
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 22, No. 2, April 2024, pp. 393~400

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v22i2.25753  393

Journal homepage: http://telkomnika.uad.ac.id

Using decision tree classifier to detect Trojan Horse based on

memory data

Mosleh M. Abualhaj1, Sumaya N. Al-Khatib2
1Department of Networks and Cybersecurity, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, Jordan

2Department of Computer Science, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, Jordan

Article Info ABSTRACT

Article history:

Received Oct 6, 2023

Revised Dec 9, 2023

Accepted Jan 5, 2024

 Trojan Horse is a major threat that has grown with the spread of the digital

world. Data gathered through the study of memory can provide valuable

insights into the Trojan Horse’s behavior patterns. Because of this, memory

analysis techniques are one of the topics that should be investigated in

Trojan Horse detection. This study proposes the use of memory data in

Trojan Horse detection. Trojan Horse detection used a decision tree (DT)

classifier with memory data. Experiments were performed on the Trojan

Horse samples from the CIC-MalMem-2022 dataset. The binary

classification was made using DT, gradient boosted tree, Naive Bayes (NB),

linear vector support machine, K-nearest neighbors (KNN), and machine

learning (ML) classifiers. The comparison of the various classification

methods was performed utilizing the accuracy, recall, precision, and F1-

score metrics. As a result, the most successful Trojan Horse detection was

gained with the DT classifier, which achieved accuracy of 99.96% using

memory data. The NB classifier showed the lowest achievement in Trojan

Horse detection using memory data, which achieved accuracy of 98.41%. In

addition, numerous of the classifiers utilized have attained very high results.

Based on the achieved results, the data from memory analysis is very

valuable in detecting Trojan Horse.

Keywords:

Decision tree

Machine learning

Malware

Trojan Horse

Obfuscated-MalMem2022

This is an open access article under the CC BY-SA license.

Corresponding Author:

Mosleh M. Abualhaj

Department of Networks and Cybersecurity, Faculty of Information Technology

Al-Ahliyya Amman University

Amman, 19328, Jordan

Email: m.abualhaj@ammanu.edu.jo

1. INTRODUCTION

Cyberthreats encompass nefarious and potentially perilous actions, plans, or occurrences that exploit

vulnerabilities in digital technologies, networks, and systems. Cybercriminals, hackers, or other malicious

entities orchestrate and execute these threats to compromise the confidentiality, integrity, availability, or

overall security of digital assets, data, or business operations [1]. Data breaches, phishing attacks, identity

theft, and malware infections exemplify the wide array of actions falling under the umbrella of cyber threats

[2], [3]. Given the swiftly evolving landscape of technology and the digital realm, proactive cybersecurity

measures are imperative to curbing risks and shielding against potential malware infections. Contemporary

forms of malware include ransomware, keyloggers, rootkits, and Trojan Horses [4]–[6].

Trojan Horse refers to a computer application downloaded and installed on a computer,

masquerading as harmless but carrying harmful intent. Unanticipated modifications to computer settings and

unusual activities, particularly during periods of inactivity, indicate the presence of Trojan Horse. These

deceptive programs are often concealed within seemingly innocuous email attachments or free downloads.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 393-400

394

Upon opening such attachments or initiating downloads, the embedded malware is introduced to the user’s

device, enabling the malicious code to execute the attacker’s intended actions [7]–[9]. Incidents involving

Trojan Horse attacks have emerged as significant cybersecurity risks, inflicting financial losses, and

operational disruptions on individuals and businesses. In 2022 alone, a staggering 5.5 billion malware attacks

were documented, with 2.75 billion attributed to Trojan Horse attacks [6]. To safeguard against these threats,

a comprehensive approach combining preventive measures and proactive security protocols is essential to

prevent the infiltration of these malicious programs into systems [10], [11]. Given Trojans’ ability to

deceptively mimic benign software, maintaining vigilance, and adopting necessary precautions are

paramount. Augmenting defenses against Trojan Horse threats can be accomplished by implementing

advanced strategies like sandboxing, honeypots, and machine learning (ML) [12]–[14].

Harnessing the capabilities of artificial intelligence and data analysis, ML emerges as a potent tool

to counteract Trojan Horse attacks. This involves detecting and preventing such threats, facilitated by models

designed to recognize and thwart these insidious infiltrations. ML driven models can identify discernible

patterns and behaviors linked to Trojan Horses, laying the groundwork for the development of proactive

security strategies. The utilization of ML in categorizing Trojan Horse necessitates the training of models to

autonomously distinguish between benign and malicious software. By learning from meticulously labeled

datasets, ML classifiers discern distinctive patterns and attributes characteristic of Trojan Horse behavior.

Renowned ML classifiers encompass random forest (RF), logistic regression (LR), support vector machine

(SVM), Naive Bayes (NB), K-nearest neighbors (KNN), and decision tree (DT) [15]–[20]. Within the

purview of this article, the DT classifier takes the forefront in identifying Trojan Horse occurrences.

− Related works

Kulkarni et al. [21] have introduced a low-overhead online learning hardware solution for

unforeseen attacks on a specialized many-core architecture. The assumption is that memory and processor

cores remain secure, with anomalies introduced only through communication exchanges. The training dataset

is constructed using the effects of Trojan insertions and hardware feature analysis. AVM, KNN, and the

modified balanced winnow algorithms (MBWA) evaluate the effectiveness of detecting unforeseen attacks.

To illustrate, a ML model is trained with two types of attacks, and a new attack type is introduced in real-

time. The MBWA algorithm demonstrates 5% to 8% higher accuracy in detecting attacks compared to SVM

and K-NN. An Attack Insertion module is implemented to test the design with condition-based attacks. The

design is fully implemented and routed on the Xilinx Virtex-7 field-programmable gate array (FPGA). Only

an additional four cycles are required for the proposed system to detect attacks during operation. Compared

to previously published Trojan detection designs, the proposed approach achieves a 56% reduction in area

overhead and a 50% decrease in latency.

Worley and Rahman [22] conducted a quantitative assessment comparing the effectiveness of four

different supervised ML techniques in classifying integrated circuits based on their ring oscillator network

frequencies. Remarkably, when utilizing an SVM classifier, this approach achieved 97.6% accuracy in binary

classification, accompanied by an impressively low false positive rate (FPR) of just 7.1%. Additionally,

ensemble approaches attained an accuracy of around 88%, demonstrating no instances of false positives.

However, despite these encouraging findings, supervised learning methods often need to be more feasible in

real-world supply chain contexts. Identifying validated ‘golden chips’ poses a significant challenge, given the

near-impossible task of determining compromised chips at the dataset’s assumed scale.

Xuan et al. [23] have introduced a hybrid semi-supervised classifier designed to achieve precise

detection and classification accuracy for web Trojans while utilizing a limited amount of labeled data. The

data utilized in this study is drawn from the web security gateway, primarily due to the greater availability of

unlabeled data instead of tagged ones. Their approach entails detecting Web Trojans by combining an

autoencoder with a multi-layer feed forward-back propagation (BP) artificial neural network (ANN).

Initially, the detection model and the extracted features of the Web Trojan were scrutinized. Subsequently,

the robustness of feature extraction was enhanced through unsupervised learning using a stacked denoising

autoencoder. Integrating the BP-supervised ANN allowed for fine-tuning the network structure and optimizing

the detection model. Compared to the DT and SVM, the proposed approach demonstrated a remarkable

accuracy of 91.99%, outperforming the 89.32% of DT and the 91.13% of SVM. Hence, the proposed method

unequivocally showcases superior performance against well-established classification techniques.

2. METHOD

This section presents the Obfuscated-MalMem2022 dataset that has been used in this paper. Then,

the preprocessing operations that have been performed on the used dataset will be discussed. Finally, the DT

classifier that will be used to detect the attack will be discussed. Figure 1 shows the operations performed to

detect the Trojan Horse attack using the DT classifier.

TELKOMNIKA Telecommun Comput El Control 

Using decision tree classifier to detect Trojan Horse based on memory data (Mosleh M. Abualhaj)

395

Figure 1. Trojan Horse attack detection

2.1. Obfuscated-MalMem2022 dataset

The Obfuscated-MAlMem2022 dataset encompasses three primary malware families: spyware,

ransomware, and Trojan Horse. This study, however, focuses primarily on the Trojan Horse category.

Consequently, all instances of spyware and ransomware have been excluded, leading to the creation of a

refined dataset referred to as Trojan-MalMem. This Trojan-MalMem dataset comprises 9487 entries,

categorized across five distinct types of Trojan Horses: Zeus (1950 records), Emotet (1967 records), Refroso

(2000 records), Scar (2000 records), and Reconyc (1570 records). The distribution of Trojan Horse types is

illustrated in Figure 2. Furthermore, the Trojan-MalMem dataset incorporates an additional 29298 entries of

benign data [24].

Figure 2. Trojan Horse types distribution

Obfuscated-
MalMem2022

Start

Label Transformation

Data Normalization
 (Min-max Scaler)

Processed

Trojan-MalMem

Decision Tree classifier Training

Evaluate Decision Tree
Classifiers Performance:

Accuracy, Recall, Precision, F1-
Score

End

Dataset

Trojan-MalMem

Dataset

Dataset

21%

21%

21%

21%

16%

Trojan Horse Types Distribution

Zeus

Emotet

Refroso

scar

Reconyc

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 393-400

396

2.2. Trojan-MalMem preprocessing

The two primary operations involved in ML data preprocessing encompass data transformation and

data normalization. Data transformation involves converting and reformatting data into a suitable format,

including transforming text data into numbers using a technique like label encoding. In label encoding, each

unique category is assigned a unique integer label. Only the last column in the Trojan-MalMem dataset

contains text data [14]. As mentioned above, it contains benign, Zeus, Emotet, Refroso, Scar, and Reconyc

values [24]. Therefore, label encoding is used to transform them into 0, 1, 2, 3, 4, and 5, respectively. As for

data normalization, it ensures that numerical variables are brought to a similar scale, preventing certain

features from dominating the learning process. Min-Max scaling (1) is a data normalization method that

scales the data to a specified range, usually between 0 and 1 [14].

𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (𝑥 − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 − 𝑚𝑖𝑛) (1)

Where 𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value of the original data point 𝑥, 𝑥 is the original data point,

min is the minimum value in the dataset, and max is the maximum value in the dataset. The Trojan-MalMem

dataset contains wide scale of data among features [24]. Therefore, 𝑚𝑖𝑛 − 𝑚𝑎𝑥 scaling is used to scale this data

between 0 and 1. Tables 1 and 2 show sample of the Trojan-MalMem dataset before and after normalization,

respectively. The pre-discussed preprocessing steps, transformation and normalization, collectively serve to

enhance the quality of the dataset and facilitate the effectiveness of subsequent ML classifiers.

Table 1. Sample of the Trojan-MalMem dataset before normalization
Data samples Output

42, 16, 10.73809524, 0, 209.2142857, 1621, 38.5952381, 8787, 209.2142857 0
40, 16, 9.525, 0, 204.175, 1504, 37.6, 8167, 204.175 0

42, 16, 10.02380952, 0, 206.2619048, 1610, 38.33333333, 8663, 206.2619048 0

44, 17, 9.590909091, 0, 200.7954545, 1674, 38.04545455, 8835, 200.7954545 0
45, 17, 10.55555556, 0, 202.8444444, 1694, 38.5, 9129, 212.3023256 1

47, 19, 11.53191489, 0, 242.2340426, 2074, 44.12765957, 11385, 242.2340426 1

40, 14, 14.725, 0, 288.225, 1932 48.3, 11529, 288.225 1

Table 2. Sample of the Trojan-MalMem dataset after normalization
Data samples Output

0.091743119, 0.125, 0.602767848, 0, 0.232847424, 0.307725139, 0.682017433, 0.168570919, 0.076448356 0

0.082568807, 0.125, 0.522309316, 0, 0.226113578, 0.257789159, 0.660305073, 0.140899759, 0.068341683 0
0.091743119, 0.125, 0.555392853, 0, 0.228902246, 0.303030303, 0.676303654, 0.163036687, 0.071698876 0

0.100917431, 0.140625, 0.526680736, 0, 0.221597593, 0.330345711, 0.670023219, 0.170713202, 0.062905026 0

0.105504587, 0.140625, 0.590660905, 0, 0.224335597, 0.338881776, 0.679939695, 0.183834687, 0.081416069 1
0.114678899, 0.171875, 0.65541793, 0, 0.276970733, 0.501067008, 0.802714106, 0.284522003, 0.129567064 1

0.082568807, 0.09375, 0.867199276, 0, 0.338427067, 0.440460948, 0.893738914, 0.290948853, 0.203552475 1

2.3. Trojan Horse malware detection

The DT classifier is used for Trojan Horse detection. DT is a popular supervised learning classifier

used for both classification and regression tasks. It is a tree-like structure where each internal node represents

a decision based on a feature, each branch represents an outcome of that decision, and each leaf node

represents a class label or a predicted value [14], [25]. Figure 3 clarifies the DT classifier.

In classification tasks, the DT classifier splits the data based on the features to create hierarchical

partitions that classify the data into different classes. The classifier selects the best feature to split the data at

each internal node using various criteria like Gini impurity or entropy, aiming to maximize the purity of each

partition. The Gini impurity and entropy for a given node is calculated using (3) and (2), respectively [26], [27]:

𝐺𝑖𝑛𝑖 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ 𝑝_𝑖^2 (2)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ (𝑝_𝑖 ∗ 𝑙𝑜𝑔2(𝑝_𝑖)) (3)

Where 𝑝_𝑖 is the proportion of data points belonging to class 𝑖 in the node.

The construction and utilization of a DT to detect Trojan Horse involve a series of pivotal

procedures. Initially, the technique identifies the optimal feature for splitting the Trojan-MalMem dataset into

subsets at the root node of the DT, guided by factors such as Gini impurity or entropy. This chosen feature

value lay the foundation for creating these subsets of Trojan-MalMem dataset at internal nodes.

TELKOMNIKA Telecommun Comput El Control 

Using decision tree classifier to detect Trojan Horse based on memory data (Mosleh M. Abualhaj)

397

Subsequently, the recursive splitting process extends the data partitioning to each subset or child node,

progressively crafting the hierarchical structure of the tree. The formulation of leaf nodes finalizes the

recursive sequence, encapsulating the ultimate predictions (Trojan Horse or benign). By selectively removing

branches or nodes, pruning can be applied to counteract overfitting, enhancing generalization. In the end, the

DT is used for prediction; unseen data navigate the tree, choosing branches based on feature values until it

reaches a leaf node, enabling the final prediction of Trojan Horse or benign [25]–[28]. These interdependent

operations collectively enable the creation of an interpretable decision-making framework, facilitating

accurate predictions on new Trojan Horse.

Figure 3. DT classifier

3. RESULT AND DISCUSSION

The proposed model was tested on a PC with the following specification: CPU Intel 13 Gen Core

i9-13900F 24-Cores up to 5.6 GHz, memory 32 GB, RGB 3200 MHz DDR4 memory graphic card GeForce

RTX 4070, 1TB M.2 SSD up to 3500 MB/s, and Ubuntu 20.04.4 LTS O.S. The model is trained and

evaluated 5 times using K-fold cross validation method. Evaluating the proposed model involves utilizing

various metrics to gauge its performance and effectiveness in making predictions. These metrics provide

quantitative insights into how well the model is performing on the given dataset. True positive (TP), true

negative (TN), false positive (FP), and false negative (FN) of the confusion matrix was used derive four

metrics to evaluate the proposed model. These four metrics are accuracy (4), recall (5), precision (6), and

F1-score (7) [14], [25].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (6)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒 ×𝑅𝑒𝑐

𝑃𝑟𝑒+𝑅𝑒𝑐
 (7)

Figures 4 to 7 show the accuracy, recall, precision, and F1-score, respectively, of detecting the

Trojan Horse when using DT against other common classifiers. DT has achieved the highest value of 99.96%

with all metrics among all other classifiers. Conversely, the NB classifier registers the lowest scores for

accuracy (98.41%), precision (97.02%), and F1-score (98.42%) among all the classifiers under consideration.

Additionally, the linear support vector classifier (SVC) exhibits the lowest recall rate (99.57%) when

compared to the other classifiers.

Root
Node

Decision
Node

Decision
Node

Decision
Node

Leaf
Node

Leaf
Node

Leaf
Node

Leaf
Node

Leaf
Node

Sub Tree

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 393-400

398

Figure 4. Accuracy of detecting the Trojan Horse

Figure 5. Recall of detecting the Trojan Horse

Figure 6. Precision of detecting the Trojan Horse Figure 7. F1-score of detecting the Trojan Horse

99
.9

6%

98
.4

1%

99
.9

4%

99
.1

4%

99
.9

5%

D T N B G B T R E E L I N E A R S VC K N N

ACCURACY

99
.9

6%

99
.8

5% 99
.9

1%

99
.5

7%

99
.9

5%

D T N B G B T R E E L I N E A R S VC K N N

RECALL

9
9

.9
6

%

9
7

.0
2

%

9
9

.9
7

%

9
8

.6
9

%

9
9

.9
5

%

D T N B G B T R E E L I N E A R S VC K N N

PRECISION

9
9

.9
6

%

9
8

.4
2

%

9
9

.9
4

%

9
9

.1
4

%

9
9

.9
5

%

D T N B G B T R E E L I N E A R S VC K N N

F1-SCORE

TELKOMNIKA Telecommun Comput El Control 

Using decision tree classifier to detect Trojan Horse based on memory data (Mosleh M. Abualhaj)

399

4. CONCLUSION

As networking and internet technologies continue to advance, Trojan Horse developers have rapidly

adapted their malicious code, often exploiting vulnerabilities in operating systems. Despite the existence of

various techniques for detecting Trojan Horses through operating system memory analysis, newly developed

Trojans continue to evade these methods. In response to this challenge, we propose a Trojan Horse detection

model that utilizes a DT classifier based on data extracted from system memory. To assess the effectiveness

of our model, we evaluated it using the Trojan-MalMem dataset. The performance metrics demonstrated that

all classifiers achieved high accuracy in Trojan Horse classification. Among these classifiers, DT excelled

with an impressive accuracy, recall, precision, and F1-score of 99.96%. These results underscore the significant

contribution of memory analysis data to achieving a high success rate in Trojan Horse detection. It’s worth

noting that the parameters used in this study and the results obtained are specific to the Trojan-MalMem dataset.

Different datasets with varying features or classes may yield different results, which is a limitation to

consider. However, we firmly believe that employing the ML approach holds promise for successful Trojan

Horse detection. This study lays the foundation for further classification research using ML in-memory

analysis and Trojan Horse detection. Future studies could explore different hyperparameters, and we intend

to expand into multiclass classification, considering the six distinct class labels within the Trojan-MalMem

dataset: Benign, Zeus, Emotet, Refroso, Scar, and Reconyc.

REFERENCES
[1] J. Lei et al., “A Reinforcement Learning Approach for Defending Against Multiscenario Load Redistribution Attacks,” IEEE

Transactions on Smart Grid, vol. 13, no. 5, pp. 3711–3722, Sep. 2022, doi: 10.1109/TSG.2022.3175470.

[2] T. Alves, R. Das, and T. Morris, “Embedding Encryption and Machine Learning Intrusion Prevention Systems on Programmable
Logic Controllers,” IEEE Embedded Systems Letters, vol. 10, no. 3, pp. 99–102, Sep. 2018, doi: 10.1109/les.2018.2823906.

[3] M. M. Abualhaj, A. Abu-Shareha, Q. Shambour, A. Alsaaidah, S. Al-Khatib, and M. Anbar,” Customized K-nearest neighbors’

algorithm for malware detection,” International Journal of Data and Network Science, vol. 8, no. 1, pp. 431-438, 2024, doi:
10.5267/j.ijdns.2023.9.012.

[4] W. Peng, F. Li, X. Zou, and J. Wu, “Behavioral Malware Detection in Delay Tolerant Networks,” IEEE Transactions on Parallel

and Distributed Systems, vol. 25, no. 1, pp. 53–63, Jan. 2014, doi: 10.1109/tpds.2013.27.
[5] S. Sen, E. Aydogan, and A. I. Aysan, “Coevolution of Mobile Malware and Anti-Malware,” IEEE Transactions on Information

Forensics and Security, vol. 13, no. 10, pp. 2563–2574, Oct. 2018, doi: 10.1109/tifs.2018.2824250.

[6] SonicWall, Cyber Threat Report, Cyber Threat Intelligence for Navigatingthe Unknowns of Tomorrow, 2022.
[7] R. Mukherjee and R. S. Chakraborty, "Novel Hardware Trojan Attack on Activation Parameters of FPGA-Based DNN

Accelerators," in IEEE Embedded Systems Letters, vol. 14, no. 3, pp. 131-134, Sept. 2022, doi: 10.1109/LES.2022.3159541.

[8] C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. S. Subrahmanian, "$\sf {DBank}$DBank: Predictive Behavioral Analysis of
Recent Android Banking Trojans," in IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 3, pp. 1378-1393,

May-Jun. 2021, doi: 10.1109/TDSC.2019.2909902.

[9] J. Cruz, C. Posada, N. V. R. Masna, P. Chakraborty, P. Gaikwad, and S. Bhunia, "A Framework for Automated Exploration of
Trojan Attack Space in FPGA Netlists," in IEEE Transactions on Computers, vol. 72, no. 10, pp. 2740-2751, Oct. 2023, doi:

10.1109/TC.2023.3266592.

[10] S. S. Tirumala, M. R. Valluri, and G. Babu, "A survey on cybersecurity awareness concerns, practices and conceptual measures,"
2019 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2019, pp. 1-6, doi:

10.1109/ICCCI.2019.8821951.
[11] M. Belaoued, A. Derhab, S. Mazouzi, and F. A. Khan, “MACoMal: A Multi-Agent Based Collaborative Mechanism for Anti-

Malware Assistance,” IEEE Access, vol. 8, pp. 14329–14343, 2020, doi: 10.1109/access.2020.2966321.

[12] Saurabh, "Advance Malware Analysis Using Static and Dynamic Methodology," 2018 International Conference on Advanced
Computation and Telecommunication (ICACAT), Bhopal, India, 2018, pp. 1-5, doi: 10.1109/ICACAT.2018.8933769.

[13] J. V. D. Assen, A. H. Celdrán, A. Zermin, R. Mogicato, G. Bovet, and B. Stiller, "SecBox: A Lightweight Container-based

Sandbox for Dynamic Malware Analysis," NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium,

Miami, FL, USA, 2023, pp. 1-3, doi: 10.1109/NOMS56928.2023.10154293.

[14] M. M. Abualhaj, A. A. Abu-Shareha, M. O. Hiari, Y. Alrabanah, M. Al-Zyoud, and M. A. Alsharaiah, “A Paradigm for DoS

Attack Disclosure using Machine Learning Techniques,” International Journal of Advanced Computer Science and Applications,
vol. 13, no. 3, pp. 192-200, Jan. 2022, doi: 10.14569/ijacsa.2022.0130325.

[15] M. Kolhar, F. Al-Turjman, A. Alameen, and M. M. Abualhaj, “A Three Layered Decentralized IoT Biometric Architecture for

City Lockdown During COVID-19 Outbreak,” IEEE Access, vol. 8, pp. 163608–163617, 2020, doi:
10.1109/access.2020.3021983.

[16] H. Al-Mimi, N. A. Hamad, M. M. Abualhaj, S. N. Al-Khatib, and M. O. Hiari, “Improved Intrusion Detection System to Alleviate

Attacks on DNS Service,” Journal of Computer Science, vol. 19, no. 12, pp. 1549–1560, Dec. 2023, doi:
10.3844/jcssp.2023.1549.1560.

[17] R. Elnaggar, K. Basu, K. Chakrabarty, and R. Karri, "Runtime Malware Detection Using Embedded Trace Buffers," in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 1, pp. 35-48, Jan. 2022, doi:
10.1109/TCAD.2021.3052856.

[18] S M. Jureček and R. Lórencz, "Application of Distance Metric Learning to Automated Malware Detection," in IEEE Access, vol.

9, pp. 96151-96165, 2021, doi: 10.1109/ACCESS.2021.3094064.
[19] V. K. Singh and M. Govindarasu, "A Cyber-Physical Anomaly Detection for Wide-Area Protection Using Machine Learning," in

IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3514-3526, Jul. 2021, doi: 10.1109/TSG.2021.3066316.

[20] H. Haddadpajouh, A. Mohtadi, A. Dehghantanaha, H. Karimipour, X. Lin, and K. -K. R. Choo, "A Multikernel and Metaheuristic
Feature Selection Approach for IoT Malware Threat Hunting in the Edge Layer," in IEEE Internet of Things Journal, vol. 8, no. 6,

pp. 4540-4547, Mar. 2021, doi: 10.1109/JIOT.2020.3026660.

[21] A. Kulkarni, Y. Pino, and T. Mohsenin, "Adaptive real-time Trojan detection framework through machine learning," 2016 IEEE

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 2, April 2024: 393-400

400

International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 2016, pp. 120-123, doi:

10.1109/HST.2016.7495568.
[22] K. Worley and M. T. Rahman, "Supervised Machine Learning Techniques for Trojan Detection with Ring Oscillator Network,"

2019 SoutheastCon, Huntsville, AL, USA, 2019, pp. 1-7, doi: 10.1109/SoutheastCon42311.2019.9020626.

[23] S. Xuan, D. Man, W. Wang, K. Qin, and W. Yang, "Hybrid Classification of WEB Trojan Exploiting Small Volume of Labeled
Data Vectors," 2018 14th International Conference on Computational Intelligence and Security (CIS), Hangzhou, China, 2018,

pp. 286-290, doi: 10.1109/CIS2018.2018.00070.

[24] M. Dener, G. Ok, and A. Orman, “Malware Detection Using Memory Analysis Data in Big Data Environment,” Applied Sciences,
vol. 12, no. 17, p. 8604, Aug. 2022, doi: 10.3390/app12178604.

[25] J H. Al-Mimi, N. A. Hamad, and M. M. Abualhaj, "A Model for the Disclosure of Probe Attacks Based on the Utilization of

Machine Learning Algorithms," 2023 10th International Conference on Electrical and Electronics Engineering (ICEEE),
Istanbul, Turkiye, 2023, pp. 241-247, doi: 10.1109/ICEEE59925.2023.00051.

[26] L. Ma, B. Sun, and C. Han, "Training Instance Random Sampling Based Evidential Classification Forest Algorithms," 2018 21st

International Conference on Information Fusion (FUSION), Cambridge, UK, 2018, pp. 883-888, doi:
10.23919/ICIF.2018.8455427.

[27] W. B. Zulfikar, Y. A. Gerhana, and A. F. Rahmania, "An Approach to Classify Eligibility Blood Donors Using Decision Tree and

Naive Bayes Classifier," 2018 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia,
2018, pp. 1-5, doi: 10.1109/CITSM.2018.8674353.

[28] A. MahendraVardhan and S. Sridhar, "Determining False Positive Analysis of Software Vulnerabilities with Predefined Scan

Rules using Random Forest Classifier and Decision Tree Technique," 2022 4th International Conference on Advances in
Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 2022, pp. 622-625, doi:

10.1109/ICAC3N56670.2022.10074458.

BIOGRAPHIES OF AUTHORS

Mosleh M. Abualhaj is a senior lecturer in Al-Ahliyya Amman University. He

received his first degree in Computer Science from Philadelphia University, Jordan, in 2004,

master degree in Computer Information System from the Arab Academy for Banking and

Financial Sciences, Jordan in 2007, and Ph.D. in Multimedia Networks Protocols from Universiti

Sains Malaysia in 2011. His research area of interest includes VoIP, multimedia networking, and

congestion control. He can be contacted at email: m.abualhaj@ammanu.edu.jo.

Sumaya N. Al-Khatib is a lecturer in Al-Ahliyya Amman University. She

received her B.Sc. degree in Computer Science from Baghdad University, Iraq, in July 1994,

and her master degree in Computer Information System from The Arab Academy for Banking

and Financial Sciences, Jordan in 2007. Her research area of interest includes text

categorization, information retrieval, VoIP, and machine learning. She can be contacted at

email: sumayakh@ammanu.edu.jo.

https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CBwQFjAA&url=http%3A%2F%2Fwww.ammanu.edu.jo%2F&ei=6BrTVOeqOdbfaorvgIgP&usg=AFQjCNHrdvgqrBR3Xl1DYmzuaEkGuW9Mwg&bvm=bv.85464276,bs.1,d.bGQ&cad=rja
https://orcid.org/0000-0002-7465-8038
https://scholar.google.com/citations?hl=en&user=mytDaNwAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=36623265900
https://www.webofscience.com/wos/author/record/IQS-2781-2023
https://orcid.org/0000-0001-9322-369X?lang=en
https://scholar.google.com/citations?hl=en&user=vnqD-p0AAAAJ&view_op=list_works&is_public_preview=1
https://www.scopus.com/authid/detail.uri?authorId=57188697329
https://www.webofscience.com/wos/author/record/IUP-4462-2023

