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 Illegal, unreported, and unregulated (IUU) fishing poses a significant threat 

by depleting fish stocks, damaging marine ecosystems, jeopardizing 

economic livelihoods, and undermining long-term environmental 

sustainability. To address this, the government has implemented a public 

policy of measured fishing within the blue economy framework. Given the 

involvement of numerous stakeholders, it is crucial for the government to 

gauge public sentiment through tweets on social media platforms to evaluate 

and refine the policy’s implementation for greater effectiveness. While the 

long short-term memory (LSTM) method for sentiment analysis is adept at 

handling text sequences and context, it struggles with capturing contextual 

semantic correlations. Conversely, the latent Dirichlet allocation (LDA) 

method excels in identifying these correlations and uncovering dominant 

topics. This study shows that integrating LDA for topic modeling with 

LSTM for sentiment analysis enhances overall performance, providing more 

accurate and comprehensive insights into public responses and identifying 

key topics discussed in social media tweets. 
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1. INTRODUCTION 

Background: illegal, unreported, and unregulated (IUU) fishing depletes fish stocks and endangers 

livelihoods. To counter this, Indonesia’s Ministry of Marine Affairs and Fisheries has implemented a policy 

based on blue economy principles. This policy aims to protect marine life through strong regulations and 

enforcement [1]. The blue economy promotes sustainable ocean resource use to boost economic growth, 

enhance livelihoods, create jobs, and protect marine ecosystems [2]. It prioritizes justice and equity, 

especially climate justice, to ensure fair distribution of benefits and sustainable impact management in 

planning and governance [3]. Policymakers must understand public sentiment for policy success [4]. 

Analyzing social media posts provides policymakers with global public reactions, aiding in better 

communication and policy decisions [5]. For example, state legislators in the U.S. use Twitter to debate 

policies and share their priorities [6]. Research shows that Twitter is increasingly used by citizens and groups 

to impact government decisions and policies [7]. 

Understanding public opinion in tweets depends on natural language processing (NLP) techniques, 

particularly sentiment analysis [8]. Machine learning algorithms such as naive Bayes, support vector machine 

(SVM), recurrent neural networks (RNNs), convolutional neural networks (CNNs), and long short-term 

memories (LSTMs) are effective for sentiment analysis, and their combination can improve accuracy [9]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Combining lexicosemantic features with deep learning boosts sentiment analysis effectiveness [8]. LSTM 

and bidirectional-long short term memory (Bi-LSTM) models outperform traditional RNNs in analyzing 

Twitter sentiments [10]. Using LSTM for sentiment analysis and latent Dirichlet allocation (LDA) for topic 

modeling improves the accuracy of tweet interpretation. LSTM is effective with sequential data, while LDA 

identifies important topics, resulting in better analysis and policy adjustments. 

Related works: LSTM networks are effective in sentiment analysis due to their ability to capture and 

retain long-term dependencies [9], [11], [12]. Models such as LSTM-spiking neural P (LSTM-SNP) and 

BiLSTM-SNP models improve aspect-level sentiment analysis with attention mechanisms and bidirectional 

structures, outperforming baseline models [13], [14]. LSTM’s gate mechanisms, especially the forgetting 

gate, tackle vanishing gradients in RNNs, enhancing accuracy in long-text sentiment analysis. Despite 

alternatives like naive Bayes, SVM, RNNs, and CNNs, LSTM is often favored based on data. 

However, LSTM can struggle with capturing contextual semantic correlations in sentiment analysis 

[11] and managing the dominance of short-term over long-term gradients, which limits learning long-distance 

information [14]. Other challenges involve assessing errors before deployment and identifying new ones after 

deployment [15], the “black-box” nature of deep learning models due to high-dimensional features and 

unpredictable weights [16], and the challenge of making high-quality training sets with accurate labels due to 

complex and subjective sentiment annotations [17]. Improving interpretability, gradient management, error 

detection, and labeling strategies is key to enhancing LSTM-based sentiment analysis models. 

LDA is commonly used to capture semantic correlations in document modeling and ontology 

learning [18]. LDA-based methods generate context-driven word representations and identify topics 

effectively [19]. However, traditional LDA models struggle with concept extraction and adapting to evolving 

corpora [20]. Extensions like LEOnto+ use LDA for dimension reduction and establish semantic links 

between topics and words via probability distributions [21]. These advancements improve LDA’s capture of 

semantic correlations and enrich text with ontologies [22]. This research focuses on; i) integrating  

LDA-based topic modeling with LSTM and Twitter data for sentiment analysis and ii) analyzing how adding 

LDA-identified topics affects the accuracy of LSTM sentiment classification. 

 

 

2. METHOD 

2.1.  Dataset 

The dataset used in this study was obtained through a tweet-data search on social media platform X 

(Twitter) using the keywords “penangkapan ikan terukur” and “ekonomi biru.” The dataset taken is the result of 

X (Twitter) user tweets between January 1, 2022 and June 30, 2023. The dataset used in this study was obtained 

through a tweet-data search on social media platform X (Twitter) using the keywords ‘penangkapan ikan 

terukur’ and ‘ekonomi biru.’ The lexicon-based data-labeling process aims to label documents based on word 

analysis using a lexicon dictionary, which can be enhanced by utilizing libraries like natural language toolkit 

(NLTK) [23] and Sastrawi [24] for better text processing. Figure 1 displays the tweet data distribution, revealing 

notable monthly variations. This distribution highlights fluctuations in discussion activity over time.  
 

 

 
 

Figure 1. The distribution of tweet data 

 

 

2.2.  Experiment design 

This study employs the system process flow shown in Figure 2 to analyze sentiment using a set of 

tweet documents. This procedure integrates lexicon-based labeling, word embedding, LDA-based topic 

modeling, and sentiment analysis with LSTM. 
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Figure 2. System process design of framework 

 

 

2.3.  Document labeling 

The lexicon-based data-labeling process aims to label documents based on word analysis using a 

lexicon dictionary. The sentiment score is calculated for each document using a lexicon dictionary. The 

dictionary is in the form of a positive dictionary, which is a text file that contains a list of words that are 

considered positive. This process also uses a negative dictionary that contains a list of words considered negative. 

 

2.3.1. Topic modeling using latent Dirichlet allocation 

The LDA method is used to analyze textual data by encoding documents as word-frequency vectors. 

This method can also identify underlying themes or topics in a collection of documents, based on a 

probabilistic model [25]. Additionally, tools and libraries such as the Sastrawi library for stemming 

Indonesian text [24], the NLTK for various NLP tasks [23], and the NLTK project [26] provide essential 

resources for implementing LDA effectively.  

Thus, this model explains the relationships between words and themes, providing insights into 

hidden structures and patterns in the data. In (1) calculates the probability of a word 𝑤 appearing in a topic 𝑘. 

  

𝑃(𝑤|𝑘) =
(𝑛𝑘𝑤+𝛽)

(∑(𝑛𝑘)+𝑉∗𝛽)
 (1) 

 

Where 𝑃(𝑤|𝑘) is used to express the probability that a word will occur in topic 𝑘. The number 𝑛𝑘𝑤  indicates 

how often the word 𝑤 appeared in the topic 𝑘. 𝛽 is a multinomial parameter for each word in each document. 

𝑛𝑘 is the total number of words for topic k displayed and V is the total number of words in the entire 

document.  
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Meanwhile, LDA modeling calculates the distribution of topics (z) in documents (d) using (2): 

 

𝑃(𝑧|𝑑) =
(𝑛𝑑𝑧+𝛼)

(∑𝑛𝑑+𝐾∗𝛼)
 (2) 

 

Where the probability that topic z will appear in document d is given by 𝑃(𝑧|𝑑). The number 𝑛𝑑𝑧 indicates 

how often topic z is mentioned in document d, and α is the Dirichlet parameter for each document. The total 

number of words in document d as a whole is 𝑛𝑑. Where K denotes the predetermined number of topics. 

Topic modeling involves training the LDA model and validating the resulting model. In this study, 

the LDA model training process applies a grid search method to obtain the best LDA parameters (𝛼, 𝛽, 𝐾). 

Search space of parameter values 𝛼=[0.01, 0.31, 0.61, 0.91]; 𝛽=[0.01, 0.31, 0.61, 0.91]; 𝐾=[2, 3, 4, 5, 6]; 

This hyperparameter tuning process uses coherence counts to evaluate topic quality [27]. The model was 

trained with optimal parameters to generate topics and their distributions. Each document’s dominant topic 

was identified by sorting topics by their distribution values. 

 

2.3.2. Sentiment modeling using long short-term memory 

Sentiment modeling starts with preprocessing LDA output, including word embedding (using 

Word2Vec), data splitting, over sampling, and tokenizing with padding [28]. This method generates word 

embeddings to capture semantic context. The dataset is split into 80% training and 20% test data, with 

Random Over Sampler used to address imbalance. Tweet text is tokenized into numerical representations, 

unnecessary characters are filtered out, and padding standardizes document length to a maximum of 20. 

The next step involves training and validating the LSTM model, which includes four layers as 

outlined in Table 1. The model uses SoftMax activation and density measures to categorize sentiments into 

positive, neutral, or negative, employing Adam optimization and evaluating with categorical cross-entropy 

and accuracy. Hyperparameter tuning was performed using the hyperopt method to find the optimal LSTM 

parameters from the search space, including learning rates of [0.0001 to 0.01], LSTM units of [128, 256, 512], 

epochs of [25, 50], and batch sizes of [16, 32]. The impact of LDA topic modeling on the LSTM model was 

measured by comparing its predictions to a baseline LSTM model that lacked these features, using the best 

hyperparameters. 

 

 

Table 1. LSTM model 
Layer (type) Output shape Param # 

input_1 (InputLayer) [(None, 20)] 0 

embedding (Embedding) (None, 20, 300) 546300 
lstm (LSTM) (None, 128) 219648 

sentiment (Dense) (None, 3) 387 

Total params: 766335 (2.92 MB)   
Trainable params: 220035 (859.51 KB)   

Non-trainable params: 546300 (2.08 MB)   

 

 

2.4.  Metrics 

2.4.1. Coherence score 

Coherence measures the degree to which words in a topic correlate with each other and how 

semantically meaningful the topic is. For topics 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝐾} by the number of topics K, dan  
𝑊𝑘 = {𝑤𝑘1 , 𝑤𝑘2, … , 𝑤𝑘𝑊} are unique words that often appear for each topic (𝑇𝑘). Coherence of word pairs 

(𝑤1, 𝑤2): 

 

𝐶(𝑤1 , 𝑤2) = log
𝑃(𝑤1,𝑤2)

𝑃(𝑤1)⋅𝑃(𝑤2)
 (3) 

 

So, the calculation of topic coherence (𝐶(𝑇𝑘)) is the average coherence of all word pairs in a topic (Tk), 

 

𝐶(𝑇𝑘) =
1

|𝑊𝑘|(|𝑊𝑘|−1)
∑ ∑ 𝐶(𝑤𝑘𝑖 , 𝑤𝑘𝑗)

|𝑊𝑘|

𝑗=𝑖+1

|𝑊𝑘|

𝑖=1  (4) 

 

The coherence of the LDA model 𝐶(𝑇) is the average coherence of all topics and can be expressed as (5): 

 

𝐶(𝑇) =
1

𝐾
∑ 𝐶(𝑇𝑘)𝐾

𝑘=1  (5) 
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2.4.2. Confusion matrix 

A confusion matrix assesses classification by comparing predicted and actual values, including true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Table 2 displays the 

confusion matrix for sentiment classes (positive, neutral, and negative). 

 

 

Table 2. Confusion matrix for sentiment class (positive, neutral, negative)  
 Predicted negative Predicted neutral Predicted positive 

Actual negative (𝑇𝑃Neg) (𝐹𝑁Neg_Neutral) (𝐹𝑁Neg_Pos) 

Actual neutral (𝐹𝑃Neutral_Neg) (𝑇𝑃Neutral) (𝐹𝑁Neutral_Pos) 

Actual positive (𝐹𝑃Pos_Neg) (𝐹𝑃Pos_Neutral) (𝑇𝑃Pos) 

 

  

2.4.3. Classification report 

The classification report gives a thorough evaluation of a model’s performance for each class, 

including precision (accuracy of positive predictions), recall (ability to find all relevant instances), and F1 

score (a metric combining precision and recall). It also details the support for each class, which is the count 

of actual instances in the dataset. This information, presented in Table 3, helps in assessing the model’s 

effectiveness and identifying areas for improvement. 

 

 

Table 3. Classification report metrics 
Description Formula  

Accuracy indicates how often the model can correctly classify a 

tweet as positive, neutral, or negative compared with all 

predictions made. 

Accuracy =
𝑇𝑃Pos + 𝑇𝑁Neutral + 𝑇𝑁Neg

Total Number of Samples
 (6) 

Precision is the proportion of correct positive predictions 

compared with all positive predictions. For each class. 
Precisionkelas =

𝑇𝑃class

𝑇𝑃class + 𝐹𝑃class

 (7) 

Recall is the proportion of correct positive predictions compared to 
all samples that are actually positive. 

Recallclass =
𝑇𝑃class

𝑇𝑃class + 𝐹𝑁class

 (8) 

The F1 score is the harmonic mean of precision and recall, offering 

a balanced measure of both metrics. It ensures the model maintains 

high precision (few FP) and high recall (few FN). 

F1class = 2 ×
Presisiclass × Recallclass

Presisiclass + Recallclass

 (9) 

The support metric in the context of classification model evaluation refers to the actual number of occurrences for each class in the 

tested dataset. Oversampling results in the number of samples in each class being the same as well as the value of this metric. 

 

  

3. RESULTS AND DISCUSSION 

3.1.  Experiment result 

From the experiment, (𝛼, 𝛽, 𝐾)=(0.31, 0.61, 2) is the combination of LDA topic modeling 

hyperparameters with the highest coherence score for each parameter as in Figure 3. Figure 3(a) shows that 

higher alpha values (0.91) improve coherence. Figure 3(b) reveals that beta 0.91 also yields the best 

coherence. Figure 3(c) indicates coherence scores decrease from 2 to 4 topics, then stabilize. 

 

 

   
(a) (b) (c) 

 

Figure 3. LDA hyperparameter tuning results; (a) alpha vs coherence score, (b) beta vs coherence score, and 

(c) number of topics vs coherence score 

 

 

Figure 4 reveals that the main terms are “kuota” and “ekonomi biru.” Figure 4(a) topic 0’s word 

cloud emphasizes Indonesia’s maritime policy, highlighting “kuota,” “nelayan,” and sustainable fishing 
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programs. Figure 4(b) topic 1 focuses on economic initiatives, featuring “kkp,” “bangga,” and sustainable 

development in fisheries. The lexicon-based labeling creates imbalanced classes, as shown in Figure 5(a), 

which is addressed by oversampling to produce 1,000 synthetic samples per class for LSTM sentiment 

modeling, as shown in Figure 5(b). 

The LSTM model with LDA topics showed low loss, as shown in Figure 6(a), and high accuracy on 

training data, as shown in Figure 6(b), outperforming the baseline model despite some overfitting. The 

optimal hyperparameters were {‘batch_size’: 16, ‘epochs’: 50, ‘lr’: 0.0067, ‘lstm_units’: 128}. Table 4 

shows that the LDA-enhanced model improved precision, recall, and F1 score for all sentiment classes 

compared to the baseline. Although the baseline had slightly higher recall for the neutral class, the LDA 

model performed better overall, indicating enhanced sentiment classification accuracy. 

 

 

  
(a) (b) 

 

Figure 4. Word cloud of; (a) topic 0 and (b) topic 1 

 

 

  
(a) (b) 

 

Figure 5. Distribution of the number of document samples for each sentiment label class (positive, neutral 

and negative); (a) before oversampling and (b) after oversampling 

 

 

  
(a) (b) 

 

Figure 6. Training and validation results of LSTM sentiment models with and without LDA dominant topic 

features in; (a) loss and (b) accuracy 
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Table 4. Sentiment model evaluation results 
Model  Precision Recall F1 score Support 

LSTM without LDA Negative 0.3750 0.2727 0.3158 22 
 Neutral 0.7304 0.8750 0.7962 96 

 Positive 0.7532 0.6444 0.6946 90 

 Accuracy   0.7115 208 
 macro avg 0.6196 0.5974 0.6022 208 

 weighted avg 0.7027 0.7115 0.7014 208 

LSTM with LDA Negative 0.4000 0.3636 0.3810 22 
 Neutral 0.7615 0.8646 0.8098 96 

 Positive 0.8101 0.7111 0.7574 90 

 Accuracy   0.7452 208 
 macro avg 0.6572 0.6464 0.6494 208 

 weighted avg 0.7443 0.7452 0.7417 208 

 

 

3.2.  Statistical analysis 

Because LSTM’s heuristic nature can cause fluctuating sentiment model results, statistical analysis 

through hypothesis testing is necessary. Hypothesis testing using multivariate analysis of variance 

(MANOVA) [29] in Table 5, showed that adding LDA topic features significantly improved LSTM 

performance (p=0.037<0.05) with macro and weighted averages of precision, recall, and F1 score evaluated. 

 

 

Table 5. Hypothesis test results using MANOVA 

Effect  Value F 
Hypoth

esis df 

Error 

df 
Sig 

Partial eta 

squared 

Noncent 

parameter 

Oberserved 

power 

Intercept Pillai’s trace .998 6867.781b 3.000 36.000 .000 .998 20603.344 1.000 
Wilks’ 

lambda 

.002 6867.781b 3.000 36.000 .000 .998 20603.344 1.000 

Hotelling’s 
trace 

572.315 6867.781b 3.000 36.000 .000 .998 20603.344 1.000 

Roy’s largest 

Root 

572.315 6867.781b 3.000 36.000 .000 .998 20603.344 1.000 

Condition Pillai’s trace .207 3.133b 3.000 36.000 .037 .207 9.398 .680 

Wilks’ 

lambda 

.793 3.133b 3.000 36.000 .037 .207 9.398 .680 

Hotelling’s 

trace 

.261 3.133b 3.000 36.000 .037 .207 9.398 .680 

Roy’s largest 
Root 

.261 3.133b 3.000 36.000 .037 .207 9.398 .680 

 

 

4. CONCLUSION 

This research produced a framework for applying topic modeling with LDA to sentiment modeling 

using LSTM. The design is a cascading process system that utilizes LDA modeling to produce dominant 

topics from a collection of tweet documents on social media as a response to measurable public fishing 

policies created by the government. The evaluation of the use of these dominant topics as new features for 

sentiment modeling using LSTM resulted in a significant increase in the performance of the resulting model. 

This new feature can provide contextual semantic correlation information, which is useful for LSTM models. 

Applying topic modeling using LDA to sentiment modeling with LSTM has the advantage of carrying out 

sentiment analysis more accurately and determining what topics are dominantly discussed in public response 

tweets on social media. Handling overfitting that occurs in experiments and generalizing the model in future 

research can be a space for development that can be carried out to further improve model performance based 

on the results of this research. 
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