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 This article presents the design of an active down-conversion mixer for the 

superheterodyne receiver system for 6G wireless communications. This mixer 

is developed based on the Gilbert cell in the terahertz frequency band, using 

the 𝑃𝐻15 transistor from United Monolithic Semiconductors (UMS) Foundry 

in monolithic microwave integrated circuit (MMIC) technology. We used the 

charge injection method to increase our mixer’s conversion gain. In addition, 

we integrated a buffer stage at the mixer outputs to facilitate impedance 

matching and improve linearity. The power dividers used in this chapter are 

based on transmission lines from Agilent's advanced design system (ADS) 

tool, connected to the input and output ports of the circuit. The proposed 

architecture offers a high conversion gain of 15.2 dB, with a low local 

oscillator (LO) power of 0 dBm, a low double sideband (DSB) noise figure 

(NF) of around 7.1 dB, a 1 𝑑𝐵 compression point of -16 dBm, and good radio 

frequency (𝑅𝐹) − 𝐿𝑂 port isolation of 63.2 dB, at a RF of 0.14 THz. 
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1. INTRODUCTION  

Wireless communications technology is moving towards higher operating frequencies, i.e., from 0.1 

to 3 THz [1], [2]. These frequency bands are envisaged for the next generation of wireless networks 6G [3]. 

This evolution is necessary to achieve even higher data rates and reduced latency compared to current networks. 

To satisfy the demands of a growing number of new applications such as autonomous driving, robotic control, 

the internet of things (IoT) and THz localization/navigation [4], [5]. 

A high bandwidth characterizes the terahertz frequency band. It enables a large amount of data to be 

transmitted at higher speeds, up to several gigabits per second [2]. These frequency bands hold great promise 

for the future generation of wireless communication systems. Their very short wavelengths make it possible to 

manufacture high-gain, antennas while maintaining tiny physical dimensions and privileged confidentiality of 

communications [6]. In addition, the THz frequency band offers several advantages in different fields, such as 

security controls, concealed weapons detection, medical imaging, safety [7]. 

In particular, the frequency band around 0.14 THz is exciting, as it is characterized by low atmospheric 

attenuation (1 dB/km) and localized between two molecular absorption peaks at 119 GHz and 183 GHz [8], [9]. 

The significance of atmospheric absorption effects at high frequencies has been acknowledged on numerous 
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occasions [10]. As the wavelength gets closer to the dimensions of particles like snow, dust, and rain, the 

significance of scattering effects becomes more pronounced [6]. 

For these reasons, many downconverters have been presented near this band [10]-[13]. A double-

balanced downconverter mixer, based on Gilbert’s culling, designed explicitly for frequency modulated 

continuous-wave (FMCW) radar implementation, was introduced in [14]. Kavivarman et al. [15] present a 

comparative study of the different methods used to improve the different performances of the Gilbert mixer. 

The demonstration of a down-conversion mixer operating from 60 to 113 GHz in 90 nm CMOS technology is 

presented in [16]. In addition, The design of a wideband intermediate frequency (IF) receiver operating between 

110 and 140 GHz, used in 65 nm CMOS technology, as reported in [17].  

The major difficulties in current THz communications lie in the complexity of modulation and 

demodulation methods, as well as in the high atmospheric extinction. In particular, the design of a frequency 

down-conversion mixer over 100 GHz is complex due to criteria concerning conversion gain, passband, noise 

figure (NF) and linearity. Consequently, we have proposed a Gilbert cell-based downconverting mixer, using 

the charge injection technique and two power dividers, operating at the 140 GHz frequency band for a 

superheterodyne receiving chain, as shown in Figure 1. The radio frequency (RF) receiver generally consists 

of an antenna to capture the received signal [18]. Following this, there is a low-noise amplifier (LNA) that 

amplifies the RF-filtered signal. Lastly, the down-converting mixer plays an essential role within the RF 

receiver by enabling the conversion of the RF to a lower IF, achieved through the utilization of a local oscillator 

(LO) signal [19], [20]. The organization of this paper is outlined as: in the second section, we have presented 

the proposed mixer circuit and the design and simulations of the passive baluns. In the third section, we analyze 

the simulation results of the Gilbert mixer with integrated baluns. Finally, the last section presents the circuit 

layout and simulation. 

 

 

 
 

Figure 1. The architecture of a superheterodyne receiver 

 

 

2. CIRCUIT DESIGN 

2.1.  Electrical circuit diagram 

The mixer suggested in this article is essentially founded on the double-balanced Gilbert cell. This 

structure reduces even-order distortion and ensures good isolation between ports. It is an active mixer used in 

the architecture of a superheterodyne receiver. It converts the RF frequency of 0.14 THz to the IF of 1 GHz 

using a LO signal fixed at 0.139 THz. The circuit is designed using the 0.15 μm pHEMT transistor of the PH15 

process in monolithic microwave integrated circuit (MMIC) technology. 

The electrical circuit diagram is depicted in Figure 2, consisting of three primary stages. Firstly, there 

is a differential transconductance stage that includes a differential pair composed of transistors M1 and M2, 

each having a width of 54 μm. These two transistors operate in saturation mode, facilitating the conversion of 

the RF input voltage into a differential current. Subsequently, the switching stage represents the core of the 

circuit. It comprises two differential pairs consisting of transistors M3-M6, which operate close to the pinch-

off region with a width of 43 μm. This enables the multiplication of the RF signal with the LO signal. And a 

load stage consists of two 880 Ω resistors (R1 and R2). Its role is to convert the current from the switching 

stage into the IF output voltage. 

We use the charge injection technique, based on minimum noise to determine the optimal width of 

the RF transistors [21], [22]. The principle of this technique is to boost the current in the RF stage by inserting 

two 143 Ω resistors (R3 and R4) to inject current into transistors M1 and M2. This technique aims to increase 

the conversion gain, which is represented by the relationship (1): 
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𝐺𝑐 =
2

𝜋
× 𝑔𝑚 × 𝑅𝐿 (1) 

 

𝐺𝑐  is the conversion gain, 𝑔𝑚  represents the transconductance, while 𝑅𝐿 denotes the load resistance of the 

circuit. 
 

 

 
 

Figure 2  Topology of the proposed mixer 
 

 

We integrate two buffer stages at the output of our proposed circuit, consisting of common-source 

transistors M7 and M8, each with four fingers (𝑛=4) and a total width of 40 μm (4×40 μm), in order to match 

the output and increase the conversion gain of the proposed circuit. And a current mirror consisting of two 

transistors, M9 and M10, with a width of 70 μm and 42 μm, respectively, are used to supply additional current 

to the circuit’s amplifier stage. So, to get the best possible result, it’s necessary to strike an appropriate balance 

between the following parameters: isolation, conversion gain, LO power, linearity, and NF. 

 

2.2.  Baluns 

2.2.1. Balun radio frequency/local oscillator 

The Figure 3 illustrates the design of the passive RF/LO, balun manufactured using transmission lines 

and the resistive network from the united monolithic semiconductors (UMS) foundry to increase bandwidth 

[23]. The balun is composed of a single input port and two output ports, and it transforms the RF/LO signal 

into two signals of identical amplitude, phased 180 degrees apart. Figure 4 illustrates the frequency-dependent 

variation in phase difference between the two RF balun output ports. We can see that the circuit’s two output 

ports have a phase difference of  

180 degrees at 140 GHz.  

 

 

  
  

Figure 3. Advanced design system (ADS) diagram 

of a passive balun 

Figure 4. The variation in phase difference at the 

frequency of 140 GHz 
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Figure 5 shows that S21 and S31 have the same value (-3.020 dB) at 140 GHz, indicating that power 

division in ports 2 and 3 is achieved. The variation of the balun's amplitude difference is shown in Figure 6, 

where it is observed that the amplitude difference between the two output ports is approximately zero  

(0.013 dB) which corresponds approximately to the same amplitude. 
 

 

  
  

Figure 5. Parameters S21 and S31 plotted against 

frequency in GHz 

Figure 6. Amplitude difference as a function of 

frequency in GHz 

 

 

2.2.2. Balun IF 

We operate the balun circuit (RF/LO) in coupler mode on the mixer output ports (IF1, IF2). The 

coupler consists of two input ports, IF1, IF2, 180 degrees out of phase, and an IF output port of the same 

amplitude, operating at 1 GHz. As shown in Figures 7 and 8, parameters S21 and S31 are used to evaluate the 

phase and amplitude difference of the balun ports. The simulation results show a phase shift of 180 degrees 

between ports (IF1, IF) and (IF1, IF2) at 1 GHz. And an amplitude difference between the two ports of  

0.38 dB, approximately zero. So, the simulation results give good balun performance at 1 GHz. 

 

 

  
  

Figure 7. Variation in the phase difference of the 

output ports at the frequency of 1 GHz 

Figure 8. The amplitude difference of the output ports 

as a function of frequency 

 

 

3. MIXER SIMULATION RESULTS 

3.1.  Radio frequency and local oscillator power 

Figure 9 displays the change in conversion gain relative to the LO input power. The conversion gain 

peaks at 15.249 dB with the LO injected power set to 0 dBm. NF in double sideband (DSB) observed is 

approximately 7.15 dB at an LO input power of 0 dBm, as illustrated in Figure 10.  

Figure 11 illustrates the conversion gain versus RF power injected curve. It can be observed that the 

C_G achieves a maximum value of 15.249 dB for the RF input power of -25 dBm. So, the optimum values of 

LO and RF powers are 0 dBm and -25 dBm, respectively. These optimum values ensure an excellent conversion 

gain and a low NF. So, we use these optimum LO and RF power values for all future simulations. 
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Figure 9. The variation of C_G in dB as a function 

LO_input_pwr 

Figure 10. DSB NF of the mixer 

 

 

 
 

Figure 11. The curve of C_G versus RF_input_ power_dBm 

 

 

3.2.  Mixer linearity 

The P1dB and the third-order intercept point (IIP3) are considered the most commonly used 

parameters to evaluate the linearity of the mixers. Figure 12 shows the variation of IF output power versus 

radio-frequency power injected at input. We observe that the value of the 1 dB compression point, at which 

the conversion gain is reduced by 1 dB, is -16 dBm.  

In addition, the IIP3 was achieved when applying two frequency signals, F_RF1 and F_RF2, to the 

RF access, which are 140.002 GHz and 139.998 GHz, respectively. Figure 13 shows the fundamental output 

power and third-order intermodulation versus injected power RF. We can deduce that the IIP3 is -6.04 dBm. 

This demonstrates that our proposed mixer has good linearity. 
 

 

  
  

Figure 12. The P1dB value of the mixer Figure 13. The IIP3 
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3.3.  Port-to-port isolation  

The curve in Figure 14 shows the evolution of isolation between the three ports of the circuit changes 

with varying LO power. In the down-conversion mixer, isolation between LO_RF ports is essential, reflecting 

the circuit’s ability to avoid LO signal leakage on the RF access. This mixer achieves good LO_RF isolation of 

63.21 dB at LO power levels of 0 dBm. The isolations between RF_IF and LO_IF ports are more than 100 dB. 
 

 

 
 

Figure 14. The evolution of isolation between LO_RF, RF_IF, and LO_IF ports as a versus LO power 

 

 

4. LAYOUT DESIGN OF THE CIRCUIT 

The layout schematic of the proposed Gilbert cell mixer is depicted in Figure 15. The layout consists 

of three parts: the mixer itself, along with three access pads for 𝑅𝐹, 𝐿𝑂, and 𝐼𝐹, and three polarization pads. 

Together, these components enable the design of a mixer for down-conversion in the 140 GHz frequency band, 

while also facilitating the rejection of unwanted output signals. The circuit as a whole has a total surface area 

of 4.75 mm², with dimensions of 2.5 mm long by 1.9 mm wide. It is implemented on a GaAs substrate of 𝑃𝐻15 

technology from the UMS foundry. 
 

 

 
 

Figure 15. Gilbert cell mixer circuit layout 
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Figures 16-18 show the post-layout simulation results of the conversion gain, the DSB NF, and the 

linearity, respectively. The conversion gain of the proposed circuit attains a maximum value of -6.16 dB for a 

LO power of 10 dBm and -14.74 dB for a LO power of 2 dBm, is shown in Figure 16. The simulation of the 

NF at DSB, as a function of LO power, is illustrated in Figure 17. It exhibits a low NF of around 20 dB for an 

LO power of 10 dBm. Additionally, the 1 dB compression point is determined based on the variation in IF 

output power relative to the RF input power, as shown in Figure 18. It also demonstrates excellent linearity, 

approximately 6 dB. 

 

 

  
  

Figure 16. Evolution of C_G as a function of 

LO_input_power_dBm 

Figure 17. The variation of the DSB NF of the mixer 

as a function of (HB. LO_input_power) 

 

 

 
 

Figure 18. The P1dB value of the mixer 

 

 

The various performances of the proposed mixer are presented in Table 1 and compared with those of 

other recently published millimeter-wave mixers. Our down-converter mixer with integrated baluns performs 

better regarding LO-RF isolation, NF, and linearity. It features good conversion gain and the ability to operate 

with low LO signal power. In addition, the NF noise of the mixer proposed in this article is lower than that of 

the structures studied in [24], [25]. 

 

 

Table 1. Summary of mixer performance and comparison with other mixers 

Ref. Circuit topology 
RF-freq. 
(GHz) 

CG 
(dB) 

LO power 
(dBm) 

NF 
(dB) 

LO-RF 
iso. (dB) 

1-dB compression 
point (dBm) 

IIP3 
(dBm) 

[7] Gilbert-cell mixer 128-160 −6 0 - - -15 - 

[10] Mixer double-balanced 140-170 11 0 <15 - −13 - 
[15] 90 nm 60-113 18 3.2 17.1 43.1 - 5.1 

[17] 65-nm CMOS 110-140 7 - 14 - -21 - 

[26] Gilbert-cell mixe 120-140 10-8.2 - - >40 - - 
[27] CCPT-RL-based IF load 88-100 14.6 1 14.2 35.3 −13 1 

[28] 90 nm 28 −2.14 1 14.32 > 57 −13  

This 
work 

Double-balanced gilbert-
cell 

140 15.2 0 7.1 63 -16 -1.75 
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5. CONCLUSION 

This article introduces a double-balanced mixer utilizing the Gilbert cell, built with the 0.15 µm PH15 

transistor. The down-conversion mixer with passive baluns integrated into the RF and LO input ports at  

0.14 THz frequency band. It offers an excellent conversion gain of 15.2 dB, an NF of 7.1 dB, and LO-RF 

isolation of over 63 dB. It also boasts good linearity. This mixer offers one of the most outstanding results 

among down-conversion mixers, with an approximate operating frequency of 0.140 THz, even with a low LO 

input power of 0 dBm.” 
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