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 The key source of information for disease diagnosis and classification in 

paddy diseases is the leaves. Applying hybrid techniques, such as image 

processing-pattern recognition (IP-PR) and computer vision-based 

technologies, is the answer to assessing the health of plants. The following 

paddy diseases are considered in this paper: bacterial leaf blight (BLB), 

brown spot (BS), leaf smut (LS), and narrow brown spot (NBS) from the 

machine learning repository. A classical colour threshold-based 

segmentation method is implemented newly to separate the patterns of image 

pixels into the diseased part and the normal part. The human visual 

impression (VI), a subjective method, and a parametric-based method with 

an average error rate (ER) and overlap rate (OR) are used to assess the 

uniqueness of the suggested segmentation technique. Using a multi-class 

support vector machine (MSVM) classifier, the analysis yielded segmented 

images using the proposed method with an accuracy of 92% over the 

existing method with an accuracy of 76.60%. The BLB disease achieved the 

highest identification accuracy of 91%. Our proposed method evaluates the 

segmentation performance and achieved consistent accuracy higher than the 

previous segmentation work. 
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1. INTRODUCTION 

India's economy is dependent on agriculture. According to the 2011 Census, 54.6% of the workforce 

is employed in agricultural and related sector activities, which will account for 18.6% of India's gross value 

added (GVA) at current prices in 2021–2022 [1]. More than 3.5 billion people depend on rice for more than 

20% of their daily calories, making it the main food source for more than half of the world's population. In 

order to reduce crop loss and fulfil future rice demand, research on the use of entophytes to control these 

pathogens needs to be accelerated in light of the significance of rice and its numerous pathogen adversaries 

[2]. The typical approach to disease identification requires suggestions from experts and formers. 

The common diseases that damage rice plants are as shown in Figure 1. Their cause, symptoms are 

described as: Figure 1(a) shows bacterial leaf blight (BLB) caused by xanthomonas oryzae. The symptoms 

include leaf yellowing and seedling wilting. As the disease progresses, infected leaves fold up and turn a 

greyish-green colour before turning straw-coloured. The disease is particularly dangerous, as with the right 

environmental factors, it may result in 70% crop loss if it strikes early in the paddy crop [3]. Figure 1(b) 

shows brown spot (BS) grain's outer husk and the leaf's protective sheath are both infected by the fungus. The 

https://creativecommons.org/licenses/by-sa/4.0/
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symptoms are small, circular, yellow-brown, or brown lesions. Initial lesions may appear on leaves as small, 

dark brown to purple-BS in later stages with a grey centre and a reddish brown edge brought on by a fungus 

toxin [3]. Figure 1(c) shows leaf smut (LS) caused by entylomaoryzae fungi, is a widespread but somewhat 

less severe disease of rice. Angled and dark dots on both sides of the leaves are the disease symptoms. 

Infection is frequently severe enough to kill leaf tips [4]. Figure 1(d) shows narrow brown spot (NBS), the 

fungus sphaerulinaoryzina is the source of the disease. Light to dark brown, parallel, linear lesions on the 

leaves and sheath are the symptoms. The disease is distinguishable by linear lesions [3], which also have an 

impact on yield during rare epidemics. 

 

 

    
(a) (b) (c) (d) 

 

Figure1.Common rice diseases (a) BLB, (b) BS, (c) LS, and (d) NBS 

 

 

Azim et al. [5] proposed an effective feature extraction method for rice leaf disease classification, 

using a dataset prepared in [6]. The disease-affected areas are segmented using hue thresholds and distinct 

features from colour, shape, and texture domains are extracted from affected areas. These features can 

robustly describe local and global statistics of such images. 

In general, there are two categories of plant diseases: parasitic and non-parasitic. Pathogens, pests, 

and weeds are the main causes of parasite illnesses. The signs of the common rice disease, which is brought 

on by bacteria, viruses, and fungus, are visible on the leaf. By utilising the wavelet algorithm and contour 

grow approach, the segmentation's effectiveness on the health of the brinjal plant is assessed at 98%. 

Rangarajan and Purushothaman [7] proposed the normalised green-red difference index from a picture has an 

R-square value and a least mean square error of 0.86 and 0.1, respectively. This task is extremely application-

specific and essential to the computer vision system's successful operation [8], [9]. Thresholding based on the 

local, global, and Otsu methods is the main segmentation technique used in the detection and classification of 

the paddy/rice disease [10]–[13]. The K-means clustering for segmentation [14]–[16]. Segmentation methods 

such as active contour-based level set segmentation proposed in [15], super-pixel implemented in [17], mean 

shift in [18], and edge-based implemented in [19] are used. 

Khattab et al. [20] proposed a more advanced segmentation technique is colour image segmentation 

based on various colour spaces. Support vector machine, k-neural network, back-propagation, and neural 

network-based machine learning algorithms are used to identify/classify the various paddy diseases [7], [10], 

[12], [17], [19], [21]. These features include colour, texture, shape, statistical, co-occurrence matrix, and 

lesion features extracted from the segmented images as input vectors. Precision, recall, and dice metrics 

between the reference and segmented images are used to assess the effectiveness of the segmentation 

algorithms utilised in the investigation of vegetation diseases proposed in [22]. Additionally, the segmented 

image's structural elements, normalised cross-correlation, and peak signal-to-noise ratio in [18]. 

Barbedo [23] identified in comparison to consistent segmentation approaches, inconsistent 

segmentation will have an impact on the outcomes. In a controlled environment, segmentation performance 

will be impacted by lighting variations. Asfarian et al. [22] suggested any computer vision system must 

function well, and the segmentation approach that used is essential. The performance of image segmentation 

is evaluated with direct or indirect human involvement is performed in [24]. Zhang et al. [13] proposed the 

process of extracting information from an image is called image analysis. Size, shape, and noise contained in 

the components of the ground truth image have an impact on the segmentation approaches, which in turn 

have an impact on the outcomes of the image analysis. Kappali et al. [25] used higher segmentation 

approaches K-means segmentation, properly, and poorly segmented images are used to analyse the accuracy 

of the segmentation techniques. Many researchers use machine learning for classification to automate 

processes. A probabilistic neural network, fuzzy classification model, back propagation neural network, 

random forest method, support vector machine, decision tree, and convolutional neural network are used to 

attain a significant level of accuracy. The majority of researchers [11], [18], [22], [26], [27] address accuracy, 

cross-validation, performance plot, training state plot, and confusion matrix to assess the performance of 

classification models. 
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2. METHOD 

The procedures for identifying the paddy disease include image preprocessing, the process of getting 

an image ready for image segmentation. During the preprocessing stages, contrast enhancement, and image 

cropping are applied. The disease-affected area is separated from its background using image segmentation. 

A machine learning algorithm will classify images to determine the disease. Due to changes in environmental 

factors like light, distance, and backdrop, it is a very difficult task. 

 

2.1. Data resource 

The primary source of the dataset is the digitally captured field images. Secondary sources of data 

include the machine learning repository, for research purposes the source is indicated in Table 1. Which 

included commonly occurring diseases BLB, BS, LS, [28] and NBS [29] are added to increase the classes. 

These diseases are commonly occur in all regions and may be called by different names [5], [6]. Otsu 

thresholding and K-means segmentation methods are often used in the identification and classification of 

paddy diseases. When using the Otsu technique, the grey image intensities are used as a local or global 

threshold value, and when using K-means clustering, the number of clusters, window size, and seed point 

inputs are used [11], [30]. 

 

 

Table 1. Paddy disease dataset description 
Sl-No Data set details Classes of rice diseases 

1 Rice leaf diseases dataset BLB-40, BS-40, LS-40 
2 Rice leafs disease dataset NBS-40 

 

 

2.2. Proposed segmentation method 

The proposed image segmentation method for paddy disease uses the following steps as shown in 

Figure 2. The RGB and Lab colour spaces were taken into consideration for the proposed task. Red, green, 

and blue channels are the three main parts of an RGB colour image. The CIE Lab (CIE L* on *b*), often 

known as the Lab colour space, is made up of three colour ranges: a* from green to red, b* from blue to 

yellow, and L-lightness from black to white. You can determine the colour wavelength using (1) to (3): 

 

𝑋 = 𝐶λ (1) 
 

𝑥 =
𝑋

𝑋,𝑌,𝑍′
 (2) 

 

𝑦 =
𝑌

𝑋,𝑌,𝑍′
 (3) 

 

Where x denotes the desired colour and C denotes the speed of light, which is the constant multiplied by 

length. Colour attributes are defined as (X, Y). X stands for brightness parameters, (X, Y, Z) triple emitting 

values, and (X, Y) coordinates, which form the basis for all colours. The RGB colour space components are 

represented in terms of (3) as (4): 

 

𝑅 = 3.24054𝑋 − 1.537138𝑌 − 0.49853𝑍 

𝐺 = −0.96926𝑋  1.876010𝑌  0.04155𝑍 (4) 

𝐵 = 0.055643𝑋 0.204025𝑌 1.057225𝑍 

 

Similarly, the Lab colour space components are represented as (5): 

 

𝐿∗ = 116𝑓 (
𝑌

𝑌𝑛
) − 16  

𝑎∗ = 500 {𝑓 (
𝑋

𝑋𝑛
) − 𝑓 (

𝑌

𝑌𝑛
)}  (5) 

𝑏∗ = 200 {𝑓 (
𝑌

𝑌𝑛
) − 𝑓 (

𝑍

𝑍𝑛
)}  

 

The segmentation results are as shown in Figure 3, a visual interpretation was used to choose the 

right threshold value in each channel to segment the diseased part from the normal part of the leaf in the 

digital image, which consists of three matrix components of colour space. In Figures 3(a) and (c) shows 

original images of BS and NBS diseased leaf images, similarly Figures 3(b) and (d) shows the segmented 

images of BS and NBS diseased leaf images. 

https://www.kaggle.com/datasets/vbookshelf/rice-leaf-diseases
https://www.kaggle.com/datasets/dedeikhsandwisaputra/rice-leafs-disease-dataset
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Figure 2. Proposed segmentation method 

 

 

    
(a) (b) (c) (d) 

 

Figure 3. Segmentation results (a) BS original image, (b) BS segmented image, (c) NBS original image, and 

(d) NBS segmented image 

 

 

2.3. Performance evaluation 

The accuracy of the segmentation technique is a fundamental component of image-based disease 

analysis. Wang et al. [31] proposed that the classification algorithm is highly influenced by the segmentation 

performance; hence, the performance of the segmentation is assessed using subjective and parametric 

methods. 

 

2.3.1. Subjective evaluation method 

Based on the visual impression (VI) (good, average, and poor) derived from the group of 

professionals utilising a series of questionnaires regarding the output images, the original image and 

segmented image are evaluated by human intervention [7], [25]. 

 

2.3.2. Parametric evaluation method 

The segmented image and the masked images obtained in the segmentation are evaluated using the 

metrics error rate (ER) and overlap rate (OR) [32]. The proportion of pixels in the segmented image that is 

erroneously identified in comparison to the ground truth input image is measured by the ER, which is given by (6): 

 

𝐸𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 

 

The OR, which assesses how well the segmented picture and the ground truth image agree is 

provided by (7): 

 

OR =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (7) 

 

where true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). These 

parameters are commonly used performance parameters in image segmentation [7]. 

 

2.4. Paddy disease classification 

Based on the input, the classification methods are categorized as follows: 

 

2.4.1. Feature-based disease classification 

Disease classification based on statistical features extracted from segmented images is the primary 

use of classification models in agriculture automation [14], [15], [25], [33]. These features serve as the input 

vectors for support vector machines with multiclass classification algorithms. The key difficulty with  

feature-based classification is finding out which feature set is unique to which types of disease symptoms. 

 

2.4.2. Image-based classification 

The development of computer vision technology, assisted by machine learning, began by using the 

full digital image as the input vector for classification models and producing the output for diagnosing 

diseases [17], [26]. In both cases, the goal is to identify w ∈R^p and b ∈ R such that the prediction given by: 

Preprocessed  image Color thresholding Output images Evaluation
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Sign(W(T)(x)+b) is accurate for most samples for a given set of training images x i ∈R^p, i=1,….,n in two 

classes, and a vector  y∈〖{1,-1}〗^n. The prime objective is given by (8): 

 

min
𝑤,𝑏,𝜁

1

2
𝑊𝑇𝑤 + 𝐶 ∑ 𝜁𝑖

𝑛
𝑖=1  (8) 

 

Subjected toyi(WT𝜙(𝑥𝑖) + 𝑏) ≥  1 − ζi, where𝜁𝑖 ≥ 0, 𝑖 = 1, … …, C penalty terms, control the strength. To 

maximize the margin we are inculcating the hing loss, which is the popular kernel trick in the support vector 

machine given in (9) [34]: 

 

min
𝑤,𝑏,𝜁

1

2
𝑊𝑇𝑤 + 𝐶 ∑ max (0,1 − 𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏))𝑛

𝑖=1  (9) 

 

Multi-class support vector machine (MSVM) is used to compare segmentation's impact on 

classification. Model performance is measured by accuracy, precision, recall, and F1. We explore model 

accuracy and disease prediction probabilities next. 

 

 

3. EXPERIMENTAL RESULTS 

3.1.  Experimental setup 

This paper's work is implemented on a 64-bit Pentium(R) Dual Core CPU-ES300@2.60GHz device 

with 4 GB of RAM. MATLAB and the colour threshold tools are utilised. 20% of the data is for testing and 

80% is for training. We fine-tuned segmentation using the number of clusters and seed points for the  

K-means clustering technique. The suggested segmentation used image colour thresholds. 

 

3.2.  Results 

Applying conventional segmentation to images of paddy diseases such as BLB, BS, LS, and NBS 

yielded results. In the subjective evaluation, output images with questionnaires were given to farmers and 

domain experts to include VI. Table 2 shows response-based assessments. 

 

 

Table 2. VI on segmentation techniques 
Segmentation method VI 

Lab color model Good 

RGB color model Good 
Otsu thresholding Poor 

K-means clustering Poor 

 

 

The parametric evaluation uses (6) and (7) for error and OR. Parameters are specified for all 

diseases. Overlap and ER strengthen segmentation. Each disease class's average parameters are listed in 

Table 3. Colour threshold segmentation was appropriate for paddy vegetation diseases. RGB and Lab colour 

thresholding methods outperform K-means and Otsu segmentation methods for paddy diseases. Table 3 

shows that Lab colour model-based thresholding worked well across all diseases, with an average ER and OR 

of [36.8%, 96.9%] across all segmented disease images. While the K-means clustering and Otsu methods in 

the subjective method with poor VI and no correlation in the parametric method for all diseases failed to meet 

performance evaluation requirements, the colour threshold segmentation method has a highly acceptable 

correlation between ER and OR. 

 

 

Table 3. Average value of ER and OR 

Performance parameters 
Segmentation using 

Lab color threshold RGB color threshold Otsu thresholding K-means clustering 

ER (%) 36.8 41.4 73.0 100 

OR (%) 96.9 96.0 75.5 99.0 

 

 

Investigation is performed using MSVM on how segmentation affects BLB, NBS, BS, and LS 

paddy disease classification. Lab colour thresholding is compared to K-means clustering [7]. As shown in 

Table 4, BLB and NBS diseases are appropriately segmented and performed better than BS and LS, which 

have comparable symptoms. The segmentation strategy improved all disease classification, graphical 
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representations in Figure 4. Table 5 compares the classification performance of the MSVM with the 

statistical features obtained from K-means segmented images [1] and the proposed colour segmentation 

method, Figure 5 depicts it. 

 

 

Table 4. Paddy disease identification performance 

Paddy disease 
K-means Segmented images 

Accuracy (%) Precision (%) Accuracy (%) Precision (%) 

BLB 86 67 91 80 

NBS 59 78 90 100 

BS 56 38 73 67 
LS 40 40 70 60 

 

 

 
 

Figure 4. Graphical representation of paddy disease identification performance 

 

 

Table 5. Accuracy improvement in MSVM 
Disease classification using Accuracy (%) 

K-means [25] 76.60 

Proposed method 92 

 

 

 
 

Figure 5. Improvement in MSVM classifier accuracy 

 

 

3.3.  Discussion 

Segmentation extracts feature-based disease classification technique characteristics. Rangarajan and 

Purushothaman. [7] evaluates segmentation strategies using properly and poorly segmented images. The 

feature-based classification was more accurate with correctly segmented disease images. The colour 

threshold method is better at segmenting paddy diseases than K-means clustering [7]. Subjective and 

parametric evaluations assessed segmentation performance. The Lab colour segmentation model outperforms 

ER and OR, which are appropriately correlated. Images accurately identify diseases, but obtaining accurate 

features is difficult. Image-based classification performs considerably better than feature-based classification 

in this region. 
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4. CONCLUSION 

The Lab colour model uses entropy to distinguish diseased and healthy leaves based on the 

homogeneity of the pixels in the colour channels. A subjective and parametric method is used to evaluate 

segmentation's impact on classification performance. The parametric evaluation approach showed a 36.8% 

ER and a 96.9% OR for the Lab colour threshold. BLB and NBS have 91% and 90% classification accuracy, 

respectively. Mask images and segmented images improve paddy disease identification in different colour 

channels. The conventional MSVM approach had 92% accuracy, compared to 76.60% for feature-based 

classification. In paddy disease classification, similar symptoms like BS and LS require improved 

segmentation. Pixel-level segmentation of the normal and sick paddy leaf improves accuracy. The authors are 

also creating the regional dataset. 
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