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 This paper discusses software metrics and their impact on software defect 

prediction values in the NASA metric data program (MDP) dataset. The 

NASA MDP dataset consists of four categories of software metrics: 

halstead, McCabe, LoC, and misc. However, there is no study showing 

which metrics participate in increasing the area under the curve (AUC) value 

of the NASA MDP dataset. This study utilizes 12 modules from the NASA 

MDP dataset, where these 12 modules are being tested into 14 relationships 

of software metrics derived from the four existing metric categories. 

Subsequently, classification is performed using the k-nearest neighbor 

(kNN) method. The research concludes that software metrics have a 

significant impact on the AUC value, with the LoC+McCabe+misc metrics 

relationship influencing the improvement of the AUC value. However, the 

metrics relationship that has the most impact on achieving less optimal AUC 

values is McCabe. Halstead metric also plays a role in decreasing the 

performance of other metrics. 
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1. INTRODUCTION 

Over the past two decades, there has been a rapid increase in the demand for software development 

in all sectors [1]. Along with this, the quality of the software becomes extremely important, particularly 

where software defects are concerned [2]. A software defect is generally defined as a deviation from the 

specifications or requirements that should be possessed by software, this defect can cause the software to fail 

the functions that are typically reported during the software testing phase [3], [4]. In 2018, it was reported 

that the identification and refinement of software defects and losses due to software failures in production 

accounted for 50% of the total cost of software development [5]. It has also been reported that a minor error 

in data conversion caused a $125 million NASA spacecraft to disappear in space [6]. All of these reports 

have made research into software defects and software defect prediction (SDP) one of the most extensive in 

recent years. SDP itself is a classification process performed to detect code or modules of software that are 

likely to fail or have defects. This process is implemented using previously available defect data [7]. 

Since the beginning of 2000, SDP studies have widely used data from the NASA repository. This 

repository is known as NASA metric data program (MDP). NASA MDP become popular among researchers 

because its original format is easy to use in research of SDP, moreover, the difficulty of obtaining software 

defect data has made public repositories of software defect data very popular [8], [9]. The NASA MDP 

https://creativecommons.org/licenses/by-sa/4.0/
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dataset consists of 12 pre-cleaned module datasets, and every dataset module represents a system/subsystem 

of NASA’s software [10], [11]. Each module in the NASA MDP dataset contains a set of static software 

metrics which used to determine the presence of defects in the software module [12], [13]. Software metrics 

themselves are widely used in SDP studies and have a crucial role in the construction of SDP models as one of 

the indicators for the measurement of software quality and the estimation of the presence of defects and 

vulnerabilities in a code [14], [15]. Some studies that use software metrics already conducted include [16]–[21]. 

In research using software metrics as indicators, it is important to have an understanding of software 

metrics. The understanding of metrics relies on the concepts of the metric itself as well as its relations to 

other metrics, each metrics relationship will have an impact on each other [21]. Several research studying the 

relationships between metrics have already been conducted, such as a comparison between static metrics and 

dynamic weighted metrics performed by [22], the analysis of metrics on object-oriented system (OOS) to 

evaluate and identify the relationship between metrics value with software security performed by [23] and study 

about the relationship between two types of metrics, namely object-oriented metrics with procedural-oriented 

metrics performed by [24]. Although research on the metrics relationship has been widely conducted, most 

studies do not provide clear evidence on how a metric can influence other metrics, or which metrics have the 

most significant impact on the relationships between them. Moreover, it is not known whether all existing 

metric attributes are relevant in SDP. 

Based on the explanation above, this research will study the influence of software metrics on the 

accuracy of SDP in the k-nearest neighbor (kNN) classification method. kNN is chosen to be the 

classification method because it is one of the methods widely used in various studies of SDP, as conducted 

by [25]–[29]. There will be 14 relationships of software metrics used in this research. 

 

 

2. METHOD 

2.1.  Collecting data 

The dataset utilized in this study originates from the NASA repository known as the NASA MDP. 

This particular dataset was selected due to its widespread use in software metrics research and its explicit 

design for research in this area [30]. NASA MDP provides two versions of a clean dataset, namely D’ (which 

includes duplicate and inconsistent instances) and D’’ (which excludes duplicate and inconsistent instances). 

The NASA MDP dataset version used in this study is D’’ which is taken from 

(https://github.com/klainfo/NASADefectDataset). The amount of data for each dataset is shown in Table 1.  

 

 

Table 1. NASA MDP D’’ datasets [11] 
Dataset Attributes Modules Defective Non-defective Defective (%) 

CM1 38 327 42 285 12.8 

JM1 22 7,720 1,612 6,108 20.8 
KC1 22 1,162 294 868 25.3 

KC2 40 194 36 158 18.5 

MC1 39 1,952 36 1,916 1.8 
MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 
PC1 38 679 55 624 8.1 

PC2 37 722 16 706 2.2 

PC3 38 1,053 130 923 12.3 
PC4 38 1,270 176 1,094 13.8 

PC5 39 1,694 458 1,236 27.0 

 

 

2.2.  Software metrics 

Certain studies suggest that SDP models formulated based on software metrics are effective in 

predicting defects in source code [30]. The datasets module in NASA MDP is formed by 4 software metric 

categories, namely LoC, halstead, McCabe, and misc [31]. In Table 2 it shows 4 software metric categories 

with features in each category. 

 

2.3.  Preprocessing data 

Data preprocessing techniques are often employed to minimize the interference of raw data, including 

noisy data, and transform it into a form that is more understandable [32], [33]. During the preprocessing stage, 

pivotal procedures encompass feature selection, and sampling methods [34]. Feature selection is one of the steps 

in data preprocessing where relevant features are selected in the learning model [35]. In this research, 

preprocessing data is conducted by performing feature selection based on 4 software metrics categories 

https://github.com/klainfo/NASADefectDataset


   ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 4, August 2024: 846-853 

848 

available in NASA MDP dataset modules. These 4 software metrics categories are paired into the following 

pairs which are shown in Table 3. 

 

 

Table 2. Software metrics in NASA MDP [31] 
Metrics category Features Number of features 

LoC CYCLOMATIC_COMPLEXITY 

CYCLOMATIC_DENSITY 
DESIGN_COMPLEXITY 

ESSENTIAL_COMPLEXITY 

6 

Misc BRANCH_COUNT 
CALL_PAIRS 

CONDITION_COUNT 

DECISION_COUNT 
DECISION_DENSITY 

DESIGN_DENSITY 

EDGE_COUNT 
ESSENTIAL_DENSITY 

PARAMETER_COUNT 

GLOBAL_DATA_COMPLEXITY 
GLOBAL_DATA_DENSITY 

MAINTENANCE_SEVERITY 

MODIFIED_CONDITION_COUNT 
MULTIPLE_CONDITION_COUNT 

NODE_COUNT 

NORMAL_CYLOMATIC_COMPLEXITY 
PERCENT_COMMENTS 

17 

McCabe LOC_BLANK 

LOC_CODE_AND_COMMENT 
LOC_COMMENTS 

LOC_EXECUTABLE 

NUMBER_OF_LINES 
LOC_TOTAL 

6 

Halstead HALSTEAD_CONTENT 

HALSTEAD_DIFFICULTY 

HALSTEAD_EFFORT 

HALSTEAD_ERROR_EST 

HALSTEAD_PROG_TIME 
HALSTEAD_VOLUME 

NUM_OPERANDS 

NUM_OPERATORS 
NUM_UNIQUE_OPERANDS 

NUM_UNIQUE_OPERATORS 

HALSTEAD_LENGTH 
HALSTEAD_LEVEL 

12 

 

 

Table 3. Metrics pairs used in the study 
Metric quantity Metrics pairs 

1 metric Halstead 
LoC 

McCabe 

Misc 

2 metrics Halstead+LoC 

Halstead+McCabe 
Halstead+Misc 

LoC+McCabe 

LoC+Misc 
McCabe+Misc 

3 metrics LoC+McCabe+Misc 
Halstead+McCabe+Misc 

Halstead+LoC+Misc 

Halstead+LoC+McCabe 

 

 

2.4.  Classification 

KNN is a classification method based on supervised learning [36]. The fundamental concept of kNN 

is to classify training data into specific classes through majority voting based on the k value, the k value itself 

is a constant value defined by the user, and the class that represents most of the training data will be assigned 
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to the test pattern [37], [38]. In this study, the k values used are k=3, k=5, k=7, k=9, k=11, k=13, and k=15. 

Before classification with kNN is performed, the dataset is divided into training data and testing data using 

10-fold cross-validation. 

 

2.5.  Evaluation 

To evaluate the results obtained in this study, we will compare the area under the curve (AUC) 

values for each metric relationship within the same dataset module with those of other metric relationships. 

The highest AUC value for each k value in a metric relationship will be selected and then compared to the 

highest value held by other metric relationships. The AUC values will also be compared with AUC values 

from the dataset modules containing all metrics. 

 

 

3. RESULTS AND DISCUSSION 

The classification method used in this study is limited to kNN along with the NASA MDP dataset 

from the NASA repository, consisting of 12 dataset modules. The testing process is performed on each 

dataset module, both on the original dataset and on the relationships between each category of software 

metrics within the NASA MDP dataset. On each dataset module, testing is carried out with several values of 

k, namely k=3, k=5, k=7, k=9, k=11, k=13, and k=15. This testing phase is conducted to determine the most 

optimal AUC value for each module dataset and to understand the impact of the relationships between 

metrics. 

As seen in the testing results in Table 4 (in Appendix), each pair of metrics for each dataset module 

has an impact on the AUC value of a dataset. Some metric pairs influence increasing the AUC value. 

However, some metric pairs result in values that are not better than the AUC value of the dataset composed 

of all metric categories. The highest value for each dataset module is shown in Figure 1. 

 

 

 
 

Figure 1. Comparison of highest value in each metrics relationship 

 

 

In Figures 1 and 2, the horizontal color line shows each dataset value (where the value is shown in 

the vertical axis) for the metrics relationship (where the value is shown in the horizontal axis). In Figure 1 it 

shows that the relationships among metrics have a significant impact on the difference in AUC values. The 

metric relationship that has the most significant role in increasing the AUC value is the relationship between 

LoC+McCabe+misc. This metric relationship provides the best AUC value in the module datasets JM1, KC3, 

MC2, PC4, and PC5. Meanwhile, in module datasets PC1, PC2, and PC3, the highest AUC values are 

obtained in the LoC+McCabe metric relationship. In the CM1 module dataset, the highest AUC value is 

associated with the LoC metric. The KC1 module dataset achieves the highest AUC value in the 

halstead+LoC+McCabe metric relationship, and the MC2 module dataset obtains the highest AUC value in 

the McCabe+misc metric relationship. Meanwhile, in Figure 2 it is shown that the McCabe metric has been 

found to play a role in producing less optimal AUC values, as evidenced by the AUC values in the CM1, 

KC1, KC3, MC2, and PC3 module datasets. On the other hand, the halstead metric plays a role in decreasing 

the performance of other metrics. 
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Figure 2. Comparison of lowest value in each metrics relationship 

 

 

4. CONCLUSION 

Based on the test results, it can be concluded that the relationship for each software metric in the 

NASA MDP dataset significantly affects the classification AUC value. Furthermore, the choice of the k value 

in the kNN classification method also affects the AUC value in each software metrics relationship. The 

software metrics relationship that has the most impact on achieving a high AUC value is the relationship 

between the LoC+McCabe+misc metric categories, however, the metrics relationship that has the most 

impact on achieving less optimal AUC values is McCabe. The halstead metric also plays a role in decreasing 

the performance of other metrics. 

 

 

APPENDIX 

 

Table 4. Testing result 
Dat

aset 

x All 

Metri

cs 

Halst

ead 

LoC McCa

be 

Misc Halste

ad + 

LoC 

Halste

ad + 

McCa

be 

Halste

ad + 

Misc 

LoC + 

McCa

be 

LoC + 

Misc 

McCa

be + 

Misc 

LoC + 

McCa

be + 

Misc 

Halste

ad + 

McCa

be + 

Misc 

Halste

ad + 

LoC + 

Misc 

Halste

ad + 

LoC + 

McCa

be 

CM 

1 

3 0.56 0.56 0.676 0.498 0.505 0.558 0.56 0.559 0.672 0.676 0.518 0.656 0.559 0.56 0.558 

5 0.605 0.605 0.695 0.482 0.568 0.604 0.605 0.606 0.693 0.691 0.542 0.685 0.606 0.606 0.604 

7 0.62 0.616 0.72 0.484 0.57 0.616 0.616 0.617 0.724 0.697 0.561 0.697 0.617 0.62 0.616 

9 0.617 0.614 0.726 0.516 0.587 0.616 0.614 0.616 0.719 0.711 0.583 0.708 0.616 0.617 0.616 

11 0.634 0.633 0.723 0.524 0.588 0.633 0.633 0.633 0.711 0.692 0.603 0.69 0.633 0.634 0.633 

13 0.668 0.664 0.73 0.494 0.595 0.666 0.664 0.667 0.735 0.7 0.617 0.697 0.667 0.669 0.666 

15 0.657 0.651 0.739 0.514 0.607 0.652 0.651 0.654 0.738 0.71 0.612 0.709 0.654 0.657 0.652 

JM

1 

3 0.574 0.574 0.596 0.51 0.507 0.573 0.572 0.573 0.628 0.616 0.511 0.629 0.574 0.574 0.573 

5 0.591 0.59 0.615 0.53 0.526 0.591 0.588 0.589 0.648 0.633 0.533 0.652 0.59 0.591 0.591 

7 0.603 0.602 0.628 0.548 0.544 0.604 0.603 0.604 0.659 0.646 0.55 0.664 0.604 0.604 0.604 

9 0.61 0.607 0.639 0.558 0.556 0.611 0.607 0.607 0.666 0.653 0.558 0.669 0.607 0.611 0.611 

11 0.618 0.615 0.647 0.566 0.568 0.618 0.615 0.616 0.672 0.66 0.569 0.671 0.615 0.619 0.618 

13 0.624 0.621 0.647 0.574 0.569 0.624 0.622 0.622 0.672 0.665 0.575 0.676 0.622 0.624 0.624 
15 0.629 0.625 0.65 0.581 0.572 0.628 0.652 0.625 0.676 0.67 0.58 0.679 0.625 0.629 0.628 

KC

1 

3 0.524 0.525 0.547 0.533 0.525 0.528 0.52 0.519 0.543 0.582 0.533 0.56 0.526 0.543 0.668 

5 0.587 0.591 0.591 0.57 0.551 0.597 0.593 0.59 0.608 0.621 0.575 0.614 0.595 0.59 0.598 

7 0.617 0.618 0.602 0.621 0.598 0.617 0.619 0.619 0.623 0.63 0.619 0.634 0.622 0.616 0.617 

9 0.628 0.625 0.611 0.617 0.621 0.626 0.626 0.624 0.632 0.637 0.61 0.635 0.627 0.628 0.628 

11 0.639 0.642 0.609 0.623 0.612 0.639 0.641 0.641 0.634 0.634 0.616 0.634 0.641 0.639 0.64 

13 0.651 0.649 0.621 0.624 0.616 0.65 0.649 0.649 0.636 0.637 0.619 0.645 0.65 0.65 0.649 

15 0.652 0.647 0.617 0.616 0.609 0.652 0.648 0.648 0.636 0.646 0.612 0.642 0.648 0.652 0.652 

KC

3 

3 0.439 0.468 0.49 0.391 0.574 0.452 0.48 0.471 0.469 0.464 0.544 0.455 0.513 0.483 0.439 

5 0.515 0.497 0.554 0.552 0.604 0.54 0.504 0.537 0.524 0.55 0.612 0.572 0.499 0.532 0.55 

7 0.579 0.571 0.648 0.639 0.705 0.575 0.594 0.578 0.658 0.656 0.674 0.671 0.59 0.591 0.587 

9 0.585 0.591 0.668 0.647 0.687 0.598 0.589 0.586 0.669 0.692 0.691 0.702 0.606 0.583 0.604 

11 0.618 0.62 0.705 0.663 0.694 0.61 0.626 0.614 0.66 0.732 0.7 0.719 0.615 0.616 0.613 

13 0.637 0.641 0.691 0.663 0.713 0.641 0.643 0.638 0.648 0.718 0.717 0.703 0.645 0.637 0.641 

15 0.645 0.645 0.676 0.671 0.699 0.642 0.641 0.644 0.655 0.748 0.72 0.748 0.639 0.642 0.644 
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Table 4. Testing result (Continue) 
Dat

aset 

k All 

Metri

cs 

Halst

ead 

LoC McC

abe 

Misc Halst

ead + 

LoC 

Halst

ead + 

McCa

be 

Halst

ead + 

Misc 

LoC 

+ 

McCa

be 

LoC 

+ 

Misc 

McCa

be + 

Misc 

LoC 

+ 

McCa

be + 

Misc 

Halst

ead + 

McCa

be + 

Misc 

Halst

ead + 

LoC 

+ 

Misc 

Halst

ead + 

LoC 

+ 

McCa

be 

MC

1 

3 0.671 0.628 0.778 0.613 0.723 0.661 0.638 0.651 0.779 0.795 0.723 0.796 0.651 0.671 0.661 

5 0.681 0.632 0.769 0.667 0.796 0.673 0.634 0.67 0.779 0.815 0.782 0.804 0.67 0.681 0.672 

7 0.701 0.653 0.768 0.696 0.803 0.682 0.655 0.699 0.773 0.806 0.81 0.806 0.699 0.701 0.682 

9 0.709 0.66 0.759 0.681 0.825 0.689 0.672 0.706 0.764 0.8 0.823 0.8 0.706 0.709 0.689 

11 0.728 0.689 0.752 0.695 0.823 0.706 0.701 0.726 0.758 0.792 0.826 0.792 0.726 0.728 0.706 

13 0.733 0.703 0.755 0.691 0.838 0.709 0.706 0.73 0.766 0.786 0.825 0.787 0.731 0.733 0.709 

15 0.745 0.712 0.759 0.722 0.842 0.719 0.716 0.743 0.766 0.781 0.828 0.791 0.743 0.745 0.719 

MC

2 

3 0.628 0.625 0.674 0.647 0.681 0.624 0.625 0.627 0.669 0.715 0.67 0.717 0.627 0.628 0.624 

5 0.631 0.629 0.684 0.624 0.711 0.629 0.629 0.629 0.686 0.717 0.714 0.702 0.629 0.631 0.629 

7 0.62 0.62 0.642 0.607 0.654 0.62 0.62 0.62 0.661 0.724 0.666 0.735 0.62 0.62 0.62 

9 0.616 0.616 0.668 0.591 0.676 0.616 0.616 0.616 0.674 0.717 0.659 0.714 0.616 0.616 0.616 

11 0.635 0.635 0.642 0.612 0.689 0.635 0.635 0.635 0.646 0.722 0.693 0.728 0.635 0.635 0.635 

13 0.618 0.618 0.654 0.644 0.662 0.618 0.618 0.618 0.656 0.701 0.653 0.696 0.618 0.618 0.618 

15 0.612 0.612 0.668 0.615 0.648 0.612 0.612 0.612 0.669 0.699 0.653 0.702 0.612 0.612 0.612 

M

W1 

3 0.512 0.508 0.575 0.66 0.66 0.508 0.508 0.512 0.583 0.635 0.648 0.628 0.512 0.512 0.508 

5 0.523 0.522 0.639 0.632 0.681 0.522 0.522 0.526 0.709 0.698 0.682 0.691 0.526 0.523 0.522 

7 0.56 0.539 0.678 0.694 0.671 0.539 0.539 0.559 0.693 0.704 0.671 0.702 0.559 0.56 0.539 

9 0.598 0.598 0.676 0.671 0.703 0.599 0.598 0.598 0.687 0.688 0.709 0.684 0.598 0.598 0.599 

11 0.589 0.589 0.678 0.671 0.721 0.589 0.589 0.589 0.675 0.695 0.733 0.697 0.589 0.589 0.589 

13 0.599 0.596 0.677 0.667 0.723 0.596 0.596 0.599 0.677 0.701 0.74 0.703 0.599 0.599 0.596 

15 0.6 0.6 0.661 0.682 0.732 0.6 0.6 0.6 0.668 0.714 0.736 0.71 0.6 0.6 0.6 

PC1 3 0.507 0.507 0.71 0.63 0.662 0.508 0.507 0.508 0.713 0.723 0.672 0.707 0.508 0.507 0.508 

5 0.519 0.525 0.755 0.637 0.689 0.524 0.525 0.519 0.768 0.783 0.703 0.789 0.519 0.519 0.524 

7 0.533 0.534 0.785 0.645 0.703 0.534 0.533 0.533 0.791 0.816 0.716 0.822 0.533 0.533 0.534 

9 0.554 0.551 0.8 0.671 0.73 0.553 0.551 0.552 0.791 0.821 0.717 0.821 0.551 0.554 0.553 

11 0.566 0.568 0.804 0.653 0.72 0.566 0.568 0.567 0.819 0.814 0.727 0.814 0.567 0.566 0.566 

13 0.572 0.571 0.812 0.642 0.701 0.573 0.571 0.571 0.818 0.826 0.708 0.822 0.571 0.572 0.573 

15 0.591 0.591 0.806 0.637 0.699 0.592 0.591 0.591 0.816 0.849 0.695 0.847 0.591 0.591 0.592 

PC2 3 0.519 0.519 0.72 0.466 0.473 0.52 0.519 0.519 0.703 0.523 0.471 0.499 0.519 0.519 0.52 

5 0.507 0.507 0.729 0.47 0.476 0.507 0.507 0.507 0.714 0.509 0.451 0.512 0.507 0.507 0.507 

7 0.517 0.517 0.728 0.519 0.523 0.517 0.517 0.517 0.747 0.55 0.522 0.568 0.517 0.517 0.517 

9 0.508 0.508 0.724 0.5 0.509 0.508 0.508 0.508 0.745 0.579 0.525 0.582 0.508 0.508 0.508 

11 0.494 0.494 0.719 0.482 0.56 0.494 0.494 0.494 0.752 0.66 0.515 0.673 0.494 0.494 0.494 

13 0.592 0.592 0.77 0.464 0.597 0.592 0.592 0.591 0.792 0.681 0.574 0.684 0.591 0.592 0.592 

15 0.642 0.643 0.787 0.474 0.614 0.642 0.643 0.641 0.792 0.679 0.637 0.677 0.641 0.642 0.642 

PC3 3 0.613 0.609 0.681 0.566 0.654 0.614 0.608 0.613 0.708 0.661 0.65 0.665 0.613 0.613 0.615 

5 0.658 0.655 0.719 0.585 0.682 0.654 0.75 0.657 0.739 0.697 0.693 0.706 0.657 0.658 0.654 

7 0.666 0.665 0.741 0.607 0.689 0.665 0.665 0.661 0.764 0.715 0.704 0.721 0.661 0.666 0.665 

9 0.676 0.671 0.744 0.621 0.719 0.671 0.671 0.674 0.769 0.732 0.728 0.741 0.674 0.676 0.671 

11 0.674 0.667 0.746 0.651 0.721 0.673 0.667 0.673 0.763 0.733 0.738 0.746 0.673 0.674 0.673 

13 0.671 0.663 0.748 0.666 0.725 0.668 0.665 0.666 0.758 0.75 0.732 0.762 0.666 0.671 0.668 

15 0.667 0.666 0.751 0.666 0.739 0.665 0.666 0.667 0.759 0.764 0.738 0.768 0.667 0.667 0.665 

PC4 3 0.592 0.565 0.775 0.635 0.725 0.567 0.564 0.584 0.809 0.817 0.732 0.813 0.584 0.592 0.568 

5 0.592 0.568 0.806 0.689 0.774 0.574 0.567 0.588 0.829 0.829 0.771 0.838 0.588 0.592 0.575 

7 0.606 0.574 0.824 0.715 0.782 0.579 0.577 0.598 0.843 0.852 0.797 0.852 0.598 0.604 0.579 

9 0.602 0.58 0.828 0.709 0.807 0.579 0.58 0.601 0.836 0.854 0.813 0.852 0.601 0.603 0.579 

11 0.607 0.588 0.827 0.708 0.81 0.583 0.588 0.609 0.838 0.856 0.816 0.858 0.609 0.607 0.583 

13 0.611 0.592 0.826 0.707 0.816 0.591 0.592 0.611 0.839 0.857 0.819 0.859 0.611 0.611 0.591 

15 0.619 0.6 0.826 0.706 0.821 0.602 0.6 0.615 0.84 0.857 0.823 0.857 0.615 0.619 0.602 

PC5 3 0.57 0.571 0.623 0.603 0.631 0.577 0.571 0.57 0.639 0.647 0.652 0.654 0.573 0.576 0.577 

5 0.641 0.642 0.665 0.669 0.702 0.646 0.638 0.631 0.68 0.704 0.694 0.692 0.636 0.633 0.643 

7 0.654 0.654 0.693 0.692 0.7 0.654 0.65 0.654 0.704 0.723 0.715 0.712 0.655 0.654 0.65 

9 0.671 0.667 0.704 0.7 0.706 0.668 0.665 0.671 0.717 0.732 0.717 0.732 0.67 0.67 0.668 

11 0.679 0.677 0.707 0.718 0.711 0.679 0.676 0.679 0.719 0.729 0.714 0.73 0.678 0.68 0.679 

13 0.685 0.683 0.709 0.723 0.711 0.684 0.683 0.685 0.721 0.731 0.723 0.733 0.684 0.685 0.685 

15 0.688 0.685 0.715 0.729 0.712 0.687 0.684 0.684 0.723 0.736 0.723 0.737 0.685 0.688 0.687 
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