time
steps. We will evaluate the performances of such filters by the root mean square error (RMSE):

RMSE(t) =

(
M∑
i=1

∥et,i∥2

M

)1/2

where et,i is the estimation error at time t in the i-th simulation run, and M is the number of simulation runs.
The results of such tests with a MHF for different µ and a KF for different choices of threshold values

σt are shown in Figures 3, 5, and 7. RMSE means of the MHF and KF for different choices of µ, σt, and r are
shown in Figures 4, 6, and 8. In Table 5, the computational times for both estimators are reported. Though a
convenient choice of µ makes the MHF performs better in term of RMSE, its computational effort is larger.

5. SIMULATION DISCUSSION
In the mentioned example we have tried to pick up the possible best parameter tuning for KF, extended

Kalman filter (EKF), and MHF from different simulation setting for KF/EKF choosing σt equal to
√
St or

5
√
St or 10

√
St, and a MHF with µ equal to 0.1 or 0.5 or 1, in order to reduce the effect of outliers and get the

minimum estimation error. More test result with a MHF with µ = 0.6 and EKF with no threshold check are
shown in Figure 9. It is clear that pure EKF is not able to resist outliers. In Figure 10 a tuning threshold value
of KF has been adopted with σt = 10

√
St which it has been chosen among different simulation test. RMSES

of MHF and EKF for 100 runs with r = 0.01 and different parameters ( µ and σt) are shown in Figure 11 for
x1, x2 and x3. Tables 2 to 4 show the RMSE means of the MHF and KF for different choices of µ, σt, and r.
In Table 5, the computational times for both estimators are reported. However, it is more demanding from the
computational point of view as compared with the extended Kalman filter.
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6. SIMULATION-BASED DISCUSISON ON PREDICTIVE MOVING HORIZON ESTIMATION
(TO LINEAR-BASED)

The proposed approach in this paper considers some complexity in computing the the different cost
functions, obtained by excluding one measurement each time and some how computationally demanding. In
this section we tried to consider an attempt to check for yt+1 if it is outlier by computing only the minima of
two cost functions (one computed by neglecting yt+1 and one by accounting yt+1). However, this approach is
much less computationally demanding but without stability proof in general (the proof is based on the precise
requirement that the estimation is associated with the best of the optimal). This is a serious drawback, as without
such a property it seems difficult to prove robustness, which is satisfied in the proposed method. However,
we may guess that both stability and hence robustness may be ensured in practice and somehow evaluated
via simulations also to measure the expected computational savings. In this section will denote the attempt
proposed as PMHF (predictive MHF), as it relies on the prediction on the outlier occurrence when proceeding
with the new measure update. Simulation were performed with absolute value of the outliers over the rejection
thresholds in such a way to ensure the better conditions of work for the PMHF (the modulus of the outliers are
randomly chosen in the range (r̄v, 10r̄v). A simulation run is depicted in Figure 2, while Table 1 summarizes
the results obtained over 100 runs with initial states that were randomly generated with mean equal to (1 1)⊤

and covariance P0 = diag(2, 2), and system and measurement noises given by zero-mean white Gaussian
processes with covariances Q = diag(1, 1) and r = 0.1, respectively. For MHF and PMHF, we set ρ = 0.001.

The computational effort of the PMHF is about 35% less than that of the MHF, but of course this is
paid with an increase of the RMSEs. In any case, also the PMHF performs much better than the KF in terms of
precision because of the large RMSEs given with all the various thresholds. Summing up, at the moment the
PMHF should be ranked as a “heuristic” approach beacause of the lack of guaranteed stability and robustness
properties but, since it allows on to trade between computational burden and precision, it may be the subject of
future investigation aimed at proving such properties.

Figure 2. True state, measures, and estimates of x1 and x2 in a simulation run with zero-mean Gaussian
measurement noises having r = 0.1 and using MHF and PMHF with ρ = 10−3 and N = 3, and a KF with

σt = 2
√
st

Table 1. MCT (in s) and RMSEs over 100 runs for MHF, PMHF, and KF
MHF PMHF

N=3 N=4 N=5 N=6 N=3 N=4 N=5 N=6
MCT 0.0273 0.0315 0.0380 0.0434 0.0209 0.0225 0.0261 0.0251

RMSE (x1) 1.7120 1.5839 1.6698 1.7409 2.2165 2.1357 2.1965 2.2819
RMSE (x2) 1.8337 1.7714 1.7985 1.8405 2.0471 1.9577 1.9318 1.9578

KF
σt =

√
st σt = 2

√
st σt = 5

√
st σt = 10

√
st

MCT 0.0070 0.0067 0.0066 0.0086
RMSE (x1) 6.9472 6.4459 9.1978 18.666
RMSE (x2) 3.5151 3.2509 3.6555 6.6224
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Figure 3. States estimation for MHF with µ = 0.1 and KF without residual check

Figure 4. RMSES of MHF and KF for 100 runs with µ = 0.1

Table 2. Means of RMSEs for MHF with µ = 0.1 and KF without residual check

r
MHE KF

x1 x2 x3 x1 x2 x3

0.01 0.1678 0.6852 2.0905 1.5170 4.3395 2.3006
0.10 0.2326 0.8642 2.0455 1.8418 3.3232 2.2107
1.00 0.4818 1.4177 2.0526 1.7744 3.8066 2.1922

Moving-horizon estimation approach for nonlinear systems with ... (Moath Awawdeh)
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Figure 5. States estimation for MHF with µ = 0.5 and KF with σt =
√
St

Figure 6. RMSES of MHF and KF for 100 runs with r = 0.01

Table 3. Means of RMSEs for MHF with µ = 0.5 and KF with σt =
√
St

r
MHE KF

x1 x2 x3 x1 x2 x3

0.01 0.1760 0.7584 2.0944 0.7144 3.4064 2.1153
0.10 0.2124 0.7262 2.0049 0.3343 1.6533 2.0343
1.00 0.5125 1.6230 2.0024 0.6088 2.8931 2.0204

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 1, February 2024: 219–231



TELKOMNIKA Telecommun Comput El Control ❒ 227

Figure 7. States estimation for MHF with µ = 1.0 and KF with σt = 10
√
St

Figure 8. RMSES of MHF and KF for 100 runs with r = 0.01

Table 4. Means of RMSEs for MHF with µ = 1.0 and KF with σt = 10
√
St

r
MHE KF

x1 x2 x3 x1 x2 x3

0.01 0.1742 0.7840 2.0577 0.4608 2.4653 2.1062
0.10 0.2198 0.7199 2.0099 0.4423 1.6763 2.0488
1.00 0.4702 1.3058 2.0794 0.8392 3.1265 2.1289
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Figure 9. Simulation run over 100 monte-carlo with multiple randomly-positioned outliers, MHF with
µ = 0.6 and pure EKF (no residual check)

Figure 10. Simulation run over 100 monte-carlo with multiple randomly-positioned outliers, MHF with
µ = 0.1 and KF with residual check of σt = 10

√
St

Figure 11. RMSES of MHF and EKF for 100 runs with r = 0.01 and different parameters ( µ and σt)

Table 5. Means of computational time in seconds over 100 runs

r
MHE EKF

µ = 0.1 µ = 0.6 µ = 1 σt =
√
St σt = 5

√
St σt = 10

√
St

0.01 6.4228 5.6620 6.2146 0.0156 0.0312 0.0112
0.1 7.5228 5.2210 6.3697 0.0067 0.0100 0.0075
1.0 7.5520 5.6076 6.2595 0.0083 0.0089 0.0103
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7. CONCLUSION
We have presented the problem of measurements contaminated by outliers in nonlinear systems using

moving horizon estimation approach. The estimation consider two cases, measurement affected by outlier, and
the other case where we suppose no outlier in the batch. The stability of the proposed moving horizon estimator
is discussed. The efficiency of such filter is discussed compared with the EKF and KF. Such KF/EKF turns
out to be sensitive to the choice of the threshold, while the proposed filter approach is easier to be tuned via
the selection of µ and more robust to outliers. The performance of the proposed method is illustrated by the
mean of simulation and RMSE result. One the challenges in such approach is the number of outlier presence in
the same window size as well as the challenge of computational complexity; which are considered for further
investigation in the future.
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