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 Artificial intelligence refers to a computer-based system capable of learning 

human activities. For instance, in medical technology, AI can be used for a 

thought-controlled wheelchair. This study discusses the use of deep learning, 

specifically convolutional neural network (CNN), in predictiong of the user 

intention to navigate a wheelchair. The training data was collected from an 

EEG sensor and included the wheelchair’s movements - turning right, turning 

left, moving forward, moving backward, and idle. The signals were then 

sampled and feature-extracted using root mean square (RMS). In CNN 

classification, both raw and RMS data were used. This study compared two 

different CNN architectures. The first architecture has three convolutional 

layers and three pooling layers, while the second has two of each. The research 

compares the accuracy and loss values of CNN predictions using architecture 

1 and 2 on both raw and RMS data. The experimental results indicate that 

when using raw data, the first CNN architecture achieved an accuracy of 

85.12%, and the second model achieved 91.04%. However, when using RMS 

data, the first architecture achieved an accuracy of 76.47%, and the second 

achieved 73.74%. The study concludes that the movement of the wheelchair 

is better in real-time when using raw data compared to using RMS data. 
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1. INTRODUCTION 

Disease, a condition of abnormality in the body or mind, causes discomfort, dysfunction, or difficulty 

for the affected individual [1], [2]. Various diseases have afflicted humans for centuries, and Indonesia is no 

exception. Degenerative diseases are among the health issues present in Indonesia. According to the World 

Health Organization (WHO) report, deaths due to degenerative diseases are expected to continue increasing 

worldwide. The most significant increase is projected to occur in developing and impoverished countries. 

Stroke remains a leading cause of death and disability globally, with a substantial increase in burden over the 

past three decades. Recent estimates indicate there were 12.2 million new stroke cases, 6.6 million deaths, and 

143 million disability-adjusted life-years lost in 2019 [3]. Degenerative diseases result from changes in the 

body’s cells, which subsequently affect organ functions due to aging, leading to a decline in the functioning of 

human tissues. Currently, technological developments such as artificial intelligence have been widely used to 

help work in the health sector, such as predicting dementia [4], health monitoring [5], detecting pneumonia 

disease [6], and diagnosing COVID-19 [7], cancer detection [8], automated surgical systems [9], risk prediction 

for cardiology and neuroscience [10]. One of the degenerative diseases is stroke. It is a major cause of death 

https://creativecommons.org/licenses/by-sa/4.0/
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and chronic disability, particularly among individuals aged 45 and above, in Indonesia [11], [12]. Artificial 

intelligence technology can help the needs of stroke patients with treatment [13], [14] stroke disease prediction 

[15], and stroke rehabilitation [16], [17]. This study aims to develop a control system for wheelchairs for 

patients who are completely paralyzed due to stroke. The system operates based on the user’s intention, 

utilizing an electroencephalograph (EEG) sensor that detects brain activity. With EEG technology, patients can 

control the movement of the wheelchair using their brain signals [18]. It is a device that records the electrical 

activity in the brain by placing electrodes on the scalp. 

Recent studies have demonstrated the potential of EEG-based classification for wheelchair control using 

deep learning techniques. Abdulghani et al. [19] achieved a 95% classification accuracy for wheelchair navigation 

commands using a combination of wavelet scattering and deep learning. Similarly, Ngo and Nguyen [20] 

proposed a semi-automatic wheelchair system combining EEG control with virtual-real 2D grid maps and deep 

Q-Networks for path planning. Zubair [21] developed an optimized multi-layer perceptron model for motor 

imagery-based wheelchair control, improving performance by 3% through grid search optimization.  

Aswin et al. [22] compared artificial neural networks and deep neural networks for classifying EEG signals to 

control wheelchair direction, evaluating performance using precision, recall, and F1-score. Zgallai et al. [23] this 

paper presents a prototype smart wheelchair using an Emotive EPOC headset to assist blind and paralyzed 

individuals. It employs a convolutional neural network (CNN) to recognize four movements: left, right, 

forward, and stop. Testing with ten volunteers showed a success rate of 70% with raw EEG and 96% with 

spectrum data, demonstrating the potential of deep learning for EEG-based wheelchair control. 

This research aims to control the forward, backward, and stop movements of a wheelchair, ultimately 

enabling individuals with severe strokes to achieve independent mobility without assistance. The goal is to 

create a real-world application that allows for movement akin to walking. The methodology employed is the 

CNN, a type of deep feedforward neural network frequently utilized in computer vision tasks, including image 

classification [24]. CNN uses convolution by sliding a kernel over an image to extract features by multiplying 

different regions. Neurons are organized into a filter of specific dimensions. The pooling layer then reduces 

the feature map’s size while preserving critical information [25]. 

Zgallai et al. [23] developed a smart wheelchair prototype for blind and paralyzed individuals using 

the Emotive EPOC headset for EEG signal recognition. The system utilizes deep learning to identify four 

movements left, right, forward, and stop with a CNN achieving 96% accuracy after ten epochs. A Raspberry 

Pi handles signal processing, while an Arduino Mega controls movement. Ultrasonic and Lidar sensors are 

included for collision avoidance, demonstrating superior performance with spectrum data over raw EEG data. 

Previous research shows CNN enhances EEG signal processing accuracy, but real-time testing remains 

unexplored, impacting flexibility and security. This study advances prior work by applying CNN in real-time 

EEG signal classification to optimize wheelchair control. CNN’s parameters in image processing and feature 

extraction make it ideal for this purpose. 

 

 

2. METHOD 

2.1.  Overall system design 

The system starts by collecting EEG data from respondents, followed by pre-processing and 

classification using CNN. The classification results are sent to the Arduino Mega 2560 via serial 

communication to control the wheelchair’s movement, as shown in Figure 1. 
 
 

 
 

Figure 1. The block diagram of the proposed system 
 

 

In Figure 1, the system’s first stage involves collecting raw data from respondents using the Electrode 

Ultra Cortex Mark IV EEG sensor connected via Bluetooth. Once the data collection process is completed, it 

proceeds to the second stage, i.e., pre-processing. This stage occurs on a laptop and includes filtering, 

windowing, and feature extraction processes. The Bandpass filter is used for filtering, followed by windowing 

the data in segments of 200 data points per second, and root mean square (RMS), is employed as the feature 
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extraction method. After completing the second stage, the process moves to the CNN classification. The 

classification comprises three categories: idle, right or forward movement, and left or backward movement. 

The output from the CNN is then connected to the Arduino Mega 2560 using serial communication to control 

the wheelchair’s movement 

 

2.2.  Electroencephalograph signal acquisition 

EEG data were collected using the UltraCortex Mark IV headset with eight dry electrode channels on 

the respondent’s scalp. Brain activity signals were recorded as respondents imagined five motor actions: right, 

left, forward, backward, and stop, as shown in Figures 2(a) to (d). Data collection was facilitated through 

OpenBCI GUI connected to an Arduino Mega 2560 and adhered to ethical guidelines approved by the Medical 

Research Ethics Committee, Universitas Jember (No. 1278/UN25.8/KEPK/DL/2021). The EEG Electrode 

UltraCortex Mark IV in size M (for head circumferences 54-58 cm) was employed in two scenarios: the first 

involved imagining right-hand, left-hand movements, and idle states; the second included both hands, both 

legs, and idle states. Acquired EEG data were saved in CSV format and processed in Excel for analysis. 

 

 

    
(a) (b) (c) (d) 

 

Figure 2. Signal acquisition of: (a) imagining the right hand turning right, (b) imagining the left hand turning 

left, (c) imagining both hands moving forward, and (d) imagining both legs moving backward 

 

 

2.3.  Electroencephalograph signal processing 

Signal processing is carried out after the signal acquisition stage. The whole system is depicted in 

Figure 3. As shown in Figure 3, the process includes filtering, EEG signal windowing, and feature extraction, 

leading to CNN classification output. Preprocessing starts with a bandpass filter (7-13 Hz), followed by 

windowing with a size of 200 over eight channels using 1-second time segments. The data is then processed 

for feature extraction using the RMS, which averages the squared values of the EEG signals from the eight 

channels and takes the square root. It is calculated using (1): 
 

RMS = √
1

𝑁
∑ |𝑋𝑛|𝑁
𝑛=1  (1) 

 

Where N is the coefficient of the sum of the nth values, and Xn is the sum of the data. The research employs RMS 

for feature extraction, segmenting the EEG data into parts after visual artifact inspection. The study aims to enable 

the wheelchair to turn right, left, move forward, move backward, and stop based on the user’s intentions. 

 

 

 
 

Figure 3. Schematic representation and methodology with processing using the CNN method 
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2.3.1. Designing convolutional neural network architecture 

CNN is a type of neural network designed for image data. It is a deep-learning algorithm specifically 

crafted for two-dimensional data [25]. The CNN architecture consists of two main parts: the feature extraction 

layer, which includes convolution and pooling layers, and the fully connected layer. The convolution layer 

applies filters of specific dimensions to create feature maps, while the pooling layer scans these maps with a 

filter and stride to reduce dimensionality. Finally, the fully connected layer reshapes the resulting feature map 

into a vector for further processing. The proposed architectures are depicted in Figures 4 and 5. 
 
 

 
 

Figure 4. The CNN architecture 1 
 

 

 
 

Figure 5. The CNN architecture 2 
 

 

The CNN architecture consists of crucial components in its success, including feature learning and 

classification. Feature learning comprises several layers, starting with the input layer and continuing with the 

convolution process and pooling. Meanwhile, the classification phase consists of the flattened, fully connected, 

and dense layers. The following is a table detailing the configuration parameters of the CNN architecture. 

Table 1 highlights key differences in CNN architecture configurations for raw and RMS data. The 

‘input_shape’ for raw data is (200, 8), while for RMS data, it is (8, 1) due to reshaping during feature extraction, 

which averages out the sequential structure of the raw data. Each data type from the two scenarios is tested 

across both architectures, resulting in two distinct CNN models: model 1 and model 2. 
 

 

Table 1. CNN architecture parameter configuration 

Parameter 
Raw data RMS data 

Architecture 1 Architecture 2 Architecture 1 Architecture 2 

Input_shape 200,8 200,8 8,1 8,1 

Filter 200 100 - 200 100 50 200 100 - 200 100 50 
Kernel_size 8 4 - 8 4 2 4 2 - 4 2 1 

Pool_size 4 2 - 4 2 1 2 1 - 2 1 1 

Dense 3 3 3 3 
Pat 5 5 5 5 

n-fold 5 5 5 5 

Epoch 10 10 10 10 

Batch_size 100 100 4 4 
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3. RESULTS AND DISCUSSION 

In this section, we evaluate the findings from the EEG signal processing, which involves several 

essential phases. We began with raw data, applying filtering techniques to reduce noise and enhance the quality 

of the signal. Next, we used windowing to divide the data into manageable segments for analysis. After that, 

we extracted features to identify important patterns, which were later analyzed using a CNN model. The results 

were further validated through extensive testing, which included collecting EEG data under controlled 

conditions to ensure reliability and accuracy. 

 

3.1.  Result 

3.1.1. Offline testing of convolutional neural network architecture 

After setting the CNN parameters and architecture, performance testing evaluates prediction accuracy 

to identify the optimal setup. Each architecture is trained and tested on data from 5 respondents with a 7:3 train-

test split. Results are shown in Tables 2 to 4, which compare testing outcomes for raw and RMS data across 

CNN architectures 1 and 2, as well as models 1 and 2. 

− Testing of raw data for CNN architecture 1 and 2 

This testing involves raw data with CNN architecture 1 that has been designed. It is conducted to 

evaluate the accuracy values for raw data using CNN architecture 1, as presented in Table 2. 

 

 

Table 2. Experimental results of the CNN architecture 1 and 2 with raw data 

No Subject 

Raw data for CNN architecture 1 Raw data for CNN architecture 2 

Model 1 Model 2 Model 1 Model 2 

Loss 
Accuracy 

(%) 
Loss 

Accuracy 
(%) 

Loss 
Accuracy 

(%) 
Loss 

Accuracy 
(%) 

1. R1 0.3804 61.96 0.0944 90.56 0.3562 64.38 0.0816 91.84 

2. R2 0.0144 98.56 0.0271 97.29 0.0013 99.87 0.0137 98.63 

3. R3 0.0079 99.21 0.0133 98.67 0.0058 99.42 0.0062 99.38 
4. R4 0.0098 99.02 0.0121 98.79 0.0037 99.63 0.0059 99.41 

5. R5 0.3132 68.68 0.3033 69.67 0.3769 62.31 0.3402 65.98 

Average 0.14514 85.486 0.09004 90.996 0.14878 85.122 0.08952 91.048 

 

 

Table 2 presents the test results of raw data using CNN architecture 1, showing variations in loss and 

accuracy across respondents. For respondent 1, model 1 yielded a loss of 0.3804 with 61.96% accuracy, 

whereas model 2 achieved a loss of 0.0944 with 90.56% accuracy. In contrast, respondent 4’s results showed 

a loss of 0.0098 and 99.02% accuracy for model 1 and 0.0121 loss with 98.79% accuracy for model 2. These 

accuracy variations directly impact the prediction reliability for wheelchair movement in real-time tests. Higher 

accuracy values, nearing 1, indicate greater prediction reliability, while loss values inversely relate to accuracy; 

as accuracy improves, loss decreases. CNN architecture 2 shows variation in loss and accuracy for different 

respondents. For respondent 3, model 1 recorded a loss of 0.0058 and an accuracy of 99.42%, while model 2 

had a loss of 0.0062 with 99.38% accuracy. In contrast, respondent 5’s results showed a loss of 0.3769 with 

62.31% accuracy for model 1 and 0.3402 with 65.98% accuracy for model 2. These accuracy differences 

influence the reliability of wheelchair movement predictions in real-time testing. An accuracy value closer to 

1 enhances prediction reliability, while an inverse relationship is observed between accuracy and loss-higher 

accuracy corresponds with lower loss. 

− Testing of root mean square data for CNN architecture 1 and 2 

This testing involves RMS data with CNN architecture 1 and CNN architecture 2 to evaluate the 

performance of the models on RMS inputs. Table 3 displays results for RMS data using CNN architecture 1, with 

respondent 1’s model 1 showing a loss of 0.4219 and 57.81% accuracy, while model 2 had a loss of 0.3694 and 

63.06% accuracy. Respondent 4’s model 1 achieved 82.82% accuracy with a loss of 0.1718, while model 2 

recorded 75.70% accuracy with a loss of 0.243. Table 3 shows outcomes for RMS data with CNN architecture 2. 

Respondent 2’s model 1 achieved an accuracy of 83.68% (loss: 0.1632), and model 2 had an accuracy of 

82.01% (loss: 0.1799). For respondent 5, model 1 recorded 68.45% accuracy (loss: 0.3155), while model 2 

achieved an accuracy of 67.80% (loss: 0.322). Higher accuracy improves directional prediction reliability. 

Comparing architectures with raw and RMS data, raw data showed better accuracy due to its sequential 

structure. In CNN architecture 1, model 1 achieved an accuracy of 85.486% (loss: 0.14514), while model 2 

reached 90.996% (loss: 0.09004). CNN architecture 2 performed best overall, with accuracy affected by factors 

like alertness and hair thickness impacting EEG quality. An ANOVA p-value calculation will analyze the mean 

differences between model 1 and model 2. Table 4 compares p-values. 
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Table 3. Results of testing RMS data with CNN architecture 1 and 2 

No Subject 

Raw data for CNN architecture 1 Raw data for CNN architecture 2 

Model 1 Model 2 Model 1 Model 2 

Loss 
Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 
Loss 

Accuracy 

(%) 

1. R1 0.4219 57.81 0.3694 63.06 0.3949 60.51 0.3647 63.53 
2. R2 0.1873 81.27 0.1903 80.97 0.1632 83.68 0.1799 82.01 

3. R3 0.1393 86.07 0.2376 76.24 0.1291 87.09 0.202 79.80 

4. R4 0.1718 82.82 0.243 75.70 0.1737 82.63 0.244 75.60 
5. R5 0.338 66.20 0.346 65.40 0.3155 68.45 0.322 67.80 

Average 0.25166 74.834 0.27726 72.274 0.23528 76.472 0.26252 73.748 

 

 

Table 4. Comparison of p-value values 
Group1 Group2 p-value 

Model 1 raw arsitektur 1 Model 2 raw arsitektur 1 0.60707 

Model 1 rms arsitektur 1 Model 2 rms arsitektur 1 0.714501 

Model 1 raw arsitektur 2 Model 2 raw arsitektur 2 0.615433 

Model 1 rms arsitektur 2 Model 2 rms arsitektur 2 0.68543 

 

 

The p-value analysis in Table 4 indicates no significant difference between the models, as the p-value is 

greater than 0.05. This allows flexibility in choosing any architecture. However, selecting the architecture with 

the highest accuracy or referring to the confusion matrices in Figures 6(a) and (b), as well as Figures 7(a) and (b), 

can provide additional guidance for selecting the most effective model. Figures 6 and 7 show discrepancies in 

the confusion matrix, where some commands-idle, turn right, turn left, move forward, and move backward-are 

misclassified. This impacts movement accuracy, but the proposed model successfully captures brain patterns 

for these commands. 
 

 

    
(a) (b) (a) (b) 

    

Figure 6. Confusion matrix of the: (a) model 1 and 

(b) model 2 using raw input 

Figure 7. Confusion matrix of the: (a) model 1 and 

(b) model 2 using RMS input 
 
 

− The best CNN architecture 

Based on previous results, the second architecture is the optimal choice for the model, utilizing input 

dimensions of 200×8 with a batch size of 50 for raw data and 4 for RMS data. This configuration effectively 

reduces the GPU workload during training. The architecture incorporates two-dimensional CNN input shapes, 

with the first input shape of (200, 8) representing EEG channels and the second input shape of (8, 1) derived 

from RMS feature extraction. The architecture begins with a first convolution using 200 filters of size 8×8, 

producing a feature map of dimensions 193×8 after applying the ReLU activation function. This is followed 

by a pooling layer that reduces the feature map to 48×8 using max pooling. The second convolution uses 100 

filters and a kernel size of 4×4, yielding a 45×8 matrix, also processed with the ReLU activation function. A 

second max pooling layer further reduces this to a 22×8 matrix. The third convolution employs 50 filters with 

a 2×2 kernel, resulting in a 21×8 matrix, and the subsequent pooling layer maintains this size. The data is then 

flattened into a new matrix with 1050 weights, leading to a fully connected layer comprising three dense layers 

corresponding to the classes of idle, right/forward, and left/backward, using the sigmoid activation function for 

classification. Finally, the CNN output is transmitted to an Arduino Mega 2560 via serial communication for 

further processing. 

 

3.1.2. Online data testing 

During the online testing phase, the respondent was in a wheelchair using an EEG sensor. This testing 

was conducted to determine the accuracy of predicting real-time wheelchair movements. Table 5 shows the 

results of the online testing. Table 5 shows that the anticipated wheelchair movements for respondents 1 and 5 

did not occur as expected, with both achieving low accuracy rates of 50%. In contrast, respondents 2 and 3 
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reached 85% accuracy, attributed to their better physical condition and focused brain activity during data 

acquisition. The less focused states of respondents 1 and 5 contributed to their lower accuracy. Factors like 

physical condition and brain resting state are crucial for optimal data acquisition results, and hair thickness can 

also affect EEG signal quality, with thinner or bald hair yielding better data. Both online and offline testing 

yielded higher accuracy during offline sessions due to the consistency of brain signal data, while online testing 

faced fluctuations in the real-time signal collection. 
 
 

Table 5. Results of online testing 
Respondent Accuracy (%) 

Respondent 1 50 

Respondent 2 85 
Respondent 3 85 

Respondent 4 80 

Respondent 5 50 
Average 70 

 

 

3.2.  Discussion 

This study achieved high accuracy in predicting four wheelchair control motions using a CNN model, 

with an average real-time accuracy of 70% across five respondents. However, improvements are needed for 

real-time performance, a common challenge in EEG-based applications. Advanced methods in the field are 

exploring recurrent neural networks (RNNs) and hybrid systems that combine EEG with other biosignals to 

address the variability and instability in EEG data, a well-known limitation. Additionally, while this research 

focuses on four basic motions, more complex state-of-the-art systems offer finer control options, like variable 

speeds or multidimensional commands, to enhance user interaction. Thus, while the CNN model shows strong 

predictive capabilities, further work in improving real-time accuracy, adapting to signal dynamics, and 

achieving greater control flexibility is necessary to make EEG-based wheelchair systems feasible for broader, 

real-world use. 

 

 

4. CONCLUSION 

The impact of CNN on EEG-based wheelchair performance is considered effective in accurately 

predicting the direction of the wheelchair. This is done using raw data and the second CNN architecture during 

online or real-time testing. The offline data test was based on raw and RMS data with both CNN architecture 

1 and CNN architecture 2, as well as model 1 and model 2. In CNN testing with raw data using CNN 

architecture 1, the highest results obtained were 85.486% in model 1 and 90.996% in model 2. In the online 

testing phase, it was observed that the wheelchair cannot be said to move according to the desired command. 

Several influencing factors, such as hair thickness and the physical condition of the respondent, were identified 

as possible causes. 
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