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 This article provides a detailed evaluation of cutting-edge artificial 

intelligence (AI) approaches and metaheuristic algorithms for optimizing 

wind turbine location inside wind farms. The growing need for renewable 

energy sources has fueled an increase in research towards efficient and 

sustainable wind farm designs. To address this challenge, various AI 

techniques, including genetic algorithms (GA), particle swarm optimization 

(PSO), simulated annealing, artificial neural networks (ANNs), 

convolutional neural networks (CNNs), and reinforcement learning, have 

been explored in combination with metaheuristic algorithms. The goal is to 

discover optimal sites for turbine placement based on a variety of parameters 

such as energy output, cost-effectiveness, environmental impact, and 

geographical restrictions. The paper examines the advantages and 

disadvantages of each strategy and highlights current breakthroughs in the 

area. This assessment adds to continuing efforts to optimize wind farm 

design and promote the use of clean and sustainable energy sources by 

offering significant insights into current advances. 
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1. INTRODUCTION 

Wind power has emerged as an important actor in the global search for sustainable and eco-friendly 

energy resources [1], [2]. Wind farms, which are clusters of wind turbines, have proved their ability to 

capture clean and plentiful wind resources [3], considerably contributing to power generation [4]. The 

efficacy of a wind farm, on the other hand, is strongly hinging on the appropriate placement of turbines inside 

the defined region [5], [6]. The optimal configuration of turbines can have a considerable influence on energy 

output [7], operating efficiency, and economic viability [8]. As a result, academics and practitioners in the 

renewable energy sector have paid close attention to the placement issue [9]. To solve this issue, the 

combination of modern artificial intelligence (AI) techniques with metaheuristic algorithms has emerged as a 

viable path [10], giving creative and efficient ways for optimizing turbine placement. 

The topic of wind turbine positioning within farms has been extensively addressed in the literature, 

which reflects the rising relevance of renewable energy sources [11], [12]. To establish turbine placements, 

early studies frequently used manual or rule-based methods, but these approaches were restricted in their 

capacity to account complex and dynamic environmental elements. Researchers resorted to optimization 

approaches to determine ideal locations as computer power and data availability expanded. To solve this 

optimization problem, many metaheuristic methods such as genetic methods [13], swarm algorithm [14], and 

mimicking annealing [15] have been used. Furthermore, the usage of artificial neural networks (ANNs) [11] 
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and convolutional neural networks (CNNs) for analyzing spatial data and optimizing placements based on 

expected energy outputs has grown in popularity. Reinforcement learning has recently emerged as a viable 

method for agents to learn from interactions with the environment and make intelligent decisions on turbine 

placement [16]. Despite tremendous development in the field, a detailed analysis of the strengths and limits 

of various AI approaches and metaheuristic algorithms in wind turbine site optimization is required [17]. 

Given the importance pertaining to the efficient turbine’s place in parks of wind and the abundance 

of AI techniques available, this paper seeks to provide a complete evaluation of current ways to addressing 

this complicated topic. The next sections will go through several AI approaches in detail, the full range of 

optimization techniques comprises methods like particle swarm optimization (PSO) [18], simulated annealing 

(SA) [16], the powerful genetic algorithm (GA) [19], and ANNs. We will cover the underlying ideas, 

benefits, and limits of each approach as they apply to wind turbine site optimization. Furthermore, we will 

look at pertinent case studies and research findings that demonstrate the approaches' real-world relevance. 

The combination of these discoveries will help to improve knowledge regarding the current advancements in 

wind turbine site optimization, directing future research efforts and encouraging the implementation of more 

efficient and sustainable wind farm designs. 

 

 

2. METHOD 

This comprehensive review employs a systematic approach, involving extensive research, careful 

selection of relevant data from various sources, and rigorous analysis. It aims to offer an impartial and 

comprehensive overview of modern AI and metaheuristic algorithms used in optimizing wind turbine 

placement within wind farms [20]. 

 

2.1.  Research and reading 

In our investigation, we conducted an exhaustive exploration across reputable academic sources, 

with a specific emphasis on google scholar, to uncover and collate cutting-edge research in the realm of wind 

turbine placement optimization. By employing precise and contextually relevant search queries, our pursuit 

aimed to unearth novel and pertinent studies pertaining to this domain. Assembled papers were judiciously 

categorized based on their abstracts and introductions, facilitating the identification of salient contributions. 

With a meticulous approach, we systematically extracted crucial insights from each publication, cultivating a 

comprehensive grasp of the diverse landscape of AI methodologies and metaheuristic algorithms employed 

in the optimization of wind turbine siting. Moreover, the Figure 1 provides an illustrative representation, 

showcasing the evolution of research volume dedicated to wind farm layout challenges from 2011 to 2023. 

This methodical scrutiny and comparative analysis of scholarly literature endeavor to furnish a holistic 

panorama encompassing strengths, limitations, and recent strides in this pivotal facet of renewable energy 

generation. By ensuring the discerning extraction of knowledge from these evaluated works, our approach 

facilitates an all-encompassing evaluation of contemporary AI techniques for refining wind turbine 

placements within wind farms. 

 

 

 
 

Figure 1. Number of publications in years 

 

 

2.2.  Analysis 

In our quest to optimize wind farms and enhance wind energy extraction, our research focuses on 

the intricate realm of wind turbine placement. Employing a systematic approach, we extensively explore 
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reputable databases like Google Scholar, meticulously curating a comprehensive collection of relevant 

publications. Our refined search queries ensure the inclusion of cutting-edge research directly aligned with 

our objectives. 

Central to wind farm optimization is the wake effect (WE), a limitation on power production 

stemming from the slowing of wind due to turbine passage, creating turbulent wake regions. To amplify 

energy output, wake flow optimization (WFO) techniques, including wake management, are pivotal. Diverse 

wake models have emerged as shown in Table 1, each aiming to mitigate the WE impact. Notably, the 

established 1983 jensen wake model, illustrated in Figure 2, often forms the basis for assessing wake 

turbulence in wind farms. 

 

 

Table 1. WE model 
Wake models Year 

Jensen wake model  1983 

Ainslie eddy viscosity model  1985 

Katic park model  1986 

Dynamic wake meandering  2007 

 

 

 
 

Figure 2. Jensen model [21] 

 

 

Our methodical process involves meticulous categorization, guided by astute analysis of paper 

abstracts and introductions. This classification allows us to group papers based on unique strategies for wind 

turbine placement optimization, showcasing a diverse array of AI methodologies and metaheuristic 

algorithms. With a structured foundation, we delve into a comprehensive assessment of selected articles, 

extracting vital insights into methodologies, objectives, and outcomes. This in-depth understanding forms the 

basis for perceptive comparisons among various approaches, identifying the most promising AI methods and 

metaheuristic algorithms for achieving optimal wind turbine layouts. 

 

2.3.  Summary 

In summarizing the collective findings of literature, it becomes evident that the pivotal challenge in 

wind turbine placement revolves around mitigating the WE. This phenomenon significantly impedes energy 

production within wind farms, prompting a comprehensive examination of its intricacies. The WE emerge as 

a consequence of wind turbulence created when a free stream of wind traverses a wind turbine's rotor. 

Mathematically, the velocity deficit in the wake (V_deficit) and the total power extracted according to the 

jensen model (P_wake) can be expressed as (1) and (2): 

 

Vdeficit =
2.a.U

1+
2.a.x

D

 (1) 

 

Pwake =
1

2
. ρ. A. (1 − a). U3 (2) 

 

where: 

a represents the axial induction factor, U denotes the wind speed upstream of the turbine, x signifies the 

downstream distance from the turbine, D is the rotor diameter, ρ represents air density, and A denotes the 
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rotor area. The majority of literature adopts an objective function that combines cost considerations with total 

power output. Specifically, the cost metric introduced by mosetti serves as a cornerstone, defined by: 

 

Cost = N. (
2

3
+

1

2
e−0.00174N2

) (3) 

 

where N is the number of turbines. The overarching objective function, derived from this synthesis, 

encapsulates the endeavor to minimize the mosetti-defined cost while maximizing the total power extracted: 

 

F(x) =
Cost 

Ptotal
 (4) 

 

in general, the problem-solving process, depicted in Figure 3, encompasses a sequential optimization 

approach. This orchestrated methodology typically commences with inputting wind data and the number of 

turbines. The subsequent steps involve applying the jensen wake model to estimate wake-induced effects, 

followed by metaheuristic methods to iteratively optimize wind turbine positions. This dynamic optimization 

process ensures a holistic and systematic resolution to the intricate wind turbine placement challenge. 

Numerous methodologies have been extensively explored in the existing literature, each aiming to enhance 

the precise turbines position into the park and ultimately maximize electricity extraction. These diverse 

strategies should be categorized into the subsequent classes as shown in Figure 4: 

 

 

 
 

Figure 3. Representation of wind farm optimization layout using optimizarion approaches 

 

 

 
 

Figure 4. Different existing methods for wind farm optimization layout 
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3. RESULTS AND DISCUSSION 

Our endeavor to optimize wind farm layouts and enhance wind energy extraction has revealed a 

wide array of methodologies and algorithms. Our results provide a thorough glimpse into these approaches, 

showcasing their effectiveness in addressing the complex task of wind turbine placement optimization. From 

heuristic and metaheuristic methods to the incorporation of AI techniques, our findings contribute valuable 

insights to the advancement of renewable energy generation by strategically positioning turbines. 

 

3.1.  Heuristic algorithms 

The use of heuristic algorithms offers practical solutions to complex challenges, making them 

integral in wind farm optimization. Among these, the greedy algorithm stands out as a noteworthy heuristic 

method designed specifically for wind turbine placement. It excels in its localized approach, efficiently 

prioritizing turbine locations to maximize electricity generation. Its simplicity and efficacy make it 

particularly suitable for initial design considerations and quick assessments. This algorithm serves as a 

beacon within heuristic methods, effectively addressing turbine placement in wind farms. Its combination 

with advanced techniques underscores the ongoing commitment to optimize wind farm layouts and enhance 

energy extraction for a sustainable future [22]. Table 2 provides an extensive survey of outcomes achieved 

via the greedy algorithm approach, illustrating diverse enhancements in energy output across a spectrum of 

scenarios. 

 

 

Table 2. The main results obtained from greedy algorithm 
Name of method Ref. Application Input variables Benefits Limitations 
Greedy algorithm [22]–[25] Turbine placement 

in small wind farms 
- Wind data 

- Farm size 
Simplicity 

Suitable for quick assessments and 
preliminary layout designs 

Susceptible to local 

optima, may not explore 
the entire solution space 

 

 

3.2.  Metaheuristic algorithms 

3.2.1. GA 

The GA is a computational method inspired by natural selection and evolution. In wind turbine 

placement optimization, GA mimics genetic processes to iteratively refine turbine positions, aiming to 

maximize energy output while considering constraints. Through mechanisms like crossover and mutation, 

GA gradually converges towards optimal layouts. Table 3 summarizes the results of GA application for wind 

turbine placement, encapsulating references, applications, inputs, benefits, and limitations. This 

comprehensive information enhances our understanding of GA's efficacy in improving energy extraction and 

contributes to the advancement of wind farm design [26]. 

 

 

Table 3. The main results obtained from GA 
Name of 

method 

Ref. Application Input variables Benefits Limitations 

GA [13], [19], 

[26]–[30] 

Wind farm layout 

optimization 

- Wind data (speed, 

direction) 

- Number of turbines 

Global optimization, ability 

to handle large solution 

spaces, efficient and robust, 

Computationally 

expensive for large-

scale wind farms, 

 

 

3.2.2. PSO algorithms 

PSO is a widely utilized heuristic algorithm inspired by collective behaviors observed in nature. In 

wind turbine placement optimization, PSO simulates the dynamic movement of particles within a 

multidimensional solution space. Each particle's position is influenced by its historical best and the collective 

best position of the swarm. Across successive iterations, PSO navigates the optimization landscape, aiming to 

pinpoint turbine locations that maximize energy output while adhering to constraints [29]. 

To underscore its significance, we introduce a dedicated Table 4 that illustrates outcomes achieved 

through PSO. This case study offers a practical demonstration of the algorithm's power output results, 

encompassing both constant and variable wind speeds. This application sheds light on PSO's efficacy in 

optimizing turbine placement across varying wind conditions, adding to our broader understanding of its role 

in wind farm design [31]. The Table 5 encapsulates key aspects, including references, inputs, benefits, 

limitations, and the observed power output variations under different wind scenarios, further underscoring 

PSO's prominence and utility in the field. 
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Table 4. The main results obtained from GA 
Parameter PSO results 

Constant wind direction Variable wind direction 

Number of turbines 32 19 
Total power 16326.59 kW 9741.30 kW 

Efficiency 98.42% 93.90% 

 

 

Table 5. The main results obtained from PSO 
Name of 

method 
Ref. Application Input variables Benefits Limitations 

PSO [14], [18], 

[31]–[36] 

Optimizing turbine 

positions 
- Wind data 

- Number of 
turbines 

Synergy between 

optimization and prediction, 
better exploration of 

solution space 

May require careful tuning of 

parameters for optimal 
performance, can be sensitive to 

initial particle distribution 

 

 

3.2.3. Ant colony optimization algorithms 

Ant colony optimization (ACO) is a metaheuristic algorithm inspired by the collaborative behavior 

of ants in nature. Applied to wind turbine placement optimization, ACO emulates how ants establish 

pheromone trails to navigate and discover efficient paths. This algorithm iteratively adjusts virtual “ants” 

representing turbine locations, enabling exploration and exploitation to converge towards optimal solutions 

that maximize energy output while accommodating constraints [37], [38]. Notably recognized as a prevalent 

technique in this context, we provide a dedicated Table 6 presenting the results obtained through ACO. 

 

 

Table 6. The main results obtained from ACO 
Name of 
method 

Ref. Application Input variables Benefits Limitations 

ACO [15], 

[37]–[40] 

Wind turbine 

siting for power 

extraction 

- Wind data 

- Pheromone parameters 
Effective exploration of 

solution space through 

colony-based search, 

Computational overhead due 

to pheromone update and 

decision-making processes 

 

 

3.2.4. Sparrow search optimization 

Sparrow search optimization (SSO) is a contemporary metaheuristic algorithm inspired by the 

foraging behavior of sparrows. Within the domain of wind turbine placement optimization, SSO emulates the 

search patterns of sparrows as they seek optimal foraging locations. The algorithm iteratively adjusts 

potential turbine positions, employing a balance of exploration and exploitation to converge towards 

arrangements that maximize energy output while considering constraints [16]. Due to its relevance in wind 

turbine placement optimization, we offer a dedicated Table 7 that illustrates the outcomes stemming from 

SSO. 

 

 

Table 7. The main results obtained from SSO 
Name of 

method 
Ref. Application Input variables Benefits Limitations 

SSO [16] Wind farm layout 
optimization 

- Wind data 
- Sparrow parameters 

Fast convergence and 
effective exploration 

Limited studies and applications 
in wind farm layouts 

 

 

3.3.  AI methods 

AI techniques, notably ANNs, support vector machines (SVM), and fuzzy logic, play a pivotal role 

in advancing the domain of wind turbine placement optimization: 

ANNs: ANNs are computational models inspired by the human brain's neural structure. These 

networks consist of interconnected nodes, or “neurons”, that process information through layers. In the 

context of wind turbine placement, ANNs analyze various parameters, such as wind speed, direction, and 

topography, to predict optimal turbine locations. The network learns from historical data and adapts its 

parameters to enhance accuracy over time [41], [42]. 

SVM: SVM is a machine learning algorithm that identifies decision boundaries in multidimensional 

data. Applied to wind turbine placement, SVM aims to classify potential turbine locations as optimal or 
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suboptimal based on input features. By creating a hyperplane that maximizes the margin between classified 

points, SVM enhances turbine placement precision [43]. 

Fuzzy logic: fuzzy logic is a mathematical approach that deals with uncertainty and imprecision. In 

wind turbine placement optimization, fuzzy logic systems accommodate vague or ambiguous data, enabling 

the incorporation of qualitative assessments. By assigning degrees of membership to different categories, 

fuzzy logic aids in determining suitable turbine positions that balance multiple factors [44]. Table 8 provides 

a concise encapsulation of the outcomes achieved through the application of AI techniques, specifically 

ANNs, SVM, and fuzzy logic, in wind turbine placement optimization. 

 

  

Table 8. The main results obtained from AI methods 
Name of 

method 
Ref. Application Input variables Benefits Limitations 

ANNs [11], [41]–[52]  Power 
forecasting 

and turbine 

placement 

- Wind data 
- Historical data 

Non-linear modeling, ability 
to handle complex 

relationships, accurate 

predictions, adaptable to 
different wind farm 

configurations. 

Requires substantial 
computational resources, 

reliance on quality and 

representativeness of 
training data. 

SVM  Wind turbine 
placement 

and power 
prediction 

- Wind data 
- Historical 

data 

Effective in handling non-
linear relationships, robust 

against overfitting, accurate 
predictions for turbine 

performance. 

Performance may depend 
on kernel and hyper 

parameter selection, 
sensitivity to the choice 

of training data. 

Fuzzy 
logic 

 Wind farm 
optimization 

under 

uncertainty 

- Wind data Handling uncertainty and 
imprecision in wind data, 

incorporating expert 

knowledge for decision-
making in turbine placement 

optimization. 

Quality of fuzzy 
membership functions 

and rules significantly 

impact results, can be 
computationally intensive 

for large-scale wind 

farms. 

 

 

3.4.  Hybrid methods 

While the field predominantly explores individual methods, the concept of hybridization remains 

relatively unexplored. Existing literature primarily highlights a combined PSO-GA hybrid approach, 

indicating a gap in harnessing the full potential of hybrid methodologies. We provide a dedicated Table 9 

presenting the results obtained from the hybrid method. 

 

 

Table 9. Show the results obtained from the hybrid method 
Name of 

method 

Ref. Application Input variables Benefits Limitations 

Combined 

GA-PSO 

[53], [54] Wind farm 

layout 

optimization 

- Wind data 

- Number of 

turbines 

Synergy between optimization 

and prediction, enhanced 

robustness and efficiency, better 
exploration of solution space 

May require careful tuning of 

parameters for optimal 

performance 

 

 

3.5.  Discussion 

In the context of wind energy optimization, a diverse array of techniques showcases specific 

strengths and limitations, each tailored to different aspects of the optimization challenge. The greedy 

algorithm stands out for its efficient early assessments and rapid prototype generation. Conversely, the GA 

excels in complex solutions and global optimization, albeit with potentially heightened computational 

demands. PSO, when finely tuned, swiftly searches for optimal solutions, while ACO offers adaptability, 

requiring iterative refinement for optimal outcomes. Notably, the SSO method holds significant promise, 

despite its limited presence in current literature. ANNs and SVM prove adept at precise predictions while 

accommodating data complexities. Fuzzy logic's robust handling of uncertainty stands out, although its 

implementation complexity may introduce design considerations. Importantly, the GA and PSO have been 

extensively studied across various turbine counts, wind speeds, and directions. Rigorous comparisons 

between these methodologies, alongside other approaches, and provide a robust foundation for insightful 

findings and a comprehensive evaluation. 

Undoubtedly, the amalgamation of AI methods and metaheuristic algorithms holds more advantages 

than AI methods alone, as metaheuristic algorithms aim to optimize the inputs of AI methods. When 

comparing the frequency of utilization, particularly in AI methods, it becomes evident that PSO and GA are 
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recurrently employed. Remarkably, this combination approach remains relatively underexplored, with few 

instances in existing literature. This study proposes a novel integration of the ANN algorithm with PSO, 

aiming to synergize their strengths for enhanced wind farm layout optimization. By initially pinpointing the 

optimal turbine positions using PSO and subsequently validating or suggesting adjustments using ANN based 

on historical wind data, a comprehensive and effective optimization strategy can be achieved. This hybrid 

methodology holds potential for unlocking superior outcomes and advancing the quest for greener and more 

sustainable energy solutions. 

 

 

4. CONCLUSION 

In summary, this study has extensively explored strategies for optimizing wind turbine siting in 

wind farms, encompassing heuristic and metaheuristic algorithms along with AI techniques. Each approach 

offers distinct advantages and limitations in predicting optimal turbine positions for enhanced power 

extraction. The fusion of AI methods with metaheuristic algorithms emerges as a promising avenue, 

capitalizing on their complementary strengths. Notably, PSO stands out as a prevalent metaheuristic 

algorithm paired with AI techniques. Looking ahead, our perspective includes combining AI and 

metaheuristic methods to leverage their respective advantages and tackle complex cases of variable wind 

speed, direction, and turbine hub height. This holistic approach aims to provide innovative solutions to 

intricate wind energy optimization scenarios. Our ongoing research endeavors are dedicated to advancing a 

sustainable and energy-efficient future, where wind energy contributes significantly to a greener and resilient 

world. 
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