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ABSTRACT

A flood stands as one of the most common natural occurrences, often resulting
in substantial financial losses to property and possessions, as well as affecting
human lives adversely. Implementing measures to prevent such floods becomes
crucial, offering inhabitants ample time to evacuate vulnerable areas before flood
events occur. In addressing the flood issue, numerous scholars have put forth
various solutions, such as the development of fuzzy system models and the es-
tablishment of suitable infrastructure. However, when applying a fuzzy system,
it often results in a loss of interpretability of the fuzzy rules. To address this
issue effectively, we propose to reframe the optimization problem by incorpo-
rating stage costs alongside the terminal cost. Results show the proposed model
called hybrid fuzzy logic and neural networks (NNs) can mitigate the loss of
interpretability. Results also show that the proposed method was employed in
a flood early detection system aligned with integrating into Twitter social me-
dia. The proposed concepts are validated through case studies, showcasing their
effectiveness in tasks such as XOR-classification problems.
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1. INTRODUCTION
Floods often occur in Indonesia, especially during the rainy season [1], [2]. This information is ob-

tained from the National Disaster Management Agency (BNPB), which informs that disasters in Indonesia
frequently transpire from early January to the end of October, resulting in a total of 1,238 flood events [2].
These floods can have significant impacts on communities, causing damage to infrastructure, disrupting liveli-
hoods, and posing threats to human safety [3]. Efforts to manage and mitigate the effects of flooding are crucial
to safeguarding both property and lives in these vulnerable regions [4]. Advanced systems like early warn-
ing systems [5], real-time monitoring of weather patterns [6], and flood modeling have been implemented to
enhance the accuracy of flood predictions and provide residents with actionable insights [7]. These technolog-
ical advancements play a pivotal role in enhancing disaster preparedness and response, ultimately contributing
to the reduction of both human and material losses caused by flooding [8]. Acknowledging Indonesia’s sus-
ceptibility to floods, we are at the forefront of implementing IoT-powered flood early detection technology.
By seamlessly integrating real-time data from diverse sources including water flow and water levels [9], our
advanced predictive models will proactively issue alerts [10], concentrating initially on regions with high vul-

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA



TELKOMNIKA Telecommun Comput El Control ❒ 977

nerability such as Surabaya, Jakarta and many more [11]. The area under our observation was the Rungkut
district area in Surabaya. Our focus on a district in Surabaya city stemmed from information sourced from
online news, which indicated that the flooding issue, particularly along the roadway, was attributed to damaged
culverts [12]. Driven by these identified issues, our objective is to establish and deploy an advanced early detec-
tion system for flood disasters across Indonesia. This system will primarily focus on detecting rapid increases
in water levels [13], aiming to facilitate timely anticipatory measures and early evacuation through a bespoke
IoT-driven solution [14].

Furthermore, The proposed system utilized a modified fuzzy model. Takagi-Sugeno-Kang (TSK)
fuzzy model was developed in the 1980s with popularity in wide contexts using linear system [15]. The
algorithm of “if-then” rules has enjoyed popularity since it includes the domain expert. However, the learning
scheme turns out to be not useful when the rules may differ in a complex real-world problem, and then the
interpretability of fuzzy rules may be lost [16]. The related research [17] compared the performance evaluation
of backpropagation (BP) neural networks (NNs), fuzzy logic, and neuro-fuzzy system for flood prediction.

Based on the above-aforementioned problem so as to optimize a large model, this paper proposes
a nonlinear actuator with online hidden-node teaching for the BP procedure. Nonlinear actuator was also
successfully identified by Bounemeur and Chemachema [18] for fault-tolerant application. In summary, the
main contribution of our works is three folds;
– Hidden-node teaching of multi-layer NNs remedies the interpretability of fuzzy logic by minimizing a stage

cost, instead of relying on an expert’s “if-then” rules.
– Decision-boundary separating planes in creating NN architecture help to optimize the initial weight param-

eters instead of randomly-weights setting [19].
– An intelligent wireless sensor is considered in a hybrid system, which is proposed to cast the disaster infor-

mation automatically to Twitter social media [20].

2. SYSTEM OVERVIEW
This section describes the proposed system workflow to solve the problem defined in section 1. Figure

1 shows the algorithm workflow. The proposed method starts with collecting valuable data such as water level
and water flow. The collected data are normalized to transform features to be on a similar scale. Furthermore,
the hybrid fuzzy logic and NNs called neuro-fuzzy hidden-node teaching NNs are prepared. This process
involves the decision-boundary separating plane process, neuro-model fuzzy modeling, four-step hidden-node
teaching formulation, and incorporating with the fuzzy system [21].

Figure 1. Flow of the proposed algorithm

2.1. Decision-boundary separating planes
Artificial neural-network learning involving multiple layers (i.e., deep learning) is a nonlinear, discrete

multi-stage optimal-control problem. In fact, the roots of BP for deep learning can be traced back to the work
of multi-stage optimal-control gradient procedures developed in early 1960s notably by H. Kelley (1960),
A. Bryson (1961), and S. Dreyfus (1962). BP facilitates efficient stage-wise implementation of chain rules for
differentiation by exploiting multiple-layered structure. Our objective is to find an optimal control sequences
(θi) so as to minimize a general criterion J as the sum of stage costs Li (at stage i) plus a terminal state cost ϕ.
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The decision-boundary separating planes is inspired by the context of XOR problem since it differs the
fuzzy logic that unable to learn XOR data, which called a linear separator. Hence, our two decision-boundary
lines produce the desired outputs in the model. Any data points that falls exactly on the boundaries should be
ignored. Points on line could be 0.5 as denoted by white points. This approach is creating appropriate initial
weights for speeding up epoch running process. The BP is a simplified form of the gradient procedure. Table
1 shows a multi-layer neural-network learning when the criterion is denoted by J . For our convenience, ξi is
called output sensitivity whereas δi is net-input sensitivity.

Table 1. Notation definition
Notation NN learning
θ Weight parameters
y Net outputs
x Net inputs
f(x) Nonlinear node
s Layer
Ls Hidden-node teaching
xis (Psi-rule) output sensitivity
δs (Delta-rule) input sensitivity

2.2. Four-step hidden-node teaching formulation
The early flood detection-gate mapping can be realized by combining AND, OR, and NAND gates.

For our 2-2-1 NN learning, suppose that we want to make two hidden-node outputs close to the NAND and
OR gates outputs. Then, we must use those NAND and OR responses as target signals at two hidden nodes;
this scheme is what we call hidden-node teaching. Accordingly, the objective function J must be so modified
as to include a stage cost of the sum of squared hidden residuals, as shown (1):
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Here, t(1)k (d) is the teacher signal for hidden node k (k = 1, 2) at (hidden) layer 1 on each datum d,
d = 1, ..., D where D = 15 for the early flood detection problem. This is a two-stage (N = 2) optimal-control
problem of the following form:
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where the stage cost L1 (at stage 1) is independent of the control vector θ0,1, depending only on the state
vector y(1). We have derived the BP procedure for J = ϕ

(
y
(2)
1

)
, the terminal-state cost only.

– Definition of nominal cost-to-go action-value-function
Ts(y

s, θs,s+1
+ ) nominal cost-to-go starting, stage s in state ys using a guessed control sequence θs,s+1

+ ,
θs+1,s+2
+ , ..., θN−1,N

+ .
– Recurrence relation
Ls denotes the immediate cost.
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+ ) = Ls(y
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+ ) + Ts+1(y
s+1, θs+1,s+2) (3)

– Boundary condition
In this setting, the sensitivity δ at terminal stage is given by:

TN (yN ,−) = ϕ(yN ) (4)

– Backward-pass
Departing from terminal layer N, it begins with:

ξN =
∂TN

∂yN
=

∂ϕ

∂yN
(5)

then it is backpropagated one after another by delta-rule.
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2.3. Incorporating with the fuzzy system
Online BP algorithms can be enticing when dealing with large-scale problems. However, their ap-

plication in optimizing both the “if” and “then” parts of fuzzy rules can sometimes hinder the extraction of
meaningful knowledge post-learning. In the initial setup of fuzzy rules, the linear parameters of the “then”
part are typically initialized within a small range, following a similar practice to MLP learning. While aiming
for improved precision in input-output mapping, online BP may excessively adapt the parameters of initial
fuzzy rules, leading to the creation of fuzzy rules that lack meaningful interpretation. This situation presents a
dilemma between achieving mapping precision and preserving interpretability.

Returning to our motivating example, Figure 2 vividly illustrates this architecture. This approach
can be attributed to the fact that standard supervised learning relies solely on a terminal cost. Consequently, it
primarily encourages the final combined output to closely match the desired output, aligning with the principles
of complementary learning. However, within the context of fuzzy systems, the linear output of the ”then” part
for each rule should ideally align with the desired output when its firing strength is substantial. This aligns with
the original assertion made for a TSK fuzzy system [22].

The degree of membership within the set of inundated pixels is iteratively adjusted, taking into account
the relational dynamics among neighboring pixels. This adjustment process factors in several probabilities: the
likelihood of an isolated flooded pixel occurring amidst a region predominantly composed of non-flooded pix-
els (or vice versa) is low; the probability of encountering a non-inundated pixel in close proximity to flooded
pixels situated at higher elevations is minimal; similarly, the likelihood of an inundated pixel coexisting with
non-inundated ones positioned at lower elevations is also remote. Ultimately, the map delineating the flooded
regions is derived through a procedure known as defuzzification. This process involves a straightforward appli-
cation of a threshold to the membership degree. Specifically, pixels exhibiting a membership degree surpassing
a predetermined threshold value of 0.5 are classified as flooded.

Figure 2. NN architecture with hidden-node teaching

3. EXPERIMENTAL SETUP AND RESULT
The flood detection system is comprised of several essential hardware components such as a micro-

controller, sensors, solar panel system, and dry battery electrical energy as shown in Figure 3. At its core, the
system relies on an Arduino Nano, which serves as the central processing unit, responsible for data collec-
tion, analysis, and decision-making [23]. Additionally, an ESP8266 module facilitates wireless connectivity,
enabling the device to transmit data and alerts over the internet, thus allowing for remote monitoring and re-
sponse. To monitor the river conditions, the system is equipped with a water flow sensor, which measures the
rate of water flow, providing vital data for flood detection and monitoring purposes. An ultrasonic sensor is also
employed, utilizing sound waves to measure the distance between the device and the water’s surface, aiding in
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assessing flood levels accurately.
Furthermore, for immediate alerts and notifications, the system features a buzzer that functions as an

audible alert mechanism, producing sound signals in response to flood-related events or warnings. An LED
indicator complements this, providing visual feedback regarding the system’s status and potential flood alerts.
These integrated hardware components work in tandem to create a robust flood detection system, capable of
real-time monitoring and timely alerts in the event of flood threats [24]. The Figure 3 shows the device testing
process that is carried out in a river area in Surabaya, Indonesia. In this testing environment, the flood detection
system is being evaluated under real-world conditions, allowing us to assess its performance and reliability in an
area susceptible to flooding. This critical testing phase ensures that the system can effectively serve its purpose
in providing early flood warnings and helping to mitigate the impact of flooding on the local community and
infrastructure in Surabaya [25].

Figure 3. Device testing

The Figure 4 represents the outcomes observed on social media following the activation of the device,
which automatically generates posts when it detects significant increases in water levels that enter the hazardous
category. This innovative system provides real-time updates to the online community, offering crucial informa-
tion about potential flood threats and the need for precautionary measures [26]. By leveraging social media as
a communication channel [27], it enhances public awareness and safety, enabling individuals and authorities
to respond promptly to evolving flood situations. This proactive approach to information dissemination not
only aids in minimizing risks but also fosters a sense of community resilience in the face of environmental
challenges.

Figure 4. Monitoring results on social media

The Figure 5 represents the water level graph obtained from our testing. It is evident from the graph
that there is a discernible upward trend in the water level as time unfolds. This trend indicates an increase
in the water level over the course of the observed period. Such graphical representations are instrumental in
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tracking and understanding changes in water levels, particularly during events such as floods. They enable
us to identify the timing, magnitude, and duration of rising water levels, which, in turn, is crucial for flood
forecasting, disaster management, and decision-making. This data provides valuable insights for authorities,
emergency responders, and community members to prepare and respond effectively to potential flood events,
ultimately contributing to enhanced flood resilience and safety measures [28].

Figure 5. Water level graph

The Figure 6 depicts the water flow graph obtained through our testing procedures. It is distinctly
evident from the graph that there is a noticeable upward trajectory in water levels as time advances. This pattern
signifies a consistent increase in water flow throughout the observation period. Such graphical representations
play a crucial role in monitoring and comprehending fluctuations in water flow, particularly during events like
floods or rapid changes in river conditions. They empower us to ascertain the timing, magnitude, and duration
of rising water levels, thus facilitating flood forecasting, effective disaster management, and informed decision-
making. This data provides invaluable insights for authorities, emergency response teams, and the community,
aiding in proactive measures and responses to potential flood events, ultimately enhancing flood resilience and
safety measures [29].

Figure 6. Water flow graph

3.1. Performance measurement
In the system evaluation subsection, we will delve into the sensor data obtained through the testing

process. This section will provide an in-depth analysis of the data collected by our sensors, highlighting key
metrics, trends, and patterns. By examining this information, we aim to assess the performance and reliability of
our system in accurately detecting and responding to changes in environmental conditions. The sensor data will
serve as a valuable resource for improving our system’s effectiveness and ensuring its readiness for real-world
scenarios. Additionally, it will contribute to enhancing our understanding of the dynamic factors that influence
the system’s functionality. During the testing process, the data that has been collected where comprises several
variables such as sensor distance, water flow rate, and LED lights, each representing different flood categories.
This dataset serves as a valuable resource for our flood detection system evaluation, allowing us to analyze
and correlate the sensor readings with specific flood conditions [30]. By examining these variables, we aim to
gain insights into the system’s ability to accurately categorize and respond to varying flood levels, ultimately
enhancing its reliability and effectiveness in providing early warnings and flood management.

As shown in Figure 7, this observation affirms that the proposed neuro-fuzzy algorithm, employing just
two linear rules, is capable of flawlessly solving the XOR problem. Figures 7(a)-(d) shows that the 7-4-1 and
7-7-1 MLP-structured NNs possess significant nonlinear mapping capabilities, even with just two linear hidden
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nodes. This capacity arises from the data-dependent terminal weights and the firing strengths associated with
these two linear rules. In contrast, within the framework of standard MLP learning, terminal weights remain
consistent across all data points. Consequently, an MLP featuring ”linear” hidden nodes would be incapable
of solving the XOR problem. This underscores a fundamental distinction between an MLP-structured NN and
a conventional MLP. In detail, Figure 7(a) shows that the RMSE in batch-mode training without hidden-node
teaching is quite small decreased for 7-4-1 MLP architecture, comparing to with hidden-node teaching as shown
in Figure 7(b). While 7-7-1 NN with hidden-node teaching in Figure 7(d) shows a significantly decreased of
RMSE, instead of 7-7-1 NN without hidden-node teaching Figure 7(c), with a less number of epochs.

Figure 7. Algorithm evaluation using MATLAB: (a) 7-4-1 NN without hidden-node teaching, (b) 7-4-1 NN
with hidden-node teaching, (c) 7-7-1 NN without hidden-node teaching, and (d) 7-7-1 NN with hidden-node

teaching

4. CONCLUSION
The proposed IoT-based flood disaster early detection system, seamlessly integrated with social media,

has been successfully implemented in the Rungkut area. This technological solution serves as a valuable tool
in providing real-time information about potential flooding events. Through the integration with social media
platforms, all residents in the Rungkut area can access the latest updates on flood conditions, fostering a safer
and more comfortable environment. Furthermore, in in-depth analysis of the system’s performance reveals
its effectiveness in accurately detecting and responding to changes in environmental conditions. The data
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collected through sensor readings, including variables such as sensor distance, water flow rate, and LED lights,
has provided valuable insights. This information serves as a foundation for ongoing improvements, ensuring
the system’s readiness for real-world scenarios.
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