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ABSTRACT

This paper reports the development and switching controller design of an in-
verted pendulum system (IPS) platform. The euler-lagrange approach is first
used to model the dynamics of the IPS which takes into account the impact of
friction forces during its movements. The paper then derives a switching control
method to swing the pendulum rod into the neighborhood of and stabilizing it
at the equilibrium point. The implemented switching controller consists of: i) a
nonlinear swing up control which brings the pendulum to the vertical position
and ii) a linear stabilizing control which maintains the pendulum rod to remain
in a vertical position around the neighborhood of the vertical axis. The nonlinear
controller is constructed using lyapunov’s method while the linear controller is
designed using linear quadratic regulator (LQR) method framework. Simulation
and experimental results are presented to show the effectiveness of the proposed
switching controller.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Tua Agustinus Tamba
Department of Electrical Engineering, Faculty of Industrial Technology, Parahyangan Catholic University
Jl. Ciumbuleuit no. 94, Bandung 40141, Indonesia
Email: ttamba@unpar.ac.id

1. INTRODUCTION
One prominent benchmark for evaluating control systems’ analysis and design framework is the in-

verted pendulum system (IPS) [1]–[4]. An IPS platform typically composed by a horizontally moving cart and
a pendulum rod that is mounted on the cart’s top [5]. The objective of the IPS control is thus to regulate the
cart’s movement so that the rod can be rotated and then maintained in a vertical upward position (Figure 1) [6].
Such a control objective has in fact been known to be the working principle of several practical technological
applications which includes controller design for differential drive mobile robots with a self balancing feature,
rocket launcher with vertical take-off and landing capability [7]–[9].

Various results have been reported in literature on topics related to the analysis and control system
design of IPS. For instance, linear quadratic regulator (LQR) and proportional-integral-derivative (PID) control
are used in [10], [11], respectively, to stabilize IPS prototypes’ linearized models. The works in [12] [13], on
the other hand, used fuzzy logic controllers (FLC) to swing up and stabilize an IPS prototype using its linearized
model. However, the performance of FLC-based controllers is known to be very dependent on the designer’s
heuristics when defining the logic of the control rules. The works in [14]–[17] proposed energy-based methods
within Lyapunov’s stability framework for control system design of IPS platform. The implementations of such
energy-based control design methods are typically formulated as optimization problems which often results
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in high computational demands/loads. Moreover, the obtained controller gains which guarantee lyapunov’s
stability of the closed system are often capable of only guaranteeing the pendulum rod to oscillate within a
small neighborhood of the IPS’s unstable equilibrium which is defined by as the vertical upward position.
In particular, real-time implementation of the used energy-based control methods are not yet examined or
extensively reported in some of these literature.

Figure 1. Sketch of an IPS on a cart

This paper further continues our initial simulation study in [18], [19] and reports the design and real-
time implementation of energy-based methods for simultaneous dynamic model development and stabilizing
controller design of an IPS prototype. This paper uses euler-lagrange method to derive an experimentally-tested
model for a developed IPS prototype which incorporates the friction force effect that is induced by the IPS’ cart
movement. A switching stabilizing control law that can swings the pendulum rod up to reach the neighborhood
of and then stabilizes it at the desired unstable equilibrium point is then designed. Results from simulation and
experimental evaluations are reported to illustrate the proposed stabilizing control scheme’s effectiveness.

2. SYSTEM DESCRIPTION AND MODELING
2.1. IPS configuration

Figure 2 sketches the considered IPS. It consists of two main parts, namely i) a cart of mass M that is
moving horizontally on a rail of finite length along the x axis and ii) a pendulum rod with length 2l and mass
m with one end attached on the cart to allow the other end moves in a circular motion. In Figure 1 is the angle
from the pendulum rod to the vertical y axis at time t, x(t) denotes the horizontal position of the cart along
the rail at time t, and l denotes the half length of the pendulum rod which is measured as the distance from the
pivot point of the rod to its center of mass. FM denotes the horizontal input force that acts on the cart.

Figure 2 depicts the hardware configuration of the considered IPS both from the side (Figure 2(a) and
top Figure 2(b) views. It can be seen in these figures that the IPS is composed by two major components,
namely the electric circuit and mechanical system. The electric circuit part is used to handle data acquisition
system and commands for actuator movements based on the developed control law. The mechanical system
part is assembled from two main components, namely a pendulum rod and a cart which carries the rod.

The input and output data for controller design purposes are handled using an Arduino due micro-
controller. Two rotary encoders are also connected to microcontroller to obtain the IPS’ cart position and the
pendulum rod’s deviation angle measurements. To regulate the cart’s position/movement on the rail, a timing
belt was attached to the IPS’ cart to transform the rotation of a connected DC motor into the cart’s horizontal
movement. A personal computer (PC) is used to manage, reserve and display the input/output data of the IPS.
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(a) (b)

Figure 2. Hardware components of the IPS from: (a) front and (b) top views

2.2. Mathematical model
Figure 3 shows the free body diagram (FBD) of the considered IPS which consists of the FBD of a

moving cart along the horizontal x axis shown in Figure 3(a) and the FBD of the attached pendulum rod which
rotates with respect to the vertical y axis as shown in Figure 3(b). The IPS model is derived using euler-lagrange
(EL) method based on its lagrangian function, L, which captures the difference between the IPS’s kinetic (EK)
and potential (EP ) energies. In particular, EK is induced by both the cart and pendulum rod motions, whereas
EP is defined solely by the pendulum rod’s position.

(a)

(b)

Figure 3. Free body diagrams of: (a) IPS cart and (b) pendulum rod

Let ẋ(t)=dx(t)/dt. By Figure 3, the kinetic energy Ec
K of the cart is defined as: Ec

K = 1
2M (ẋ(t))

2.
The projections of the rod’s center of mass (COM) position and velocity on the horizontal axis are xCOM(t) =
x(t) + l sin(θ(t)) and ẋCOM(t) = ẋ(t) + lθ̇(t) cos(θ(t)), while on the vertical axis are given by yCOM(t) =
l cos(θ(t)) and ẏCOM(t) = −lθ̇(t) sin(θ(t)). The pendulum rod’s kinetic energy Ep

K takes the form.

Ep
K = (m/2)

[
(ẋCOM (t))2 + (ẏCOM (t))2

]
(1)

Thus, the total kinetic energy of the IPS becomes EK = Ec
K + Ep

K , and its total potential energy is
defined as EP = Ep

P = lmg (cos(θ(t))− 1). The lagrangian L := EK − EP of the IPS may then be defined
as in (2).

L =
1

2
M (ẋ(t))

2
+ lmθ̇(t)ẋ(t) cos (θ(t)) +

1

2
m(ẋ(t))2 +

1

2
l2m(θ̇(t))2 + lmg (1− cos θ(t)) (2)

given the system lagrangian in (2), the IPS model can be derived using EL in (3):

d

dt

(
∂L
∂ẋ

)
− ∂L

∂x
= F1

d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= F2 (3)
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where F1=FM , while F2=γrẋ(t) denotes the friction force with coefficient γr that is induced by the swinging
of the pendulum rod at the pivoting point. Using (2) on (3), the IPS model can be rewritten in (4a) and (4b).

(m+M)ẍ(t) + lm cos(θ(t))θ̈(t)− lm sin(θ(t))(θ̇(t))2 = FM , (4a)

lm cos(θ(t))ẍ(t) + l2mθ̈(t)− lmg sin(θ(t)) = γr θ̇(t). (4b)

let q(t) := [q1(t), q2(t)]
T = [x(t), θ(t)]T be the generalized variable. Then (4) can be rearranged into (5).

M (q(t)) q̈(t) + C (q(t), q̇(t)) q̇(t) +G(q(t)) +D(q̇(t)) = u(t), (5)

with vector and matrix elements as in (6).

q(t) =

[
x(t)
θ(t)

]
M(·) =

[
(m+M) lm cos(θ(t))

lm cos(θ(t)) l2m

]
C(·) =

[
0 −lmθ̇(t) sin(θ(t))
0 0

]
D(·) =

[
0 0
0 γr

]
G(·) =

[
0

−lmg sin(θ(t))

]
u(·) =

[
FM

0

] (6)

note that (6) may also be written as an affine-in-control model of the form:

q̈(t) = f1 (q(t), q̇(t)) + f2(q(t))u(t) (7)

where f1(q, q̇) = (M(q)
−1

[−C(q, q̇)q̇(t)−G(q)−D(q̇)], f2(q) = − (M(q))
−1

D(q̇) and u(t) = FM .
Introducing x1(t) := x(t), x2(t) := ẋ1(t), x3(t) := θ(t), and x4(t) := ẋ3(t) as state variables, then

(7) may further be written (after dropping the time variable t) as a nonlinear state space model in (8).


ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

l2m2 sin(x3)(lx
2
4−g cos (x3))+lm cos(x3)x4γr

β

x4
bl2m2x2

4+(m+M)(lmg sin(x3)−γrx4)
β

+


0
1
β

0
lm cos (x3)

β

u (8)

where β = l2m(M +m sin2(x3)) and b = (sin (x3) cos (x3)), while x1 and x3 are measurable variables. The
linearization of (8) around its equilibrium can be obtained for small deviation angles θ which implies sin θ ≈ θ
with cos θ = 1. In this regard, the linearization of (8) can be written as a linear time-invariant (LTI) system (9).

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0
0 0 −mg

M
γr

lM
0 0 0 1

0 0 (m+M)g
lM

−(m+M)γr

l2mM



x1

x2

x3

x4

+


0
1
M
0
−1
lM

u(t) y(t) =

[
1 0 0 0
0 0 1 0

]
x1

x2

x3

x4

 (9)

2.3. Experimental measurement and estimation of model parameters
During initial experiments, it was observed that the pendulum rod is experiencing friction force when

swinging on its pivoting point. A friction estimation experiment was thus conducted in which a friction force
model for F2 is assumed to be of the form F2 = γr θ̇, where γr is the friction coefficient that needs to be
estimated experimentally. The value of γr is estimated by initially hold the pendulum rod to θ ≈ 0.1728 rad
and then let it swings until finally rests at a position where θ = 3.14 rad (downward pointing position) as
illustrated in Figure 4. Table 1 lists the model parameters of the developed IPS platform used in experiment.

By the assumed friction model, the swinging trajectory of the pendulum rod is considered to be similar
with that of a second order LTI system response which is characterized by the differential in (10).

θ̈(t) + 2ζωnθ̇(t) + ωn
2θ(t) = 0 (10)
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Figure 4. Experiment illustration of the friction coefficient estimation

Table 1. IPS measured parameter
M (g) 479 479 479 479 479
m (g) 51 51 51 51 51

L (mm) 286.40 286.40 286.40 286.40 286.40

Combining (4b) with (10) and rearranging, we have that γr/lm = 2ωnζ which implies γr = 2lmζωn.
Figure 5 shows the pendulum rod’s response which was used in (10) to obtain parameter estimates of ωn =
3.0261rad.s−1 and ζ = 0.026389. In this regard, it can be determined that γr = 0.00016872N.s.rad−1.

Figure 5. Pendulum rod response for friction coefficient estimation

3. RESEARCH METHODS
The main objective of IPS control is to swing up the pendulum towards the neighborhood of the

upright position and then stabilize it on the vertical y axis. To achieve this objective, this research implements
a switching controller which consists of: i) a nonlinear swing up controller which brings the rod to the vertical
position and ii) a linear stabilizing controller which maintains the rod to remain at a vertical position around
the neighborhood of the y axis [20]. The nonlinear controller is constructed using lyapunov’s method on
model (8), while the linear controller is designed using LQR method on model (9). The control system’s block
diagram is shown in Figure 6. The switching block determines which controller is activated based on IPS
state. The switching occurs if the rod’s orientation reach the value range of −0.052rad ≤ θ(t) ≤ 0.052rad
for which an approximation of sin(θ(t)) ≈ θ(t) holds. The nonlinear controller is first activated to swinging
up the pendulum rod towards a small region around the upright position (unstable equilibrium), and the LQR
controller is then activated to keep the IPS rod in vertical position. Each of these controllers is detailed below.

Switching stabilizing controller design for an inverted pendulum ... (Jonathan Chandra)
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Figure 6. Block diagram of the switching controller

3.1. Nonlinear swing up control design
The construction of the nonlinear swinging up controller is done based on the analysis of the total

energy that is required to swing the pendulum rod to reach a small region around the upright position that
defines an unstable equilibrium. To this end, the IPS’ total energy is first identified and defined (11).

E(q, q̇) = EK(q, q̇) + EP (q) =
1

2
q̇TM(q)q̇ + lmg(cos θ − 1) (11)

the derivative of the system’s energy in (11) with respect to time is given (12).

Ė(q, q̇) = q̇TM(q)q̈ +
1

2
q̇T Ṁ(q)q̇ + q̇TG(q) =

1

2
q̇T (Ṁ(q)− 2C(q, q̇))q̇ + q̇TFM − q̇TDq̇. (12)

now notice the equilibrium of the state variable ẋ when E(q, q̇) = 0 for which condition (13) holds.

1

2
l2mθ̇2 = lmg(1− cos θ) (13)

As discussed in [14], θ̇ = 0 rad implies (13) defines a homoclinic orbit. This means that θ := 0 rad
can only be achieved if θ̇ = 0 rad. Consequently, the pendulum rod will be swinging with reference to the
vertical axis until arriving at the neighborhood of the equilibrium [θ, θ̇]T =[0, 0]T . In the discussion that will
follow, the following symmetric matrix term from the system model in (6) will also be useful.

Ṁ(q)− 2C(q, q̇) =

[
0 lm sin θ

−lm sin θ 0

]
(14)

Define E(t) = E(q, q̇). Using (13) and (14), then (12) can be rewritten as: Ė(t) = q̇TFM− q̇TD(q̇)q̇.
Next, consider a quadratic candidate lyapunov function V (t) := V (q, q̇) as (15).

V (t) =
1

2

(
K1E

2 +K2q̇1
2 +K3q1

2
)

(15)

where Ki, (i = 1, 2, 3) are positive constants. The time derivative of (15) can be computed as 16.

V̇ (t) = K1ĖE +K2q̈1q̇1 +K3q1q̇1 = K1E
(
uẋ− γr θ̇

2
)
+K2ẍẋ+K3ẋx,

= ẋ (K1uE +K2ẍ+K3x)−K1γrEθ̇2
(16)

notice that the term ẍ(t) in (16) can be obtained from (4) and is given by ẍ(t) = (α+FM )/β due to the impact
that the friction force has on the system’s disturbance with α = bm2l2x2

4 + (M + m)(mgl sin(x3) − γrx4)
and β = ml2(M +m sin2(x3)). Using such a ẍ and control input FM = u(t), (16) can be written as (17).

V̇ (t) = ẋ (K1u(t)E +K2(α+ u(t))/β +K3x)−K1γrEθ̇2 (17)

It can be seen that the second term −K1γrE(t)θ̇(t)2 on the right hand side (rhs) of (17) is always
negative definite. This thus suggests that one needs to design a control law that can render the first term on the
rhs of (7) to be negative definite [21]. In this regard, we consider a choice of control law as (18)

u(t) =
−β(K4ẋ+K3x)−K2α

K1βE +K2
(18)
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TELKOMNIKA Telecommun Comput El Control ❒ 1033

where K4 > 0 is a design parameter, and (i) (K1E + (K2/β)) ̸= 0 and (ii) (K2/K1) ̸= −E(M +m sin2 θ)
are assumed on (18) to avoid singularity. Using the control signal in (18), then (17) can be expressed as (19).

V̇ (t) = u(t) (K1E +K2/β) ẋ+ (K2α/β +K3x) ẋ−K1γrEθ̇2

=

(
−β(K4ẋ+K3x)−K2α

K1βE +K2

)(
K1βE +K2

β

)
ẋ+

(
K2

α

β
+K3x

)
ẋ−K1γrEθ̇2

= −K4ẋ
2 −K1γrEθ̇2 < 0 (19)

Clearly, (19) shows the control law (18) ensures the Lyapunov function (15) has negative time deriva-
tive and is thus strictly decreasing. By lyapunov stability theorem, the system is guaranteed to be asymptotically
stable. Since (11) implies E(t) ≥ −2lmg, a constraint of the form (K2/K1) < (2lgmM ≃ 0.0686) is also
used.

3.2. Linear stabilizing control design
Once the nonlinear controller swings the pendulum rod into the neighborhood the unstable equilib-

rium, an LQR controller is used to stabilize the IPS system. The LQR control used in this paper is one which
minimizes a quadratic cost function J of the form: J = argmin

∫∞
0

(x(s)⊺Qx(s) + u(s)⊺Ru(s)) ds, in which
Q and R, respectively, are the state and control input weighting matrices [11], [22], [23]. The resulting control
law is a state feedback control signal with a structure: u(t) := −KLQRx(t) = −R−1B⊺Px(t), in which
matrix P solves the algebraic Riccati equation of the form: PA⊺ +A⊺P − PBR−1B⊺P = −Q.

The weighting matrices Q and R are determined using Bryson’s rule [24] such that: (i) Q(k,k) =
(q2k)

−1
max, for k = 1, . . . , n, in which n = dim(q), and (ii) R = (u2

max)
−1 where umax is the maximum control

input to the system and (qk)max is the maximum value of the system states. In this paper, the cart’s maximum
translation state is constrained to 0.1 m and the pendulum rod’s stabilizing angle of deviation is set to 0.05 rad.
These set the elements of Q ∈ R4×4 to be: Q1,1 = Q3,3 = 1

0.12 = 100, and Q2,2 = Q4,4 = 1
0.052 = 400. By

constraining the maximum control input to be 10 N , a weighting matrix R = 1/(102) = 0.01 is used.

4. RESULTS AND ANALYSIS
4.1. Simulation results

Two simulations were conducted in MATLAB to verify the derived model and controller of the IPS.
The first one is to validate model (8) using an initial condition of [x ẋ θ θ̇]⊺=[0 0 π 0]⊺ and the following
model parameters: m = 0.05 kg, M = 0.479 kg, l = 0.143m, g = 9.81m/s2, γr = 0.00016872Ns/rad.
A sampling time of Ts=5 ms is used. Figure 7 plots the results of the first simulation for a constant input of
FM = 1 N in which the cart position is shown in Figure 7(a) while the rod angle response is shown in Figure
7(b). These plots show that the cart position keep increases while the pendulum rod oscillates until finally
settles at the equilibrium θ = 3.34 rad. These results indicate that the used model is valid for a constant FM .

(a) (b)

Figure 7. First simulation results for FM = 1N : (a) cart position x and (b) rod angle θ

The second simulation was intended to check if the constructed nonlinear controller can swing the
pendulum rod up towards a small region around the upright position (i.e., region of unstable equilibrium). The
switching controller in Figure 6 was implemented to ensure the IPS is asymptotically stable. A similar set of
model parameters was used while an initial condition with state values [x ẋ θ θ̇]⊺=[0.1 0 π 0]⊺ are used. The
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gains of the nonlinear controller were chosen to be [K1 K2 K3 K4]
⊺ = [15 1 100 1]⊺, and the LQR control

gain was set to KLQR=[-31.622 -222.081 -85.518 -66.643]⊺. Figure 8 plots the second simulation results.
The controlled cart position in Figure 8(a) shows that it is shifting to x = 0 m when started at x = 0.1m.
Consequently, the rod angle response in Figure 8(b) shows that it is eventually swinging up towards a small
region around the vertical upright position of the equilibrium point θ = 0 rad region. These plots thus
demonstrate the proposed switching controller’s effectiveness to stabilize the IPS platform model.

(a) (b)

Figure 8. Second simulation results: (a) closed loop cart position x and (b) closed loop rod angle θ

4.2. Experimental results

The experimental validation of the switching controller was implemented on an Arduino microcon-
troller board to allow for the data transfer between PC controller and the IPS prototype. The used model
parameters are similar with those used in simulations. The gain parameters of the nonlinear controller were set
to be [K1, K2, K3, K4]

⊺ = [29, 1, 100, 10]⊺, while the gain parameters of the LQR controller were set to be
KLQR=[-63.24, -94.13, -382.24, -77.76]⊺. The initial conditions were set to: [x, ẋ, θ, θ̇]⊺=[0, 0, π, 0]⊺.

Figure 9 plots the experimental results of the proposed switching controller. The pendulum rod angle
response shown in Figure 9(a) shows that the nonlinear controller part of the proposed switching controller
brings the pendulum rod towards the neighborhood of the unstable equilibrium state (θ(t) = 0), while the LQR
controller stabilizes the rod at such an equilibrium point. The switching between the two controllers occurs at
time t = 14s. Figure 9(b) which plots the phase portrait of the closed loop system experiment further shows
that the angle trajectory starts at a homoclinic orbit to then finally stabilized at the equilibrium point of θ = 00.
The results depicted in these figures thus show the proposed switching controller’s effectiveness to stabilize the
IPS platform. A video demonstration of the switching controller implementation is available in [25].

(a) (b)

Figure 9. Results of experimental control implementation: (a) rod angle response and (b) phase portrait
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5. CONCLUSION
This paper has presented an experimental implementation of a switching control scheme for an IPS

platform on a cart. Such an implementation is demonstrated on the IPS dynamic model that is derived by
Euler-Lagrange modeling formalism. The developed switching controller consists of a nonlinear lyapunov-
based swing up controller which brings the pendulum rod towards a small region near the vertical upright
position and an LQR controller which maintains the pendulum rod stable at the vertical axis. The results of both
simulation and experimental implementations of the proposed switching controller are shown to demonstrate
the effectiveness of the developed switching controller to stabilize the IPS at the desired equilibrium point.
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[17] A. Siuka and M. Schöberl, “Applications of energy based control methods for the inverted pendulum on a cart,” Robotics and
Autonomous Systems, vol. 57, no. 10, pp. 1012-1017, 2009, doi: 10.1016/j.robot.2009.07.016.

[18] J. Chandra, T. A. Tamba, and A. Sadiyoko, “Energy-based modeling and swing up control synthesis of an inverted pendu-
lum system,” 2019 International Conference on Mechatronics, Robotics, and Systems Engineering, pp. 265-269, 2019, doi:
10.1109/MoRSE48060.2019.8998729.

[19] C. A. Ibanez, O. G. Frias, and M. S. Castanon, “Lyapunov-based controller for the inverted pendulum cart system,” Nonlinear
Dynamics, vol. 40, no. 4, pp. 367-374, 2005, doi: 10.1007/s11071-005-7290-y.

[20] A. Tiga, C. Ghorbel, and N. Benhadj Braiek, “Nonlinear/linear switched control of inverted pendulum system: stability analysis and
real-time implementation,” Mathematical Problems in Engineering, vol. 2019, pp. 1-10, 2019, doi: 10.1155/2019/2391587.

[21] P. Zhou, X. Hu, Z. Zhu, and J. Ma, “What is the most suitable Lyapunov function?,” Chaos Solitons Fractals, vol. 150, no. 9, p.
111154, 2021, doi: 10.1016/j.chaos.2021.111154.

Switching stabilizing controller design for an inverted pendulum ... (Jonathan Chandra)



1036 ❒ ISSN: 1693-6930

[22] J. P. Hespanha, Linear Systems Theory, 2nd ed. Princeton, NJ: Princeton University Press, 2018. [Online]. Available:
https://press.princeton.edu/books/ebook/9781400890088/linear-systems-theory.

[23] S. Trimpe, A. Millane, S. Doessegger, and R. D’Andrea, “A self-tuning LQR approach demonstrated on an inverted pendulum,”
IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11281-11287, 2014, doi: 10.3182/20140824-6-ZA-1003.01455.

[24] T. M. Tijani, and I. A. Jimoh, “Optimal control of the double inverted pendulum on a cart: A comparative study of explicit MPC
and LQR,” Applications of Modelling and Simulation, vol. 5, pp. 74-87, 2021.

[25] J. Chandra, T.A. Tamba, and A. Sadiyoko, Switching Control of an Inverted Pendulum Systems. (2023). Accessed: Dec. 23, 2023.
[Streaming Video]. Available: https://drive.google.com/file/d/14-ttgsKM6qVlzNarrygcPi5T3GHHLZIp/view?usp=sharing.

BIOGRAPHIES OF AUTHORS

Jonathan Chandra received a B.Eng degree in Electrical Engineering from Parahyan-
gan Catholic University in 2020, and a M.Sc degree in Mechanical Engineering from University of
Groningen in 2023. He is currently pursuing his Ph.D degree in Mechanical Engineering at Uni-
versity of Groningen, The Netherlands. His research interests include control systems design for
mechatronics and robotic systems. He can be contacted at email: J.chandra.1@student.rug.nl.

Tua Agustinus Tamba is an assistant professor in the Department of Electrical Engineer-
ing at Parahyangan Catholic University, Indonesia. He received his MSEE and Ph.D in Electrical
Engineering from University of Notre Dame (USA) in 2016, M.Sc in Mechanical Engineering from
Pusan National University (Republic of Korea) in 2009, and B.Eng in Engineering Physics from
Institut Teknologi Bandung (Indonesia) in 2006. His research interests include dynamical systems,
control theory, and optimization with applications in mechatronics, robotics, automation systems,
and systems biology. He can be contacted at email: ttamba@unpar.ac.id.

Ali Sadiyoko is presently an associate professor in the Department of Electrical Engineer-
ing at Parahyangan Catholic University. He received both his B.Eng and Doctoral degree in Electrical
Engineering from Institut Teknologi Bandung (Indonesia) in 1995 and 2016, respectively. His has
worked on researh projects related to the modeling and control of multi-agent system dynamics and
collaborative robots. He can be contacted at email: alfa51@unpar.ac.id.

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 1027–1036

https://orcid.org/0000-0002-7739-4138
https://scholar.google.com/citations?user=w2mMIo0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57218315449
https://www.webofscience.com/wos/author/record/JUF-5878-2023
https://orcid.org/0000-0003-4702-1100
https://scholar.google.com/citations?hl=en&user=JD9GdoIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=24483936300
https://www.webofscience.com/wos/author/record/1325034
https://orcid.org/0000-0003-0867-1389
https://scholar.google.com/citations?user=cnZhq1YAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55364111400
https://www.webofscience.com/wos/author/record/GPF-6348-2022

	Introduction
	System Description and Modeling
	IPS configuration
	Mathematical model
	Experimental measurement and estimation of model parameters

	Research Methods
	Nonlinear swing up control design
	Linear stabilizing control design

	Results and Analysis
	Simulation results
	Experimental results

	Conclusion

