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 Trojan Horse is a major threat that has grown with the spread of the digital 

world. Data gathered through the study of memory can provide valuable 

insights into the Trojan Horse’s behavior patterns. Because of this, memory 

analysis techniques are one of the topics that should be investigated in 

Trojan Horse detection. This study proposes the use of memory data in 

Trojan Horse detection. Trojan Horse detection used a decision tree (DT) 

classifier with memory data. Experiments were performed on the Trojan 

Horse samples from the CIC-MalMem-2022 dataset. The binary 

classification was made using DT, gradient boosted tree, Naive Bayes (NB), 

linear vector support machine, K-nearest neighbors (KNN), and machine 

learning (ML) classifiers. The comparison of the various classification 

methods was performed utilizing the accuracy, recall, precision, and F1-

score metrics. As a result, the most successful Trojan Horse detection was 

gained with the DT classifier, which achieved accuracy of 99.96% using 

memory data. The NB classifier showed the lowest achievement in Trojan 

Horse detection using memory data, which achieved accuracy of 98.41%. In 

addition, numerous of the classifiers utilized have attained very high results. 

Based on the achieved results, the data from memory analysis is very 

valuable in detecting Trojan Horse. 

Keywords: 

Decision tree 

Machine learning 

Malware 

Trojan Horse 

Obfuscated-MalMem2022 

 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mosleh M. Abualhaj 

Department of Networks and Cybersecurity, Faculty of Information Technology  

Al-Ahliyya Amman University 

Amman, 19328, Jordan  

Email: m.abualhaj@ammanu.edu.jo 

 

  

1. INTRODUCTION 

Cyberthreats encompass nefarious and potentially perilous actions, plans, or occurrences that exploit 

vulnerabilities in digital technologies, networks, and systems. Cybercriminals, hackers, or other malicious 

entities orchestrate and execute these threats to compromise the confidentiality, integrity, availability, or 

overall security of digital assets, data, or business operations [1]. Data breaches, phishing attacks, identity 

theft, and malware infections exemplify the wide array of actions falling under the umbrella of cyber threats 

[2], [3]. Given the swiftly evolving landscape of technology and the digital realm, proactive cybersecurity 

measures are imperative to curbing risks and shielding against potential malware infections. Contemporary 

forms of malware include ransomware, keyloggers, rootkits, and Trojan Horses [4]–[6]. 

Trojan Horse refers to a computer application downloaded and installed on a computer, 

masquerading as harmless but carrying harmful intent. Unanticipated modifications to computer settings and 

unusual activities, particularly during periods of inactivity, indicate the presence of Trojan Horse. These 

deceptive programs are often concealed within seemingly innocuous email attachments or free downloads. 

https://creativecommons.org/licenses/by-sa/4.0/
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Upon opening such attachments or initiating downloads, the embedded malware is introduced to the user’s 

device, enabling the malicious code to execute the attacker’s intended actions [7]–[9]. Incidents involving 

Trojan Horse attacks have emerged as significant cybersecurity risks, inflicting financial losses, and 

operational disruptions on individuals and businesses. In 2022 alone, a staggering 5.5 billion malware attacks 

were documented, with 2.75 billion attributed to Trojan Horse attacks [6]. To safeguard against these threats, 

a comprehensive approach combining preventive measures and proactive security protocols is essential to 

prevent the infiltration of these malicious programs into systems [10], [11]. Given Trojans’ ability to 

deceptively mimic benign software, maintaining vigilance, and adopting necessary precautions are 

paramount. Augmenting defenses against Trojan Horse threats can be accomplished by implementing 

advanced strategies like sandboxing, honeypots, and machine learning (ML) [12]–[14]. 

Harnessing the capabilities of artificial intelligence and data analysis, ML emerges as a potent tool 

to counteract Trojan Horse attacks. This involves detecting and preventing such threats, facilitated by models 

designed to recognize and thwart these insidious infiltrations. ML driven models can identify discernible 

patterns and behaviors linked to Trojan Horses, laying the groundwork for the development of proactive 

security strategies. The utilization of ML in categorizing Trojan Horse necessitates the training of models to 

autonomously distinguish between benign and malicious software. By learning from meticulously labeled 

datasets, ML classifiers discern distinctive patterns and attributes characteristic of Trojan Horse behavior. 

Renowned ML classifiers encompass random forest (RF), logistic regression (LR), support vector machine 

(SVM), Naive Bayes (NB), K-nearest neighbors (KNN), and decision tree (DT) [15]–[20]. Within the 

purview of this article, the DT classifier takes the forefront in identifying Trojan Horse occurrences. 

− Related works 

Kulkarni et al. [21] have introduced a low-overhead online learning hardware solution for 

unforeseen attacks on a specialized many-core architecture. The assumption is that memory and processor 

cores remain secure, with anomalies introduced only through communication exchanges. The training dataset 

is constructed using the effects of Trojan insertions and hardware feature analysis. AVM, KNN, and the 

modified balanced winnow algorithms (MBWA) evaluate the effectiveness of detecting unforeseen attacks. 

To illustrate, a ML model is trained with two types of attacks, and a new attack type is introduced in real-

time. The MBWA algorithm demonstrates 5% to 8% higher accuracy in detecting attacks compared to SVM 

and K-NN. An Attack Insertion module is implemented to test the design with condition-based attacks. The 

design is fully implemented and routed on the Xilinx Virtex-7 field-programmable gate array (FPGA). Only 

an additional four cycles are required for the proposed system to detect attacks during operation. Compared 

to previously published Trojan detection designs, the proposed approach achieves a 56% reduction in area 

overhead and a 50% decrease in latency. 

Worley and Rahman [22] conducted a quantitative assessment comparing the effectiveness of four 

different supervised ML techniques in classifying integrated circuits based on their ring oscillator network 

frequencies. Remarkably, when utilizing an SVM classifier, this approach achieved 97.6% accuracy in binary 

classification, accompanied by an impressively low false positive rate (FPR) of just 7.1%. Additionally, 

ensemble approaches attained an accuracy of around 88%, demonstrating no instances of false positives. 

However, despite these encouraging findings, supervised learning methods often need to be more feasible in 

real-world supply chain contexts. Identifying validated ‘golden chips’ poses a significant challenge, given the 

near-impossible task of determining compromised chips at the dataset’s assumed scale. 

Xuan et al. [23] have introduced a hybrid semi-supervised classifier designed to achieve precise 

detection and classification accuracy for web Trojans while utilizing a limited amount of labeled data. The 

data utilized in this study is drawn from the web security gateway, primarily due to the greater availability of 

unlabeled data instead of tagged ones. Their approach entails detecting Web Trojans by combining an 

autoencoder with a multi-layer feed forward-back propagation (BP) artificial neural network (ANN). 

Initially, the detection model and the extracted features of the Web Trojan were scrutinized. Subsequently, 

the robustness of feature extraction was enhanced through unsupervised learning using a stacked denoising 

autoencoder. Integrating the BP-supervised ANN allowed for fine-tuning the network structure and optimizing 

the detection model. Compared to the DT and SVM, the proposed approach demonstrated a remarkable 

accuracy of 91.99%, outperforming the 89.32% of DT and the 91.13% of SVM. Hence, the proposed method 

unequivocally showcases superior performance against well-established classification techniques. 

 

 

2. METHOD 

This section presents the Obfuscated-MalMem2022 dataset that has been used in this paper. Then, 

the preprocessing operations that have been performed on the used dataset will be discussed. Finally, the DT 

classifier that will be used to detect the attack will be discussed. Figure 1 shows the operations performed to 

detect the Trojan Horse attack using the DT classifier. 
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Figure 1. Trojan Horse attack detection 

 

 

2.1.  Obfuscated-MalMem2022 dataset 

The Obfuscated-MAlMem2022 dataset encompasses three primary malware families: spyware, 

ransomware, and Trojan Horse. This study, however, focuses primarily on the Trojan Horse category. 

Consequently, all instances of spyware and ransomware have been excluded, leading to the creation of a 

refined dataset referred to as Trojan-MalMem. This Trojan-MalMem dataset comprises 9487 entries, 

categorized across five distinct types of Trojan Horses: Zeus (1950 records), Emotet (1967 records), Refroso 

(2000 records), Scar (2000 records), and Reconyc (1570 records). The distribution of Trojan Horse types is 

illustrated in Figure 2. Furthermore, the Trojan-MalMem dataset incorporates an additional 29298 entries of 

benign data [24]. 

 

 

 
 

Figure 2. Trojan Horse types distribution 
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2.2.  Trojan-MalMem preprocessing 

The two primary operations involved in ML data preprocessing encompass data transformation and 

data normalization. Data transformation involves converting and reformatting data into a suitable format, 

including transforming text data into numbers using a technique like label encoding. In label encoding, each 

unique category is assigned a unique integer label. Only the last column in the Trojan-MalMem dataset 

contains text data [14]. As mentioned above, it contains benign, Zeus, Emotet, Refroso, Scar, and Reconyc 

values [24]. Therefore, label encoding is used to transform them into 0, 1, 2, 3, 4, and 5, respectively. As for 

data normalization, it ensures that numerical variables are brought to a similar scale, preventing certain 

features from dominating the learning process. Min-Max scaling (1) is a data normalization method that 

scales the data to a specified range, usually between 0 and 1 [14]. 

 

𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (𝑥 − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 − 𝑚𝑖𝑛) (1) 

 

Where 𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value of the original data point 𝑥, 𝑥 is the original data point, 

min is the minimum value in the dataset, and max is the maximum value in the dataset. The Trojan-MalMem 

dataset contains wide scale of data among features [24]. Therefore, 𝑚𝑖𝑛 − 𝑚𝑎𝑥 scaling is used to scale this data 

between 0 and 1. Tables 1 and 2 show sample of the Trojan-MalMem dataset before and after normalization, 

respectively. The pre-discussed preprocessing steps, transformation and normalization, collectively serve to 

enhance the quality of the dataset and facilitate the effectiveness of subsequent ML classifiers.  

 

 

Table 1. Sample of the Trojan-MalMem dataset before normalization 
Data samples Output 

42, 16, 10.73809524, 0, 209.2142857, 1621, 38.5952381, 8787, 209.2142857 0 
40, 16, 9.525, 0, 204.175, 1504, 37.6, 8167, 204.175 0 

42, 16, 10.02380952, 0, 206.2619048, 1610, 38.33333333, 8663, 206.2619048 0 

44, 17, 9.590909091, 0, 200.7954545, 1674, 38.04545455, 8835, 200.7954545 0 
45, 17, 10.55555556, 0, 202.8444444, 1694, 38.5, 9129, 212.3023256 1 

47, 19, 11.53191489, 0, 242.2340426, 2074, 44.12765957, 11385, 242.2340426 1 

40, 14, 14.725, 0, 288.225, 1932 48.3, 11529, 288.225 1 

 

 

Table 2. Sample of the Trojan-MalMem dataset after normalization 
Data samples Output 

0.091743119, 0.125, 0.602767848, 0, 0.232847424, 0.307725139, 0.682017433, 0.168570919, 0.076448356 0 

0.082568807, 0.125, 0.522309316, 0, 0.226113578, 0.257789159, 0.660305073, 0.140899759, 0.068341683 0 
0.091743119, 0.125, 0.555392853, 0, 0.228902246, 0.303030303, 0.676303654, 0.163036687, 0.071698876 0 

0.100917431, 0.140625, 0.526680736, 0, 0.221597593, 0.330345711, 0.670023219, 0.170713202, 0.062905026 0 

0.105504587, 0.140625, 0.590660905, 0, 0.224335597, 0.338881776, 0.679939695, 0.183834687, 0.081416069 1 
0.114678899, 0.171875, 0.65541793, 0, 0.276970733, 0.501067008, 0.802714106, 0.284522003, 0.129567064 1 

0.082568807, 0.09375, 0.867199276, 0, 0.338427067, 0.440460948, 0.893738914, 0.290948853, 0.203552475 1 

 

 

2.3.  Trojan Horse malware detection 

The DT classifier is used for Trojan Horse detection. DT is a popular supervised learning classifier 

used for both classification and regression tasks. It is a tree-like structure where each internal node represents 

a decision based on a feature, each branch represents an outcome of that decision, and each leaf node 

represents a class label or a predicted value [14], [25]. Figure 3 clarifies the DT classifier. 

In classification tasks, the DT classifier splits the data based on the features to create hierarchical 

partitions that classify the data into different classes. The classifier selects the best feature to split the data at 

each internal node using various criteria like Gini impurity or entropy, aiming to maximize the purity of each 

partition. The Gini impurity and entropy for a given node is calculated using (3) and (2), respectively [26], [27]: 

 

𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 −  ∑ 𝑝_𝑖^2 (2) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑  (𝑝_𝑖 ∗ 𝑙𝑜𝑔2(𝑝_𝑖)) (3) 

 

Where 𝑝_𝑖 is the proportion of data points belonging to class 𝑖 in the node. 

The construction and utilization of a DT to detect Trojan Horse involve a series of pivotal 

procedures. Initially, the technique identifies the optimal feature for splitting the Trojan-MalMem dataset into 

subsets at the root node of the DT, guided by factors such as Gini impurity or entropy. This chosen feature 

value lay the foundation for creating these subsets of Trojan-MalMem dataset at internal nodes. 
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Subsequently, the recursive splitting process extends the data partitioning to each subset or child node, 

progressively crafting the hierarchical structure of the tree. The formulation of leaf nodes finalizes the 

recursive sequence, encapsulating the ultimate predictions (Trojan Horse or benign). By selectively removing 

branches or nodes, pruning can be applied to counteract overfitting, enhancing generalization. In the end, the 

DT is used for prediction; unseen data navigate the tree, choosing branches based on feature values until it 

reaches a leaf node, enabling the final prediction of Trojan Horse or benign [25]–[28]. These interdependent 

operations collectively enable the creation of an interpretable decision-making framework, facilitating 

accurate predictions on new Trojan Horse. 

 

 

 
 

Figure 3. DT classifier 

 

 

3. RESULT AND DISCUSSION 

The proposed model was tested on a PC with the following specification: CPU Intel 13 Gen Core  

i9-13900F 24-Cores up to 5.6 GHz, memory 32 GB, RGB 3200 MHz DDR4 memory graphic card GeForce 

RTX 4070, 1TB M.2 SSD up to 3500 MB/s, and Ubuntu 20.04.4 LTS O.S. The model is trained and 

evaluated 5 times using K-fold cross validation method. Evaluating the proposed model involves utilizing 

various metrics to gauge its performance and effectiveness in making predictions. These metrics provide 

quantitative insights into how well the model is performing on the given dataset. True positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) of the confusion matrix was used derive four 

metrics to evaluate the proposed model. These four metrics are accuracy (4), recall (5), precision (6), and  

F1-score (7) [14], [25]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (6) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒 ×𝑅𝑒𝑐

𝑃𝑟𝑒+𝑅𝑒𝑐
 (7) 

 

 

Figures 4 to 7 show the accuracy, recall, precision, and F1-score, respectively, of detecting the 

Trojan Horse when using DT against other common classifiers. DT has achieved the highest value of 99.96% 

with all metrics among all other classifiers. Conversely, the NB classifier registers the lowest scores for 

accuracy (98.41%), precision (97.02%), and F1-score (98.42%) among all the classifiers under consideration. 

Additionally, the linear support vector classifier (SVC) exhibits the lowest recall rate (99.57%) when 

compared to the other classifiers.  
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Figure 4. Accuracy of detecting the Trojan Horse 

 

 

 
 

Figure 5. Recall of detecting the Trojan Horse 

 

 

  
  

Figure 6. Precision of detecting the Trojan Horse Figure 7. F1-score of detecting the Trojan Horse 
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4. CONCLUSION 

As networking and internet technologies continue to advance, Trojan Horse developers have rapidly 

adapted their malicious code, often exploiting vulnerabilities in operating systems. Despite the existence of 

various techniques for detecting Trojan Horses through operating system memory analysis, newly developed 

Trojans continue to evade these methods. In response to this challenge, we propose a Trojan Horse detection 

model that utilizes a DT classifier based on data extracted from system memory. To assess the effectiveness 

of our model, we evaluated it using the Trojan-MalMem dataset. The performance metrics demonstrated that 

all classifiers achieved high accuracy in Trojan Horse classification. Among these classifiers, DT excelled 

with an impressive accuracy, recall, precision, and F1-score of 99.96%. These results underscore the significant 

contribution of memory analysis data to achieving a high success rate in Trojan Horse detection. It’s worth 

noting that the parameters used in this study and the results obtained are specific to the Trojan-MalMem dataset. 

Different datasets with varying features or classes may yield different results, which is a limitation to 

consider. However, we firmly believe that employing the ML approach holds promise for successful Trojan 

Horse detection. This study lays the foundation for further classification research using ML in-memory 

analysis and Trojan Horse detection. Future studies could explore different hyperparameters, and we intend 

to expand into multiclass classification, considering the six distinct class labels within the Trojan-MalMem 

dataset: Benign, Zeus, Emotet, Refroso, Scar, and Reconyc. 
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