
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 22, No. 2, April 2024, pp. 380~392

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v22i2.25641  380

Journal homepage: http://telkomnika.uad.ac.id

Hybrid technique for optimal task scheduling in cloud

computing environments

Nihar Ranjan Sabat1, Rashmi Ranjan Sahoo2, Manas Ranjan Pradhan3, Biswaranjan Acharya4
1Faculty of Engineering, Biju Patnaik University of Technology (BPUT), Rourkela, India

2Center of Excellence on Cyber Security and Cloud Computing, Department of Computer Science and Engineering, Parala Maharaja

Engineering College (PMEC) affiliated to Biju Patnaik University of Technology (BPUT), Berhampur, India
3School of Computing, Skyline University College, Sharjah, United Arab Emirates

4Department of Computer Engineering-AI and Big Data Analytics, Marwadi University, Gujarat, India

Article Info ABSTRACT

Article history:

Received Jun 16, 2023

Revised Nov 18, 2023

Accepted Dec 9, 2023

 Since cloud computing has an abundance of users, the system has to execute

a wide range of tasks. Task scheduler methods that are both robust and

efficient while delivering the best outcomes are required. The task volume and

runtime in the cloud vary rapidly, making task assessment and resource

mapping difficult. Security issues, communication delays, and data loss are

substantial barriers to scheduling. Furthermore, optimization techniques can

be utilized to reduce load and assign tasks so that the user can finish tasks

faster. This paper offers a hybrid job scheduling technique for cloud

computing using adaptive particle swarm optimization and ant colony

optimization particle swarm optimization-ant colony optimization (adaptive

PSO-ACO). After rapidly finding the initial solution via particle swarm

optimization, the ant colony optimization approach establishes its first

pheromone distribution. The suggested hybrid algorithm is compared to

standalone PSO and ACO algorithms. Compared to ACO, the percentage

decrease is 7.9%. Hybrid method has the lowest total cost, 55% less compared

to PSO. Tasks vary when virtual machines (VMs) are constant and VMs vary

when tasks are constant. Parameters like final cost, makespan, fitness value,

computation time and weighted time are assessed to evaluate the performance

of the hybrid task scheduling algorithm.

Keywords:

Ant colony optimization

Cloud computing

Job scheduling

Load balancing

Particle swarm optimization

Task scheduling

This is an open access article under the CC BY-SA license.

Corresponding Author:

Biswaranjan Acharya

Department of Computer Engineering-AI and Big Data Analytics, Marwadi University

Rajkot, Gujarat-360003, India

Email: biswaacharya@ieee.org

1. INTRODUCTION

The emergence of cloud computing has had a profound and transformational effect on the field of

computer technology [1]. The services provided supply consumers with accessible resources, allowing them to

effectively and adaptively modify their scale [2]. Multiple virtual machines (VMs) can potentially coexist on a

single host within the data center [3]. The scheduling of tasks is a crucial component inside the cloud computing

environment [4]. There exist three main categorizations metaheuristic like population based algorithms, swarm

intelligence algorithms and evolutionary algorithms [5]. The concept of self organized agents in swarm

intelligence (SI) exemplifies the operation of the collective entity [6]. Algorithms grounded in imitation have been

developed within the domain of social intelligence (SI) [7], [8]. The balanced candidate suffrage value (BCSV)

scheduling technique proposed by Chiang et al. [9] enables improved job scheduling. Liu [10] has proposed an

adaptive task scheduling methodology utilizing the ant colony algorithm (ACO). A novel hybrid algorithm based

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control 

Hybrid technique for optimal task scheduling in cloud computing environments (Nihar Ranjan Sabat)

381

on the whale optimisation algorithm (WOA) was presented by Manikandan et al. [11]. Guo [12] proposed a fuzzy

self defense based multiobjective task scheduling optimization approach. The challenge of work scheduling is

addressed by incorporating a hybrid fuzzy C-means clustering system [13] and black widow optimization.

− Motivation

For any activity, there are hundreds of digital instruments available. The user is unable to effectively

delegate tasks to virtual resources. The cloud computing mechanism must be improved so that service providers

can reduce resource utilization costs while increasing profit from client application support. The scheduling

system manages a large number of cloud-based tasks to improve completion times, resource productivity,

ultimately, and computing power.

Data loss, increased communication delays, and security are all scheduling challenges. Furthermore,

the optimisation algorithm can be used to effectively allocate tasks and reduce load. As a result, the user is able

to complete all assigned tasks in less time. Furthermore, in a cloud environment, the number and duration of

tasks can change rapidly, making it difficult to measure all tasks and conduct optimal resource mapping.

Consequently, it is necessary to develop an optimal scheduling algorithm that can manage tasks effectively so

as to reduce excessive loads and increase computing efficiency. Incorporating the ACO and particle swarm

optimization (PSO) methodologies, the present study introduces a novel hybrid approach to the challenge of

task scheduling in cloud computing systems.

− Contribution

The following is a succinct overview of the significant accomplishments that have been attained

through this research.

i) To design and implement an improved task allocation algorithm that effectively distributes tasks across

various computer resources for users.

ii) To perform efficient task scheduling by incorporating the positive aspects of PSO and ACO for resource

utilization.

iii) To reduce the task’s execution time and costs associated with task execution.

iv) To conduct a test study of the proposed methodology using the cloudsim simulator and compare the

performance of the proposed and existing systems in terms of performance metrics such as makespan,

final cost, and execution time.

The remainder of the paper is organized as follows: section 2 presents the relevant literature on task

scheduling in a cloud environment. Section 3 describes the method. Section 4 presents the simulation results

and discussions. Section 5 concludes the paper with an overview of future research.

2. LITERATURE SURVEY

The resource and deadline aware dynamic load-balancer (RADL) task scheduler distributes

computationally complex tasks equitably in autonomous runtime jobs [14]. Energy efficient virtual machine

mapping algorithm (EViMA) increases task scheduling and resource management to reduce data cost,

execution time, and energy consumption [15]. The scheduling algorithm (SOSA) has been designed with the

purpose of performing job scheduling in a unique manner [16]. Through the utilisation of end-user weights, a java

approach is able to optimise process scheduling while concurrently reducing both the makespan and the execution

cost [17]. Genomics and quasi-reflection-based learning improved firefly over meta-heuristic firefly [18].

Movement and pollination, which have the highest exploitation-exploration tenacity, can be improved by

modifying the sun flower optimisation algorithm [19]. For better cloud performance and urgent concerns, local

pollination-based moth search algorithm (LPMSA) optimizes the cloud-based assignment of tasks using flower

pollination and moth search algorithms [20]. Multi-object searching approach spacing multi-objective antlion

algorithm (S-MOAL) decreases VM makespan and consumption cost [21]. Binary particle swarm optimization

(BPSO) distributes applications among VMs, optimizes QoS, and meets end-user expectations, but its

inefficient transfer function makes it a suboptimal option [22].

Black widow optimization (BWO) and adaptive neuro-fuzzy inference system (ANFIS) allocate tasks

to the right VM and optimize environmental resource consumption [23]. Non-decomposition large-scale global

optimisation (N-LSGO) algorithm reduces population density loss and early convergence in six phases to

obtain an optimal solution [24]. Multi-objective workflow optimisation strategy (MOWOS) splits down large

tasks into smaller subtasks to decrease makespan, execution, and workflow scheduling [25]. Genetic-based

multi-objective scheduling for cloud-based scientific workflow scheduling optimizes cost, makespan, and load

balancing to overcome cloud variations in environments, service quality, task dependencies, and user deadlines

[26]. Hybrid weighted ant colony optimisation (HWACOA) optimizes job scheduling and minimizes cloud

computing costs [27]. Kumar and Tyagi [28] distances assign task clusters to processors to demonstrate fuzzy

system performance and optimal response time. Two hybrid genetic algorithms (HGAs) improve GA

convergence, system cost, response time, and distributed real-time system reliability via new encoding,

population initialization, and genetic operations [29]. Integrating local and global search methods improves the

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 380-392

382

convergence rate of the proposed PSO-based strategy for solving a distributed computing system assignment

problem [30]. Table 1 provides an extensive overview of scheduling approaches from the literature.

A comprehensive analysis was carried out to explore different scheduling strategies that have been outlined

previously in the literature. In a cloud computing environment, task scheduling is a major concern.

Table 1. Comparison of existing scheduling algorithms in the literature
Author and year Scheduling algorithm Appplication

Nabi et al. [14] (2022) Resource and deadline aware dynamic load-
balancer (RADL)

Cloud-based task scheduling utilising cloud computing
technology to effectively manage and allocate tasks.

Konjang et al. [15]

(2022)

Energy efficient virtual machine mapping

algorithm (EViMA)

Perform efficient task scheduling while effectively

managing the environment’s resources.
Kumar and Suman

[16] (2022)

Sailfish optimization-based scheduling

algorithm (SOAS)

Enhance the quality of service for a range of

technologies, including mobile computing and the

internet of things, to manage the NP-hardness of the task
scheduler.

Gupta et al. [17]

(2021)

Java-based algorithm for workflow scheduling Reduce the makespan and execution cost and to generate

a result based on end-user-specified weights.
Bacanin et al. [18]

(2022)

Improved firefly algorithm Effectively addresses the problem of workflow

scheduling in edge-based cloud environments by using

quasi-reflection-based learning methods and genetic
operators.

Chandrasekar and

Krishnadoss [19]
(2022)

Opposition-based sunflower optimization

(OSFO) algorithm

Balance exploration and exploitation searches with

optimal tenacity to optimise the task scheduler’s
makepan and execution cost.

Gokuldhev and

Singaravel [20]
(2022)

Local pollination-based moth search algorithm

(LPMSA)

Determine the best way to distribute tasks in a cloud

environment to maximise efficiency and address pressing
issues.

Belgacem et al. [21]

(2022)

Spacing multi-objective antlion algorithm

(S-MOAL)

Respond to user resource requests in a timely and

effective manner by reducing VM makespan and
consumption cost.

Kumar et al. [22]

(2020)

Binary particle swarm optimization (BPSO) Equitable application distribution among VMs, QoS

optimisation, and end user requirements fulfillment.
Nanjappan et al. [23]

(2021)

Adaptive neuro-fuzzy inference system

(ANFIS)-black widow optimization (ANFIS-

BWO)

Assign each task to the right VM.

Shahraki and Zamani

[24] (2021)

Diversity-maintained multi-trial vector

differential evolution algorithm for non-

decomposition large-scale global optimization
(DMDE)

Reduce population density loss and premature

convergence.

Sardaraz and Tahir

[25] (2020)

Multi-objective scheduling algorithm for

scheduling scientific workflows

Enhance workflow scheduling by reducing makespan

and execution costs.
Konjaang and Xu [26]

(2021)

Multi-objective workflow optimization strategy

(MOWOS)

Optimise load balancing, cost, and makespan during

scientific workflow scheduling.

Chandrasekhar [27]
et al. (2023)

Hybrid weighted ant colony
optimization algorithm

Lower the makespan and cost of cloud computing while
optimizing performance.

Kumar and Tyagi [28]

(2020)

Hierarchical clustering task allocation model Maximize the utilization of resources, partition tasks, and

allocate them strategically.
Kumar and Tyagi [29]

(2021)

Hybrid approach for scheduling tasks Reduce system costs and response time, maximize

system reliability.
Karishma and Kumar

[30] (2023)

PSO-based metaheuristic algorithm Decrease system costs, response time, and flowtime by

boosting performance.

3. METHOD

VMs can be provisioned using cloudsim on two different levels. Figure 1 depicts the impact of various

provisioning policies on task unit execution for VMs and tasks in Figure 1(a); Figure 1(b) space-shared

provisioning for VMs and time-shared provisioning for tasks; Figure 1(c) time-shared provisioning for VMs,

space-shared provisioning for tasks; and Figure 1(d) time-shared provisioning for VMs and tasks. A request to

host two virtual machines (𝑉𝑀𝑠) with each needing two processing cores and planning to house four task units

is made to a VM host with two processing cores.The tasks 𝑡1, 𝑡2, 𝑡3 and 𝑡4 will be hosted by 𝑉𝑀1, and the tasks

𝑡5, 𝑡6, 𝑡7 and 𝑡8 will be hosted by 𝑉𝑀2. Figure 1 presents a straightforward virtual machine provisioning

scenario. A VM host with two processing cores receives a request to host two 𝑉𝑀𝑠. 𝑉𝑀1 will be used to host

the tasks 𝑡1, 𝑡2, 𝑡3 and 𝑡4, while 𝑉𝑀2 will be used to house the tasks 𝑡5, 𝑡6, 𝑡7 and 𝑡8. A job controlled by a VM

may have its estimated finish time, 𝑒𝑓𝑡 (𝑝) which is supplied by (1).

𝑒𝑓𝑡(𝑝) = 𝑒𝑠𝑡(𝑝) +
𝑟𝑙

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦×𝑐𝑜𝑟𝑒𝑠(𝑝)
 (1)

TELKOMNIKA Telecommun Comput El Control 

Hybrid technique for optimal task scheduling in cloud computing environments (Nihar Ranjan Sabat)

383

(a) (b)

(c) (d)

Figure 1. Impact on task unit execution of various provisioning policies in (a) for VMs and tasks, space-shared

provisioning; (b) space-shared provisioning for VMs and time-shared provisioning for tasks; (c) time-shared

provisioning for VMs, space-shared provisioning for tasks; and (d) time-shared provisioning for VMs and tasks

Where 𝑟𝑙 represents the total amount of processor instructions needed to run the cloudlet and 𝑒𝑠𝑡(𝑝) is the

estimated start time of the cloudlet. This policy uses (2).

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = ∑
𝑐𝑎𝑝(𝑖)

𝑛𝑝

𝑛𝑝

𝑖=1
 (2)

𝑐𝑎𝑝(𝑖) represents each constituent’s processing power.

𝑒𝑓𝑡(𝑝) = 𝑐𝑡 +
𝑟𝑙

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦×𝑐𝑜𝑟𝑒𝑠(𝑝)
 (3)

Where 𝑒𝑓𝑡 (𝑝) is the estimated finish time, 𝑐𝑡 is the current simulation time, and cores (𝑝) is the number of cores

(𝑃𝐸𝑠) required by the cloudlet. In this case, the cloud host’s overall processing power is calculated as (4).

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
∑ 𝑐𝑎𝑝(𝑖)𝑛𝑝

𝑖=1

𝑚𝑎𝑥(∑ 𝑐𝑜𝑟𝑒𝑠(𝑗)𝑛𝑝
𝑗=1

,𝑛𝑝)
 (4)

It is proposed to utilise a hybrid adaptive PSO-ACO technique that combines the strengths of both algorithms.

Use the system 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (𝐹) to determine the fitness value of each particle 𝑗. This system fairness is defined

for 𝑘 tasks (𝑡1, 𝑡2, … … . , 𝑡𝑘), their related fairness values (𝑓1, 𝑓2, … … . , 𝑓𝑘) and represented by (5).

F = ∑ |Fj|
k
j=1 (5)

In the proposed research, the optimized fitness value of each particle is compared to its previous best

position (𝑝𝑏𝑒𝑠𝑡). If the current 𝑝𝑏𝑒𝑠𝑡 value is better than the previous 𝑝𝑏𝑒𝑠𝑡 values, it is designated as the

particle’s best value. These factors are calculated in order to figure out inertia weight in a swarm 𝑆. The swarm’s

current average fitness is represented by (6).

𝐹𝑎 =
1

𝑆
∑ 𝐹𝑗

𝑆
𝑗=1 (6)

The group fitness 𝐺 is provided by (7).

𝐺 = 1 −
1

𝑆
∑ (𝐹𝑗 − 𝐹(𝑎))

2
𝑆
𝑗=1 (7)

Each particle position is represented with respect to group fitness 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3 … … . . , 𝑥𝑖𝑛) and

the corresponding velocity is shown as 𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3 … … . . , 𝑣𝑖𝑛) that can be obtained by

𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3 … … . . , 𝑝𝑖𝑛) denotes the best prior position of any particle. The updated rules for both velocity

and position in the adaptive PSO are (4) and (5), respectively. Velocity is denoted as (8).

𝑉𝑖 = 𝑤 ∗ 𝑉𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑃𝑖 − 𝑋𝑖) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑃𝑖 − 𝑋𝑖) (8)

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 380-392

384

Group fitness is represented as (9):

𝑋𝑖 = 𝑋𝑖 + 𝑉𝑖 (9)

Where 𝐶1 and 𝐶2 are the socalled “self cognitive” and “social learning” acceleration coefficients respectively, and

𝑤 is the inertia weight. The rand () function can generate a random number in the range[0,1]. The mathematical

representation of the cross entropy and logarithmic loss is expressed as (10) and (11):

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) = ∑ [𝑦𝑗𝑙𝑜𝑔 (𝑝(𝑦𝑗))]𝑀
𝑗=1 (10)

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ [𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)]𝑁

1 (11)

The probability of selecting a certain item within a loop is denoted by the notation 𝑝(𝑦𝑗). The variable

𝑁 represents the total number of items. The variable (𝑦𝑖) represents the output of the 𝑖𝑡ℎ item. The variable

(𝑝𝑖) represents the likelihood of an event occurring, where (𝑝𝑖) is equal to 1. Conversely, the probability of

the event not occurring is represented by (1 − 𝑝𝑖), where 𝑝𝑖 is equal to 0. The value of the position vector must

adhere to the binary constraint of either 0 or 1 [31]. The formula for determining transition probability for the

initial 𝑛 ants within a given time frame 𝑡, when said node is not included in the taboo table of ant 𝑛, can be

expressed as (12).

 𝑃𝑎𝑏
𝑛 =

[𝑅𝑎𝑏(𝑡)]𝜑[𝐼𝑎𝑏(𝑡)]𝜔

∑ ∉𝑇𝑛𝑦𝑎𝑏
[𝑅𝑎𝑏(𝑡)]𝜑[𝐼𝑎𝑏(𝑡)]𝜔 (12)

Where 𝑛 be a variable ranging from 1 to 𝑣, where 𝑣 is a constant. Additionally, let 𝑅𝑎𝑏(𝑡) represent

the remaining pheromone on 𝑦𝑎𝑏 at time 𝑡. The data that serves as motivation is derived from 𝐼𝑎𝑏(𝑡). The data

volume and the heuristic data can be quantified by the relative degrees 𝜑 and 𝜔, respectively. When an ant

selects 𝑦𝑎𝑏 at time 𝑡, a designated set of nodes will be appended to 𝑇𝑛. The amount of information contained

in the 𝑝𝑎𝑡ℎ(𝑎, 𝑏) is determined by (13).

𝛥𝑅𝑎𝑏
𝑛 (𝑡) = 0 𝑜𝑟

𝑧

𝐼𝑎𝑏
𝑛 (𝑡)

 (13)

The pheromone can be updated at a local level by employing the (14).

(𝑎, 𝑏). 𝑅𝑎𝑏(𝑡 + 1) = 𝑅𝑎𝑏(𝑡)(1 − 𝜉) + ∑ 𝛥𝑅𝑎𝑏

𝑛 (𝑡)𝑣
𝑛=1 (14)

Where 𝜉 is the pheromone volatilization coefficient [0, 1]. 1− 𝜉 is the information remaining coefficient.

The algorithm proposed was implemented in cloudsim. Cloudsim can model, simulate, and explore

cloud systems. The core of cloudsim are datacenters, hosts, VMs, cloudlets, and brokers. This process maps

customer requests to the best provider. Time shared scheduling allows multiple virtual machines to run

simultaneously.

Algorithm Proposed adaptive PSO-ACO algorithm

Input: Tasks 𝑇𝑝, 1 ≤ 𝑝 ≤ 𝑛 and virtual machines 𝑉𝑀𝑘 , 1 ≤ 𝑘 ≤ 𝑛

Output: Scheduled task order

 1: Randomise particle 𝑗′𝑠 positions and velocities.

 2: Calculate 𝑗′𝑠 fitness using system fairness.

 3: Evaluate the swarm’s estimated mean fitness.

 4: Find the optimal particle and swarm values.

 5: Update the inertia weight.

 6: Refresh the particle positions and velocities.

 7: Assess group fitness, variety, and adjustment function to calculate inertia weight.

 8: Create an undirected network using velocity and distribution relationship matrices.

 9: Calculate 𝑦𝑎𝑏transition probability.

 10: Choose 𝑦𝑎𝑏 at time 𝑡 by ant 𝑛 .

 11: Update 𝑇𝑛 with the precise nodes and assign the task to a virtual machine.

 12: Use path information to locally update node’s pheromone.

TELKOMNIKA Telecommun Comput El Control 

Hybrid technique for optimal task scheduling in cloud computing environments (Nihar Ranjan Sabat)

385

4. RESULTS AND DISCUSSION

In order to conduct the result analysis, the simulation is carried in two different scenarios: (i) by

keeping the fixed number of VMs and cloudlets (tasks) and (ii) by varying the both VMs and cloudlets.

In scenario (i) best makespan, best fitnesss value, total cost, total computation time, and total weighted time

are considered as performance metrics to assess the proposed methodology in comparison to other algorithms.

In scenario (ii) the performance analysis is conducted by using three critical parameters such as final cost,

execution time, and final makespan. Furthermore, statistical analysis such as one way analysis of variance

(ANOVA), five paired t-test are performed to compare the makespan among various algorithm.

4.1. Comparison of results with fixed number of cloudlets

The cloud execution time chart, datacenters used, scheduling time, and start and finish times are all

shown in Table 2. In the result analysis, a fixed number of five virtual machines are used along with ten

cloudlets. A chart demonstrating the cloud’s execution time is included, along with the scheduling, start and

finish times for each of the three data centres. The graphical representation of the cloud execution time chart

is shown in Figure 2. The results of the PSO algorithm [11] and the ACO algorithm [12] are compared with

the proposed PSO-ACO algorithm. We obtained several significant performance metrics, including the best

fitness value, the best makespan value, the total cost value, the total computation time, and the total weighted

time, by simulating the aforementioned methods. Table 3 displays a comparison of the simulation results

produced by the suggested technique and the existing PSO and ACO approach.

Table 2. Cloud execution time chart
Cloudlet ID Status Data center ID VM ID Scheduling time Start time Finish time

0 Success 3 0 61 0.1 62

1 Success 3 0 61 0.1 62
2 Success 3 1 62 0.1 63

3 Success 3 1 62 0.1 63

4 Success 3 2 63 0.1 64
5 Success 3 2 63 0.1 64

6 Success 3 3 64 0.1 65

7 Success 3 3 64 0.1 65

8 Success 3 4 65 0.1 66

9 Success 3 4 65 0.1 66

Figure 2. Cloud execution time chart

Table 3. Comparison of results
Algorithm Best fitness value Best makespan Total cost Total computation time Total weighted time
PSO [11] 4786.127043 2620.772051 1574.17712 39354.428 1.37E+08

ACO [12] 9146.792102 11579.63127 3688.222622 147528.9049 6.29E+07

Adaptive PSO-ACO 1792 918.08 704 46080 9764812.5

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 380-392

386

A comprehensive analysis of several key performance metrics has been provided, encompassing the

following: best fitness value, best makespan, total cost, total computation time, and total weighted time. Figure 3

depicts a comparison of the best fitness values attained by the hybrid algorithm proposed in this research, in

relation to the PSO and ACO algorithms. The ACO algorithm achieves its best fitness value at a maximum of

9146.79. The proposed hybrid algorithm exhibits the lowest value, which is recorded as 1792. Figure 4 presents

a comparison of the best makespan values.

The proposed hybrid algorithm achieves the lowest makespan value of 918.08. Figure 5 presents a

comparison of the total computation time. The proposed hybrid algorithm achieves the shortest computation

time of 46080 seconds. In Figure 6, the total weighted time is compared. It was established that the proposed

method required the shortest total weighted time, which was visually represented in the comparison.

Figure 3. Comparison of best fitness values Figure 4. Comparison of best makespan values

Figure 5. Comparison of total computation time Figure 6. Comparison of total weighted time

4.2. Comparison of results with varying number of cloudlets

In the realm of VMs, the task allocation process has been effectively executed. To facilitate the execution

of our study, we have opted to utilize a sample including ten VMs that exhibit different numbers of VMs and tasks.

In the context of conducting performance analysis, three key metrics to consider are execution time, final makespan,

and final cost. The evaluation of these three important metrics involves the configuration of different numbers of

VMs and tasks, such as (5, 5), (5, 10), (10, 10), and so on.

4.2.1. Execution time

The total time required for the completion of a task after its start is commonly known as the execution

time. It’s vital to analyse a task’s structure in order to accurately estimate its execution time. Thus, each phase

begins and ends distinctly. The phase would begin or end with waiting for input or delaying output. According

to the following notation, the mathematical representation of execution time is denoted.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = ∑ 𝐸𝑇𝑗(𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑖)
𝑛
𝑖=0 (15)

TELKOMNIKA Telecommun Comput El Control 

Hybrid technique for optimal task scheduling in cloud computing environments (Nihar Ranjan Sabat)

387

𝐸𝑇𝑗(𝐶𝑙𝑜𝑢𝑑𝑙𝑒𝑡𝑖) is the execution time of 𝑐𝑙𝑜𝑢𝑑𝑙𝑒𝑡 𝑖 on 𝑉𝑀𝑗. A cloudlet is the term used to describe

the process of assigning a single task to a VM. VMs and task loads affect execution time, as seen in Figure 7.

The execution time is represented graphically for varying numbers of virtual machines and tasks.

The analysis found a positive correlation between VM performance and execution time. This applies

even if tasks and VMs remain unaltered. Variations in execution time associated with existing task loads and

VMs have been demonstrated visually. Based on the findings of the research, it has been established that there

is a connection between the fluctuation in the performance of VMs and the amount of time that is necessary to

finish a task. In point of fact, this principle holds true even in circumstances in which the tasks and the VMs

do not undergo any modifications.

Figure 7. Execution time with respect to varying number of VMs and task

4.2.2. Final makespan

The final makespan refers to the accumulated duration of the schedule, encompassing the completion time

of every task after processing. It is the entire duration required to complete a given set of tasks, specifically the

longest completion time among all the tasks. The mathematical representation of final makespan is denoted as (16).

𝐹𝑖𝑛𝑎𝑙 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = {𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖}1≤𝑖≤𝑛
𝑀𝑎𝑥 (16)

The variable “𝑛” serves as a parameter to represent the number of VM. The temporal metric final

makespan is shown graphically in Figure 8. The figure illustrates the changes in the final makespan that are

attributed to task loads and VMs. The variations in final makespan that are linked to VMs and task loads are

shown. The final makespan exhibits an increasing trend due to the variability of the VMs while the tasks remain

constant, or alternatively, due to the variability of the tasks while the VMs remain constant.

Figure 8. Final makespan representation for varrying numbers of VMs and tasks

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 380-392

388

4.2.3. Final cost

The final cost in cloud task scheduling depends on source usage, instance types, task execution time,

data transmission costs, storage pricing, and task priority. Understanding these components is essential for cost

optimization and control. Optimizing cloud task scheduling expenses entails managing these variables and

understanding the cloud service provider’s price. Reassessing consumption patterns and changing needs is key

to cloud computing final cost management.

The incorporation of a simple cost function enables to reduce the complexity of the computation. The

virtual machine with higher CPU speed is a relatively costlier alternative while compared with the virtual

machine with a lower CPU speed. The costs (𝐶) have been determined using the established definition, as

outlined in the suggested approach.

𝐶(𝑎, 𝑏) =
(𝑊(𝑎,𝑏)∗𝑉𝑀𝑏)

𝑚𝑖𝑛𝑢𝑡𝑒
 (17)

Where 𝐶(𝑎, 𝑏) is the expense of completing job 𝑉𝑎 within the limits of the 𝑉𝑀 𝑏. The final cost, which

represents the cumulative amount of all expenditures, is denoted as (18).

𝐹𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = ∑ 𝐶(𝑎, 𝑏)𝑏є𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑉𝑀 (18)

The final cost representation is shown in Figure 9, which shows the effect of changing the number of

VMs in respect to both VMs and tasks. The range of changes seen in the final costs of VMs and the variety

seen in the final costs of task loads are shown. It is clear that changing the tasks while maintaining the same

number of VMs or changing the VMs while maintaining the same number of tasks results in varying final cost.

Figure 9. Final cost vs VMs and tasks

4.3. Discussion

The fitness of a schedule is evaluated by considering its performance in different topologies in a period

[32]. The ACO algorithm achieves its optimal fitness value at a maximum of 9146.79. The proposed hybrid

algorithm exhibits the lowest value, which is recorded as 1792. A comparison of the optimal makespan settings

is completed and the suggested hybrid algorithm achieves the lowest makespan value, which amounts to

918.08. Makespan is the completion time of the final task to exit the system. The hybrid algorithm under

consideration has an intermediate time of 46080 seconds. A visual representation of the comparison between

the total weighted time is represented in the results section. The cumulative weighted time for PSO is 1.38×108.

Table 4 presents the data pertaining to the comparison of makespan between our recommended approach and

other current approaches of a similar kind [33]. When compared to the makespan values of other techniques,

our proposed approach obtained the lowest minimum makespan value of 2620.77. Figure 10 shows a makespan

comparison between our proposed approach and other existing approaches of a similar nature.

Table 4. Comparison of makespan with similar latest algorithms
Algorithm MTCT MAXMIN ACO NSGA-II DCLCA Proposed work

Makespan 14042.70 13,671.90 11,057.40 10099.50 8898.8 2620.77

TELKOMNIKA Telecommun Comput El Control 

Hybrid technique for optimal task scheduling in cloud computing environments (Nihar Ranjan Sabat)

389

Figure 10. Comparison of makespan

We conducted a makespan analysis that compared our proposed approach and other methods that were

of identical character. In terms of attaining the lowest possible makespan value, the graph presents strong

reasons that our suggested approach outperformed similar approaches. The primary goal of offline parameter

tuning is to obtain parameter values that can be advantageous in solving a significant number of instances,

which requires conducting multiple experimental evaluations. In practice, it is common to adjust metaheuristic

by modifying one parameter at a time, and the optimal values for these parameters are typically determined

through empirical means. In order to optimize the results, multiple iterations of simulations were conducted,

wherein the parameters of position and velocity of particles in PSO, as well as the pheromone evaporation rate

and pheromone intensity in ACO, were systematically varied.

4.3.1. ANOVA

The proposed method’s overall makespan is compared to that of other existing methods, including

MTCT, MAXMIN, ACO, NSGA-II, and DCLCA. This comparison is conducted by performing ten iterations

for each algorithm. The comparison of makespan between different algorithms is conducted through the

utilisation of a one-way ANOVA approach. The null hypothesis for this analysis is denoted as:

− H0: the average Makespan of all six methods, including the proposed method, is equal. The alternative

hypothesis.

− H1: the mean Makespan of all the aforementioned methods is not equal.

Table 5 summarises the results obtained from the ANOVA method.

Table 5. One-way ANOVA parametric test results
Source DF Sum of square Mean square F statistic P-value

Groups (between groups) 5 823355035.2 164671007 3130.5314 2.22E-16

Error (within groups) 54 2840487.161 52601.6141

Total 59 826195522.3 14003313.94

It is clear that the calculated F statistic is far higher than the associated P value. Consequently, the

null hypothesis, which states that the mean makespan of all six methods, including the proposed method, are

equal, is rejected. Therefore, it can be concluded that the mean makespan of the six methods, including the

proposed method, differs from each other.

4.3.2. Statistical t-test

In this study, a total of six methods were examined, one of which was the proposed approach for

conducting pairwise parametric t-tests. A total of five paired t-test calculations were conducted to ascertain the

approach that yielded the most effective overall makespan. To assess the efficacy of our proposed approach,

a comprehensive set of experiments was conducted, wherein we conducted comparative analyses with

established methodologies including MTCT, MAXMIN, ACO, NSGA-II, and DCLCA. A one-tailed

hypothesis test was performed at a significance level of 0.05. The determination of the degrees of freedom,

which is equal to 10-1 resulting in 9, was a direct outcome of having a sample size of 𝑁 = 10 for each test.

A total of ten iterations are conducted for each algorithm included in the analysis to facilitate the calculation

of the t-test. The null hypothesis (H0) states that the makespan of the existing algorithm being tested is equal

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 380-392

390

to that of our proposed work. According to the alternative hypothesis (H1), the makespan of our proposed work

is lower than the Makespan of the existing algorithm participating in the test.

Table 6 presented below exhibits the outcomes obtained from the t-test where degree of freedom

𝑑𝑓 = (10 − 1) = 9, µ = 0. The results of five tests, each of which demonstrates a p-value below 0.00001,

indicating statistical significance at a significance level of 𝑝 < 0.05, have been presented. Hence, it can be

inferred that the proposed methodology consistently achieves the lowest possible value for the overall

makespan in all conducted experiments.

Table 6. Outcomes obtained from the t-test

Test Treatment 1 Treatment 2

Difference scores and t-value calculation

M SS
S2

=
SS

df

S2
M

=
 S2

N

SM =

√S2
M

t =
(M − µ)

SM

1 MTCT Proposed work -11294.7 50030.57 5558.95 555.9 23.58 -479.05

2 MAXMIN Proposed work -10634.55 715509.69 79501.08 7950.11 89.16 -119.27

3 ACO Proposed work -8036.76 721415.42 80157.27 8015.73 89.53 -89.77

4 NSGA-II Proposed work -7223.34 195895.46 21766.16 2176.62 46.65 -154.83
5 DCLCA Proposed work -6089.53 135279.11 15031.01 1503.1 38.77 -157.07

5. CONCLUSION

This study presents a novel hybrid optimization approach for cloud task-scheduling algorithms,

integrating artificial particle swarm optimization and ant colony optimization. The hybrid optimization

technique can be visually represented by a graphical illustration of its optimal positions. Furthermore, this

study presents the execution cost and time associated with the scheduling process that has been attained through

the utilization of optimization techniques. In our future research, we plan to develop a mechanism that

facilitates efficient scheduling within a dynamic cloud environment. The primary objective of this mechanism

is to minimize system cost and response time, while simultaneously enhancing system reliability.

REFERENCES
[1] D. Sabella, “Principles of Edge Computing, Fog and Cloud Computing,” in Textbooks in Telecommunications Engineering, 2021,

pp. 3–18. doi: 10.1007/978-3-030-79618-1_1.
[2] M. Ibrahim et al., “A Comparative Analysis of Task Scheduling Approaches in Cloud Computing,” in Proceedings - 20th

IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, CCGRID 2020, IEEE, May 2020, pp. 681–684,

doi: 10.1109/CCGrid49817.2020.00-23.
[3] S. Nabi and M. Ahmed, “PSO-RDAL: particle swarm optimization-based resource- and deadline-aware dynamic load balancer for

deadline constrained cloud tasks,” Journal of Supercomputing, vol. 78, no. 4, pp. 4624–4654, 2022, doi: 10.1007/s11227-021-

04062-2.
[4] S. A. Sheik and A. P. Muniyandi, “Secure authentication schemes in cloud computing with glimpse of artificial neural networks: A

review,” Cyber Security and Applications, vol. 1, p. 100002, Dec. 2023, doi: 10.1016/j.csa.2022.100002.

[5] Q. Z. Yang, X. L. Xie, and Z. T. Li, “Research on cloud computing task scheduling based on evolutionary algorithm,” in Proceedings
- 2020 International Conference on Big Data and Artificial Intelligence and Software Engineering, ICBASE 2020, IEEE, Oct. 2020,

pp. 377–380. doi: 10.1109/ICBASE51474.2020.00086.
[6] K. Dubey and S. C. Sharma, “A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in cloud

computing,” Sustainable Computing: Informatics and Systems, vol. 32, p. 100605, Dec. 2021, doi: 10.1016/j.suscom.2021.100605.

[7] A. Keivani and J. R. Tapamo, “Task scheduling in cloud computing: A review,” in icABCD 2019 - 2nd International Conference

on Advances in Big Data, Computing and Data Communication Systems, IEEE, Aug. 2019, pp. 1–6, doi:

10.1109/ICABCD.2019.8851045.

[8] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing,”
Sensors, vol. 22, no. 3, p. 920, Jan. 2022, doi: 10.3390/s22030920.

[9] M. L. Chiang, H. C. Hsieh, Y. H. Cheng, W. L. Lin, and B. H. Zeng, “Improvement of tasks scheduling algorithm based on load

balancing candidate method under cloud computing environment,” Expert Systems with Applications, vol. 212, p. 118714, Feb.
2023, doi: 10.1016/j.eswa.2022.118714.

[10] H. Liu, “Research on cloud computing adaptive task scheduling based on ant colony algorithm,” Optik, vol. 258, p. 168677, May

2022, doi: 10.1016/j.ijleo.2022.168677.
[11] N. Manikandan, N. Gobalakrishnan, and K. Pradeep, “Bee optimization based random double adaptive whale optimization model

for task scheduling in cloud computing environment,” Computer Communications, vol. 187, pp. 35–44, Apr. 2022, doi:

10.1016/j.comcom.2022.01.016.
[12] X. Guo, “Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm,” Alexandria

Engineering Journal, vol. 60, no. 6, pp. 5603–5609, Dec. 2021, doi: 10.1016/j.aej.2021.04.051.

[13] N. Manikandan, P. Divya, and S. Janani, “BWFSO: Hybrid Black-widow and Fish swarm optimization Algorithm for resource
allocation and task scheduling in cloud computing,” Materials Today: Proceedings, vol. 62, pp. 4903–4908, 2022, doi:

10.1016/j.matpr.2022.03.535.

[14] S. Nabi, M. Aleem, M. Ahmed, M. A. Islam, and M. A. Iqbal, “RADL: a resource and deadline-aware dynamic load-balancer for
cloud tasks,” Journal of Supercomputing, vol. 78, no. 12, pp. 14231–14265, 2022, doi: 10.1007/s11227-022-04426-2.

TELKOMNIKA Telecommun Comput El Control 

Hybrid technique for optimal task scheduling in cloud computing environments (Nihar Ranjan Sabat)

391

[15] J. K. Konjaang, J. Murphy, and L. Murphy, “Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks
with deadlines in a cloud environment,” Journal of Network and Computer Applications, vol. 203, p. 103400, 2022, doi:

10.1016/j.jnca.2022.103400.

[16] M. Kumar and Suman, “Scheduling in IaaS Cloud Computing Environment using Sailfish Optimization Algorithm,” Trends in
Sciences, vol. 19, no. 10, p. 4204, 2022, doi: 10.48048/tis.2022.4204.

[17] S. Gupta, R. S. Singh, U. D. Vasant, and V. Saxena, “User defined weight based budget and deadline constrained workflow

scheduling in cloud,” Concurrency and Computation: Practice and Experience, vol. 33, no. 24, p. e6454, 2021, doi:
10.1002/cpe.6454.

[18] N. Bacanin, M. Zivkovic, T. Bezdan, K. Venkatachalam, and M. Abouhawwash, “Modified firefly algorithm for workflow

scheduling in cloud-edge environment,” Neural Computing and Applications, vol. 34, no. 11, pp. 9043–9068, 2022, doi:
10.1007/s00521-022-06925-y.

[19] C. Chandrashekar and P. Krishnadoss, “Opposition based sunflower optimization algorithm using cloud computing environments,”

Materials Today: Proceedings, vol. 62, pp. 4896–4902, 2022, doi: 10.1016/j.matpr.2022.03.534.
[20] M. Gokuldhev and G. Singaravel, “Local Pollination-Based Moth Search Algorithm for Task-Scheduling Heterogeneous Cloud

Environment,” Computer Journal, vol. 65, no. 2, pp. 382–395, 2022, doi: 10.1093/comjnl/bxaa053.

[21] A. Belgacem, K. Beghdad-Bey, H. Nacer, and S. Bouznad, “Efficient dynamic resource allocation method for cloud computing
environment,” Cluster Computing, vol. 23, no. 4, pp. 2871–2889, 2020, doi: 10.1007/s10586-020-03053-x.

[22] M. Kumar, S. C. Sharma, S. Goel, S. K. Mishra, and A. Husain, “Autonomic cloud resource provisioning and scheduling using

meta-heuristic algorithm,” Neural Computing and Applications, vol. 32, no. 24, pp. 18285–18303, 2020, doi: 10.1007/s00521-020-
04955-y.

[23] M. Nanjappan, G. Natesan, and P. Krishnadoss, “An Adaptive Neuro-Fuzzy Inference System and Black Widow Optimization

Approach for Optimal Resource Utilization and Task Scheduling in a Cloud Environment,” Wireless Personal Communications,
vol. 121, no. 3, pp. 1891–1916, 2021, doi: 10.1007/s11277-021-08744-1.

[24] M. H. N. -Shahraki and H. Zamani, “DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-

decomposition large-scale global optimization,” Expert Systems with Applications, vol. 198, p. 116895, 2022, doi:
10.1016/j.eswa.2022.116895.

[25] M. Sardaraz and M. Tahir, “A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing,”

International Journal of Distributed Sensor Networks, vol. 16, no. 8, p. 1550147720949142, 2020, doi:
10.1177/1550147720949142.

[26] J. K. Konjaang and L. Xu, “Multi-objective workflow optimization strategy (MOWOS) for cloud computing,” Journal of Cloud

Computing, vol. 10, no. 1, 2021, doi: 10.1186/s13677-020-00219-1.
[27] C. Chandrashekar, P. Krishnadoss, V. K. Poornachary, B. Ananthakrishnan, and K. Rangasamy, “HWACOA Scheduler: Hybrid

Weighted Ant Colony Optimization Algorithm for Task Scheduling in Cloud Computing,” Applied Sciences (Switzerland), vol. 13,

no. 6, p. 3433, 2023, doi: 10.3390/app13063433.
[28] H. Kumar and I. Tyagi, “Task allocation model based on hierarchical clustering and impact of different distance measures on the

performance,” International Journal of Fuzzy System Applications, vol. 9, no. 4, pp. 105–133, 2020, doi:

10.4018/IJFSA.2020100105.
[29] H. Kumar and I. Tyagi, “Hybrid model for tasks scheduling in distributed real time system,” Journal of Ambient Intelligence and

Humanized Computing, vol. 12, no. 2, pp. 2881–2903, 2021, doi: 10.1007/s12652-020-02445-6.

[30] Karishma and H. Kumar, “A new hybrid particle swarm optimizationalgorithm for optimal tasks scheduling in distributed
computing system,” Intelligent Systems with Applications, vol. 18, p. 200219, 2023, doi: 10.1016/j.iswa.2023.200219.

[31] L. Qu, W. He, J. Li, H. Zhang, C. Yang, and B. Xie, “Explicit and size-adaptive PSO-based feature selection for classification,”

Swarm and Evolutionary Computation, vol. 77, p. 101249, Mar. 2023, doi: 10.1016/j.swevo.2023.101249.
[32] A. Anjum and A. Parveen, “Optimized load balancing mechanism in parallel computing for workflow in cloud computing

environment,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 12, no. 2, p. 276, Jul. 2023, doi:

10.11591/ijres.v12.i2.pp276-286.
[33] A. R. Shaheen and S. S. Kumar, “Tasks Scheduling in Cloud Environment Using PSO-BATS with MLRHE,” Intelligent Automation

and Soft Computing, vol. 35, no. 3, pp. 2963–2978, 2023, doi: 10.32604/iasc.2023.025780.

BIOGRAPHIES OF AUTHORS

Nihar Ranjan Sabat received a Bachelor of Technology degree in Computer

Science and Engineering from Biju Patnaik University of Technology (BPUT) located in

Odisha, India in 2008. In 2011, he obtained a Master of Technology degree in Computer

Science and Engineering from the International Institute of Information Technology (IIIT)

located in Bhubaneswar, India. Currently, he is engaged in pursuing his doctoral study within

the Faculty of Engineering at Biju Patnaik University of Technology (BPUT) in Rourkela,

Odisha, India. The primary focus of his continuing research involves investigating strategies

for task scheduling and load balancing in the context of cloud computing environments. He

can be contacted at email: n.ranjan9@gmail.com.

https://orcid.org/0009-0001-7627-5161
https://scholar.google.com/citations?hl=en&user=BSlKV_MAAAAJ

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 380-392

392

Rashmi Ranjan Sahoo received a Bachelor of Technology degree in Computer

Science and Engineering from Biju Patnaik University of Technology, situated in Odisha,

India, in the year 2005. He graduated from Jadavpur University in Kolkata, India, in 2012

with a master’s degree in Electronics and Telecommunication Engineering with a

specialization in Computer Engineering. In 2021, he graduated from Jadavpur University in

Kolkata, India, with a Doctor of Philosophy in Engineering with a specialization in Ad-hoc

Network Security. He is currently employed as an assistant professor in the Department of

Computer Science and Engineering and serves as the head of the Center of Excellence on

Cyber Security and Cloud Computing at Parala Maharaja Engineering College, which is

affiliated to Biju Patnaik University of Technology, Rourkela, India. With a specific focus on

wireless sensor networks, vehicular networks, and machine learning, he published more than

20 scholarly articles in the discipline of computer science and engineering. He can be

contacted at email: rashmiranjan.cse@pmec.ac.in.

Manas Ranjan Pradhan (Member, IEEE) received the M. Tech. and Ph.D.

degrees in Computer Science from Utkal University and the University of Mysore,

respectively, in India. He has extensive expertise in academic management, research, and

teaching both nationally and internationally. He is now working with the United Arab

Emirates’ Skyline University College in Sharjah. He held two positions as an academic

leader: Dean of the Faculty of IT and Science at INTI International University in Malaysia,

and Head of the Programme at the University of Petroleum and Energy Studies (UPES), India.

Through industry-academic collaboration, internships, placements, and workshops, he has

been involved in the IT industry. Under Laureate International Universities, USA, he oversaw

the IBM Centre of Education for Cloud Computing and Business Analytics at INTI

International University. His numerous research works have been published in journals and

presented at conferences. Three Australian and three Indian patents are among his

accomplishments. His areas of interest in research include business process modelling,

artificial intelligence, machine learning, retail/e-commerce analytics, data mining, data

warehouses, and business analytics. The Confederation of Indian Industry (CII) has awarded

him the Mentor Award for the i-Talent Project Contest. Three international conferences,

including NGCT-2015 (UPES), ICQMOIT-2008 (ICFAI, India), and ICD-2019 (SUC,

United Arab Emirates), were all organised in large part thanks to his contributions. He can be

contacted at email: manaspradhan@yahoo.com.

Biswaranjan Acharya (Senior Member, IEEE) received an M.C.A from the

Indira Gandhi National Open University (IGNOU) in New Delhi, India, in 2009. In 2012, he

received an M. Tech in Computer Science and Engineering from BPUT in Rourkela, Odisha,

India. He is pursuing a Ph. D in computer application at VSSUT in Burla, Odisha. He is an

assistant professor at Marwadi University’s Computer Engineering-Artificial Intelligence and

Big Data Analytics Department. His eleven years of experience include software

development and academia at several well-known colleges like Ravenshaw University. He

edited seven books, co-authored 60 research articles in renowned journals, and reviewed

several peer-reviewed journals. In addition, he has 72 co-invented IPRs. Data analytics,

optimization, computer vision, machine learning, and IoT are his research interests. He is a

member of several scientific and educational organisations, including ISC, IEEE, CSI,

IACSIT, and IAENG. He can be contacted at email: biswaacharya@ieee.org.

https://orcid.org/0000-0003-4826-8738
https://scholar.google.com/citations?user=S3_NVyUAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55578294600
https://orcid.org/0000-0002-0115-2722
https://scholar.google.com/citations?user=K5oK6LcAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57217311543
https://orcid.org/0000-0002-6506-9207
https://scholar.google.com/citations?user=qk1hGRwAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57654575800
https://publons.com/researcher/3558168/biswa-ranjan-acharya/

