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 Sixth-generation (6G) applications require ultra-speed and large-capacity 

wireless communication services. Millimeter wave technology can be used to 

satisfy these requirements, especially at 28 GHz. This paper study used the 

Ansys® high-frequency structure simulator (HFSS) to design and simulate 

rectangular and slotted rectangular microstrip patch antennas (MSPAs) at 28 

GHz. The proposed designs contained a Rogers RT/Duroid® 5,880 substrate 

with a dielectric constant (εr) of 2.2 and a loss tangent of 0.0009. The 

performance of both the proposed antennas was compared to determine which 

was more efficient. This present study also used an adaptive network-based 

fuzzy inference system (ANFIS) to determine the optimal frequency and gain. 

The main objective of the manuscript is to use artificial intelligence (AI) to 

obtain the best design results for MSPA. The results indicated, with the use of 

AI, the gain of the rectangular and slotted antennas, was 6.3943 and 6.3094 

dB at an efficiency of 98.338% and 98.651%, respectively. 
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1. INTRODUCTION  

Multiple new methods of enhancing the performance of fourth-generation (4G) and fifth-generation 

(5G) cellular networks [1], [2] to satisfy evolving requirements and applications [3], [4] have emerged in recent 

decades. These requirements include high data rate, low latency, and connection reliability. However, 

designing antennas that function in millimeter wave sixth-generation (6G) networks is very challenging as 

millimeter wave technologies require a wide bandwidth (BW) and an antenna that is no more than a few 

millimeters in size [5]. Therefore, the challenge is to design an antenna that can consistently provide high 

performance while maintaining a small size, especially for portable devices [6]. Microstrip antennas have a 

low efficiency and narrow BW as well as substrate characteristics; such as dielectric constant (εr) and tangent 

loss; that negatively affect their performance [7]. With the evolution of wireless technology comes the need 

for antennas that are lightweight, low and compact, cheap to mass-produce, easy to install, conform with and 

without planar surfaces, and mechanically strong when placed on rigid surfaces [8], [9].  

Modern technologies such as millimeter wave technology [10], reconfigurable surface technology 

(RIS) [11], and massive multi-input multi-output (mMIMO) technology need efficient microstrip patch antenna 

(MSPA) design [12]–[14]. Several shapes of MSPA have been designed, including rectangular, circular, and 

different figures with or without a slot [15], [16]. Wideband MSPAs with a center frequency of 28 GHz have 

been designed for 5G wireless applications. The rectangular MSPA that an extant study developed had a 

frequency of 27.992 GHz with a return loss (S1,1) of -54.49 dB. The problem of mutual coupling with the 
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MSPA array was also decreased by 67.2% [17]. Another study used a new configuration of the MSPA array at 

a center frequency of 2.4 GHz [18]. Three distinct versions of microstrip antennas have been proposed for 5G 

applications operating at 28 GHz. An operating frequency of 28 GHz is considered acceptable for 5G antenna 

designs [19]. Novel design methods for square and rectangular patch antennas include neural networks and 

neuro-fuzzy (NF) systems. Multiple studies have used artificial neural networks (ANN) to estimate the resonant 

frequency of microstrip patch antennas at various lengths [20], [21]. An adaptive network-based fuzzy 

inference system (ANFIS) was used to add two slots of equal dimensions to a single-layer MSPA to correct 

the frequency. Another study proposed a new model of multiple ANFIS operating at frequencies of 2.68, 3.33, 

and 4.10 GHz. It also included a U-shaped MSPA with a slot to increase the BW range from 2 to 10.75 GHz 

[22]. An NF analytical approach has also been used to determine the operating frequency of a triangle ring 

MSPA used in ultra-wideband (UWB) applications [23]. 

This present study is structured as follows: section 1 provides an introduction while the section 2 

provides an overview of an ANFIS. The section 3 discusses the mathematical equations that were used to 

design the MSPA while the section 4 describes how an ANFIS was used in the proposed antennas. The section 

5 presents the final designs of the antennas and the results of each antenna while the section 6 presents the 

conclusions of this present study. 

 

 

2. ANFIS 

The fuzzy inference system (FIS) is comprised of multiple components (Figure 1). Its primary 

function is to compute imprecise and granular data and use membership functions to calculate numerical values 

for large and small datasets. The FIS originates from the concepts of fuzzy sets, fuzzy reasoning, and fuzzy if-

then rules. When required, an FIS can significantly aid in data classification. The procedures to be sequentially 

followed once the inputs and outputs of an FIS has been defined is described in the subsequent paragraphs [24]. 

The first fuzzification phase involves expressing the variables as fuzzy expressions and determining 

how dependent each variable is on the fuzzy set. As the membership functions have many different forms, 

those with a smooth shape may be effective. In the second stage, the statement level is evaluated and a few 

algebraic operators are used to perform the categorization task. The next stage calculates the activations of the 

applied rules. Lastly, the accumulation process connects all the outputs of the activations [25], [26]. 

 

  

 
  

Figure 1. A fuzzy inference system [20] 
 

 

3. MATHEMATICAL EQUATIONS FOR DESIGNING MSPA  

The parameters to be used for the rectangular microstrip antennas were calculated using equations 

obtained from [27]–[30]. These parameters are intrinsic to the initial design and include the following: the first 

parameter is antenna width (Wt). 
 

𝑊𝑡 =
𝐶
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(𝜀𝑟+1) 

2

 (1) 

 

Where C: the velocity of light. The second one is the effective dielectric constant (ℇreff). 
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The other parameter is the effective length. 

 

𝐿𝑒𝑓𝑓 =
𝑐

2𝑓𝑜√ℇ𝑟𝑒𝑓𝑓
 (3) 

 

The fourth parameter is fringe length (∆L) as (4): 

 

∆𝐿 = 0.412ℎ × {
(𝜀𝑟𝑒𝑓𝑓+0.3)(

𝑊𝑡
ℎ

+0.264)

(𝜀𝑟𝑒𝑓𝑓−0.258)(
𝑊𝑡

ℎ
+0.8)

} (4) 

 

The actual length L, as well as the width and length of the ground. 

 

𝐿 = 𝐿𝑒𝑓𝑓 − 2 ∗ ∆𝐿 , 𝐿𝑔 = 6ℎ + 𝐿 , 𝑊𝑔 = 6ℎ + 𝑊 (5) 

 

The feedline width represents the fifth parameter. 

 

𝑊𝑓 =
7.84ℎ

exp (𝑧𝑜
√𝜀𝑟 +1.41

87
)

− 1.25𝑡 (6) 

 

Where t is the thickness of the ground (mm) and zo is the input impedance (50 ohms). The important parameter 

is the feedline Insertion. 

 

𝐹𝑖 = 10−4{0.001699𝜀𝑟
7 + 0.13761𝜀𝑟

7 − 6.1783𝜀𝑟
5 + 93.187𝜀𝑟

4 − 682.69𝜀𝑟
3 + 2561.9𝜀𝑟

2 −

4043𝜀𝑟 + 6697}
𝐿

2
 (7) 

 

The following equations were used to analyse the slot on the patch: 
 

𝑍𝑖𝑛 =
1

1

𝑅1
+𝑗𝜔𝐶1+

1
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 (8) 
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𝑅1 =
𝑄
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 (11) 

  

Where εo is the permittivity of free space. Figure 2 shows the equivalent slot that was placed on the patch circuit. 

 

 

 
 

Figure 2. The equivalent slot circuit 

 

 

The equation that was used to calculate the reflection coefficient is as (12) and (13): 
 

Γ =
Zin−Zo

Zin+Zo
 (12) 

 

Return Loss = 20 log |Γ| (13) 
 

The last parameter is the voltage standing wave ratio (VSWR). 
 

VSWR =
1+|Γ|

1−|Γ|
 (14) 
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4. ANTENNAS IMPLEMENTED USING ANFIS 

4.1.  Rectangular antenna MSPA 

Figures 3 and 4 depict the fuzzy rules that were used to produce rectangular MSPAs with the best 

gain, directivity, and efficiency. Only phase was used as the inputs for each rule. The maximum directivity and 

gain occurred at phase 180°. Figure 5 shows the fuzzy rules that were used to obtain the best efficiency for the 

rectangular MSPA (28 GHz), for which the inputs were phase, gain, and efficiency. The output was at the 

maximum (1 for normalized value) when the gain and efficiency were equal. The structure of the ANFIS model 

was designed to maximize the directivity of the rectangular antenna at 28 GHz, with a Gaussian membership 

of 15 for 20 epochs as shown in Figure 6. The input was the angle, and the error was 0.009525. 

 

 

 
 

Figure 3. Fuzzy rules for a rectangular MSPA with the best directivity 

 

 

 
 

Figure 4. Fuzzy rules for a rectangular MSPA with the best gain 

 

 
Figure 7 illustrates the structure of the ANFIS model for the best gain in the rectangular MSPA at  

28 GHz, with a Gaussian membership of nine for 20 epochs. The input was the angle while the error was 

0.021193. The structure of the ANFIS model was designed to maximize the efficiency of the rectangular 

antenna at 28 GHz, with a Gaussian membership of three for seven epochs. The inputs were the angle, gain, 

and directivity while the error was 0.0021488. Table 1 lists the optimization objectives for the rectangular 

MSPA at 28 GHz in the ANFIS model. Figure 8 presents a 3D view of the rectangular antenna with the best 

efficiency at 28 GHz. As seen, the system performed most efficiently when the efficiency was 1. 
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Figure 5. Fuzzy rules for a rectangular MSPA with the best efficiency 

 

 

  
  

Figure 6. Structure of the ANFIS model for a 

rectangular MSPA with the best directivity 

Figure 7. Structure of the ANFIS model for a 

rectangular MSPA with the best gain 

 

 

Table 1. Optimization of the rectangular MSPA at 28 GHz 
Parameter Gain Directivity Efficiency 

Input 1 1 3 
MF type gaussmf gaussmf gaussmf 

MFs 9 15 3 3 3 

Epoch 20 20 7 
Error 0.021193 0.009525 0.0021488 

 

 

 
 

Figure 8. 3D surface of fuzzy system of the rectangular MSPA with the best efficiency 
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4.2.  Slotted rectangular MSPA 

Figures 9-11 show the fuzzy rules that were used to produce slotted rectangular MSPAs with the best 

gain, directivity, and efficiency, respectively. The structure of the ANFIS that was designed to produce slotted 

rectangular MSPAs with the best gain, directivity, and efficiency was identical to that of the rectangular MSPA 

(28 GHz), only with different membership and number of epochs (Table 2). Figure 12 shows the 3D surface 

of the fuzzy system of the slotted rectangular MSPA with the best efficiency. 

 

 

 
 

Figure 9. Fuzzy rules for a slotted rectangular MSPA with the best directivity 

 

 

 
 

Figure 10. Fuzzy rules for a slotted rectangular MSPA with the best gain 

 

 

 
 

Figure 11. Fuzzy rules for a slotted rectangular MSPA with the best efficiency 
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Table 2. Optimization of the slotted rectangular MSPA at 28 GHz 
Parameter Gain Directivity Efficiency 

Input 1 1 3 
MF type gaussmf gaussmf gaussmf 

MFs 10 15 3 3 3 

Epoch 25 20 7 
Error 0.01739 0.009525 0.00065512 

 

 

 
 

Figure 12. 3D surface view of a fuzzy system of the efficiency slotted rectangular MSPA 

 

 

The position of the patch affected the S1,1 and the VSWR plot which, in turn, affected the BW. 

Therefore, the slot on the patch also affected the BW. Table 3 shows the dimensions of the two proposed 

antennas.  

 

 

Table 3. Dimensions of the proposed antennas 
Symbol Dimension value (mm) 

Wt 4.2 

L 3.4 

Wg 7.235 
Lg 6.285 

h 0.5 

Wf 1.75 
Fi 1.25 

t 0.035 

Ls (slot) 1.9 
Ws (slot) 0.1 

 

 

5. FINALIZED ANTENNAS DESIGNS AND RESULTS  

The Ansys® HFSS was used to design the final antennas. Figure 13 shows a typical rectangular MSPA 

while Figure 14 shows the slotted rectangular MSPA that this present study proposes. Figures 15 and 16 show 

the S1,1 of every rectangular MSPA and slotted rectangular MSPA, respectively. 

 

 

  

  

Figure 13. The proposed rectangular MSPA Figure 14. The proposed slotted rectangular MSPA 
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Figure 15. S1,1 of the rectangular MSPA 

 

 

 
 

Figure 16. S1,1 of the slotted rectangular MSPA 

 

 

It was noted that the BW and S1,1 of the rectangular MSPA at the required frequency was 1.8 GHz and 

-19.47 dB, respectively. The rectangular slotted MSPA had a BW of 1.3 GHz and S1,1 of -18.214 dB at the 

desired frequency of 28 GHz. Figures 17 and 18 display the S1,1 of the rectangular MSPA and the slotted 

MSPA, respectively, where the VSWR was 1.8557 for the first antenna and 2.1487 for the second one. 

 

 

 
 

Figure 17. VSWR of the rectangular MSPA 
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Figure 18. VSWR of the slotted rectangular MSPA 

 

 

The directivity of first and second antennas are shown in Figures 19 and 20, respectively, while 

Figures 21 and 22 illustrate the gain for each rectangular MSPA and slotted rectangular MSPA, respectively. 

Meanwhile, Figures 23 and 24 display the radiation pattern of the two antennas in addition to their half power 

beamwidth (HPBW). Table 4 presents the detailed results of the proposed rectangular MSPA and the slotted 

rectangular MSPA. 

 

 

  
  

Figure 19. Directivity of the rectangular MSPA Figure 20. Directivity of the slotted rectangular MSPA 

 

 

  
  

Figure 21. Gain of the rectangular MSPA Figure 22. Gain of the slotted rectangular MSPA 
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Figure 23. HPBW of rectangular MSPA Figure 24. HPBW of the slotted the rectangular MSPA 

 

 

Table 4. Results of the proposed antennas 
Result Rectangular MSPA Slotted rectangular MSPA [31] [32] [33] 

Return loss (dB) -19.4701 -18.2144 -26.056 -17.83 -16.8 

VSWR 1.8557 2.1487 1.1048 1.2944 1.45 
Directivity (dB) 6.3943 6.3094 6.327 ------- 7.38 

Gain (dB) 6.3216 6.2503 5.7 12.013 7.01 

HPBW 74.1170 74.2796 81.49 ------- ------ 
Efficiency 98.338 98.651 86.64 ------- 92 

BW (GHz) 1.8 1.3 2.3865 0.44 0.68 

 

 

As seen in Table 4, the proposed rectangular and slotted MSPAs outperformed the [31] antenna in 

terms of gain, efficiency, and HPBW. It is clear from this comparison to obtain the excellent radiation 

efficiency. It is worth noting that the radiation efficiency of the proposed design is 98.338%, better than 92% 

for [33]. 

  

 

6. CONCLUSION 

Two types of MSPA antennas were designed within the millimeter wave range at the desired 

frequency of 28 GHz. The first as a rectangular MSPA, which achieved a 1.8 GHz bandwidth with an HPBW 

of 74.117°, while the second was a slotted rectangular MSPA, which achieved a BW of 1.3 GHz and a HPBW 

of 74.279°. It is noteworthy that the lower the HPBW, the lower the interference between the beams when the 

beamforming technique was used. An ANFIS was used to determine the best dimensions for the both the 

proposed antennas to improve their gain, directivity, and efficiency at the required frequency. Therefore, 

ANFIS is a new method of designing antennas for 6G applications. This technology can be successfully applied 

to the remaining 6G frequencies in the future.  
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