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 Relevant datasets that depict and/or emulate the smart grid networks (SGN) 

are key to developing cybersecurity models that can effectively provide 

security for mission-critical infrastructure. The difficulty in obtaining relevant 

SGN real-life datasets presents a considerable challenge for researchers in the 

field and, the existing datasets lack representation of the IEC61850 protocol 

for modelling substation automation processes for cybersecurity solutions. 

This paper presents a dataset simulated from a fully virtual testbed, intended 

to provide researchers with the necessary datasets for research and 

experiments that require massive amounts of data close to the real-world 

scenario. Experimentally, the dataset was used to develop an intrusion 

detection model based on gated recurrent unit (GRU), deep belief network 

(DBN), long-short term memory (LSTM), and evaluated using accuracy, 

precision, recall, F1-score, detection rate, false alarm rate (FAR), missed 

alarm rate (MAR), mean squared error (MSE), mean absolute error (MAE), 

and loss. Results show that the standalone deep learning (DL) algorithms 

outperformed the hybridized ones and are more suitable for developing 

models for securing substation automation systems that support generic 

object-oriented substation events (GOOSE), and manufacturing message 

specification (MMS) and run on IEC61850, distributed network protocol 

version 3 (DNP3), and Modbus-transmission control protocol (ModbusTCP). 
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1. INTRODUCTION 

In recent times, the energy infrastructure has increasingly become more interconnected and dependent 

on digital technologies and their associated cyber risks. This makes the need for effective, secure, and 

sustainable energy management very crucial. Smart grid research has, thus, presented itself as an essential 

process for addressing the ever-growing challenges in the domain, especially cybersecurity concerns. However, 

to advance the much-desired research, realistic datasets that emulate the dynamic and complex nature of smart 

grid systems are required. Particularly for the modern grid, such datasets are expected to have a proper mix of 

proprietary and modern communication protocols, represent the physical, communication, and application 

layers of the grid, and depict both the physical and cyber processes of cyber-physical systems [1]. Datasets 
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serve as the foundation for testing, validating, and developing smart grid technologies, making them a critical 

asset for research and development in the energy business value chain [2]. 

A contrived dataset is a dataset intentionally created, simulated, synthesized, generated, or 

manufactured for a specific purpose, such as research, testing, or experimentation [3]. Unlike real-world 

datasets that are collected from actual observations or measurements, contrived datasets are synthetic and 

designed to meet certain criteria or mimic particular characteristics. These datasets are often used in various 

fields, including data science, machine learning, research, and testing, for a range of purposes [4]. Synthetic 

datasets are valuable because they offer a level of control and reproducibility that may not be achievable with 

real-world data. Researchers and practitioners can use such datasets to explore and experiment with different 

concepts, algorithms, and solutions without the limitations or complexities of real data. However, it is important 

to ensure that contrived datasets accurately represent the characteristics of the problem or domain they are 

intended to simulate to make their results and findings applicable to real-world scenarios. Many existing 

datasets for smart grid cybersecurity lack comprehensive, realistic, and up-to-date cybersecurity scenarios that 

accurately mimic the evolving threat landscape [5]. This paper presents a dataset designed to include a wide 

range of cybersecurity attack scenarios, helping researchers develop and test robust security solutions. Also, 

the existing datasets do not provide a sufficient level of detail or focus on the unique challenges and 

vulnerabilities present in substation automation systems. The presented contrived dataset provides well-

documented ground truth data for evaluating intrusion detection systems (IDSs), security solutions, and 

incident response strategies. This is a significant gap in existing datasets, where ground truth data is often 

limited. 

Furthermore, anomalies in smart grid network (SGN) traffic are often early indicators of cyber threats. 

The contrived dataset includes known anomalies and deviations from normal network behaviour, aiding in the 

development and evaluation of anomaly detection algorithms. Thus, the new dataset has been structured to 

support the training and testing of machine learning models for intrusion detection, network security, and threat 

prediction in smart grids. The dataset is specifically tailored for teaching and learning about substation 

automation security. In this paper, a contrived dataset which is a representation of the substation automation 

cyber-physical communications is evaluated using three deep learning (DL) algorithms, including the gated 

recurrent unit (GRU), deep belief network (DBN), and long-short term memory (LSTM). DL has been proven 

to outperform traditional machine learning algorithms in many respects when applied on cybersecurity 

problems [6]–[10]. The goal of this research was to address scientific questions that border on data integrity 

and authenticity, threat detection and anomaly detection/behaviour analysis, as: i) how effective are current 

cybersecurity measures in ensuring the integrity and authenticity of data exchanged within substation 

automation systems based on IEC61850 standards?; ii) how can a contrived dataset facilitate the development 

and testing of IDS?; and (iii) how can machine learning and data analytics techniques be applied to identify 

anomalous behaviour or deviations from normal operation within substation automation systems, using the 

contrived dataset as a benchmark for performance evaluation?. 

By addressing these scientific questions, the paper aims to contribute to advancing the understanding 

of cybersecurity challenges and solutions in SGN, ultimately enhancing the resilience and security of critical 

energy infrastructure. The major contributions of this study are: i) introduce a contrived dataset that replicates 

the intricacies of real-world smart grid environments with respect to prevalent cyber attacks on critical 

infrastructure; ii) demonstrate a use case of the dataset in developing DL models for a binary classification 

intrusion detection problem; iii) provide experimental results of the use case to gain insights into the leverage 

of the datasets for developing cybersecurity solutions; and iv) ultimately contribute to the advancement of 

smart grid research, enabling researchers to experiment, innovate, and develop solutions for improved energy 

management. The rest of the paper is structured as: in section 2, related works are reviewed. Section 3 presents 

the methods used in generating the dataset and the experimental set up for demonstrating the use of the dataset 

for developing cybersecurity models. The results are presented and discussed in section 4. Section 5 is the 

conclusion. 

 

 

2. RELATED WORKS 

As observed earlier, cybersecurity research geared towards the smart grid requires reliable datasets 

for experiments and developing tools for the security of mission-critical infrastructure from varying degrees of 

cyber threats. Several datasets have been leveraged in the literature to address different aspects of cybersecurity 

in the sector. These range from synthetic datasets from cyber ranges to experimental datasets from laboratories, 

with very little from real-world systems [11]. For instance, the Geek Lounge Lab [12] generated datasets for 

electrical systems for the 4SICS conference. While this represents the power system dynamics, it did not depict 

the IEC61850 protocol or emulate the modern smart grid system. The electric power intelligent control (EPIC) 

testbed released datasets that showed features for the manufacturing message specification (MMS) which is 
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required for communication with IEC61850 [5]. The EPIC datasets focused more on the physical processes of 

the electric grid, with very limited attention paid to the cyber components. 

The work of [13] presented a dataset with a representation of generic object-oriented substation events 

(GOOSE) which ensures automation and secure communication in IEC61850. The generation scenarios did 

not consider the cybersecurity concerns of the substation. Similarly, [14], [15] had earlier leveraged GOOSE 

to develop datasets that could potentially reveal threats to the smart grid. They, however, failed to capture the 

cyber processes of the system and present threat models. To address the above limitations, [16] developed a 

synthetic dataset for cybersecurity research that focused on the IEC61850 substation automation system using 

GOOSE and presented threat and substation models to aid in cybersecurity research. Like others, the dataset 

was typically generated from physical systems, depicting physical perturbations in the electrical processes 

similar to EPIC. Recently, Radoglou-Grammatikis et al. [17] presented a dataset generated from a testbed of 

industrial systems in the smart grid that utilized the distributed network protocol version 3 (DNP3) 

communication protocol. Although the datasets were presented for developing an intrusion detection model, 

they are a representation of more of the physical processes. Furthermore, the authors presented another dataset 

for IEC 60870-5-104 protocol to mitigate attacks that happen on critical systems with such a protocol [18]. 

Similar to the previous, the physical processes of the systems were majorly covered. Owing to the fact that 

obtaining real-life datasets related to smart grid operations presents a considerable challenge for researchers in 

the field and the IEC61850 protocol that supports substation automation was not covered in most of the works 

presented, the CyberGrid was developed to address such limitations [19], [20]. The difficulty in accessing real-

world datasets for which CyberGrid seeks to bridge emanates from several factors, such as: i) smart grid data 

often contains sensitive information related to power infrastructure, customer data, and operational details. 

Sharing such data raises significant privacy and security concerns, making it challenging to access real-world 

datasets; ii) smart grid systems commonly use a mix of proprietary and modern protocols for communication 

and control and access to proprietary protocols and data can be restricted, further limiting the availability of 

real-life datasets; and iii) public datasets that adequately emulate substation automation with a combination of 

proprietary and modern smart grid protocols are sparse, and the existing synthetic datasets may not represent 

the complexities. 
 

 

3. METHOD 

This section describes the methods used in generating the datasets, their characteristics, validation, 

and quality control, use cases and applications, and distribution of the datasets. 

 

3.1.  Dataset generation 

The dataset was generated from a virtual testbed called CyberGrid [19]. Five types of attacks and 

twelve patterns were simulated and launched against CyberGrid, depicting 2,166,581 samples. 

 

3.1.1. Methodology 

The methodology for generating the dataset is summarized in Figure 1, which depicts a six-step 

process: testbed set-up, scenario definition, network traffic configuration, anomaly injection, data logging and 

capture, and data annotation. In setting up the testbed in step 1, the environment was designed to replicate the 

components of a smart grid as described in [19]. Where necessary, the testbed was scaled to different 

configurations to generate data representative of various substation automation scenarios [21]. The test 

scenarios in step 2 were defined according to the objectives of the research and the requirements of the dataset. 

The scenarios were patterned according to a random parameterized framework defined as interception, 

interruption, modification, and fabrication (I2MoF). Standard network simulation and traffic generation tools 

were used to create, craft, and send realistic network packets and generate traffic as necessary. In step 3, the 

different components were configured to generate network traffic that mimics real-world communication 

patterns, including protocols (DNP3, ModbusTCP, and IEC61850) used in substation automation, data 

exchange, and command and control traffic. 

At the fourth level, anomalies were injected into the network to include security incidents and attack 

scenarios specifically targeting the open programmable logic controller (OpenPLC) server and runtime, the 

supervisory control and data acquisition (SCADA) and human-machine interface (HMI) control monitor, and 

the processes. These injections were aimed at causing communication disruptions, interruptions, data 

manipulation, false data injection, and various effects typical of the attack types and patterns simulated. To 

maintain control over the data generation parameters, including traffic volume, variability, and complexity, 

certain parameters were adjusted to meet the requirements for the test scenarios. Data logging mechanisms 

were implemented in step 5 within the attacker node to capture and log the flow for both normal and anomalous 

activities. Ideally, Wireshark was set in place for network capture and filtering. Variations in data were 
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introduced to cater to varying network traffic patterns, device behaviours, and communication protocols as a 

way of emulating possible real-world conditions and challenges. Lastly, the captured data was annotated to 

provide information about the context, purpose, and characteristics of the network traffic. The annotation 

process included labelling the different data types, events, and potential security incidents using expert 

knowledge and established attack patterns of known threats and intrusions. 
 

 

 
 

Figure 1. Data generation process 

 

 
 

3.1.2. Overview of the substation automation testbed: CyberGrid 

CyberGrid plays a pivotal role in the field of smart grid cybersecurity research [19]. Its primary 

purpose is to facilitate the simulation of cyberattacks specific to smart grid environments and generate high-

quality datasets for the development, testing, and validation of cybersecurity solutions tailored to the power 

sector. This initiative acknowledges the critical need for robust security measures in the modern energy 

landscape and the growing importance of safeguarding smart grid infrastructure against cyber threats. 
 

The research focused on intrusions in SCADA systems and PLCs which control and monitor power 

transmission and distribution in grids. The design of the testbed made three basic assumptions as: i) the network 

topologies of SCADA systems are fixed and the transactions between the nodes are repetitive and regular;  

ii) the outstations and control systems run on Modbus, DNP3, and IEC61850; and iii) the attacker has already 

gained access to the network. 

The assumption of the static nature of SCADA network topologies makes it easy for IDSs to detect 

abnormal traffic and identify unusual attributes in supposing normal packets. This assumption is important 

because, by design, SCADA systems are intended to last for several years. That way, the network configuration 

would be predetermined and the communication behaviours could be pre-empted. 

 
 

3.1.3. Structure and format of the dataset 

With 2,166,581 samples, the dataset is of a significant size, which can be valuable for conducting 

extensive research, training machine learning models, and evaluating the performance of cybersecurity 

solutions. Figures 2 to 4 show the distributions of the datasets for training, testing, and validation respectively, 

and the attack patterns simulated. This large number of samples can provide a robust foundation for various 

experiments and analyses related to smart grid cybersecurity. Researchers can use this dataset to develop, test, 

and validate IDSs, anomaly detection algorithms, and other security solutions, and to gain insights into network 

behaviour and potential vulnerabilities in the smart grid. The dataset is available as a packet capture (PCAP) 

file and in comma-separated values (CSV) format, and was structured into three categories for each instance: 

a. Network traffic information (NeTI): NeTI contains attributes related to the patterns of communication, 

including information such as length, time, duration, and the number of packets. These attributes help 

describe the overall flow and timing of network traffic. 

b. Payload information (PI): PI provides hints about the nature of packets exchanged among nodes, including 

details like sequence numbers, transmission control protocol (TCP) segments, and other packet-specific 

information. 

c. Network transaction labels (NeTLab): NeTLab contains attributes related to node identification, such as 

source internet protocol (IP) address, destination IP address, source port, destination port, protocol used, 

and more. 

These attributes help identify the source and destination of network traffic. Additional features were computed 

based on NeTI, PI, and NeTLab, including attributes such as packet sequence, cumulative byte count, protocol 

number, transmission rates in both directions, packet counts in both directions, and sequence information (seq) 

as shown in Table 1. 

 
Figure 1: Data Generation Process 

Testbed Set up 

Define Test 

Scenarios 

Configure 

Network Traffic 

Generation 

Anomaly Injection 

Data Logging & 

Capture 
Data Annotation 

Scale the 

Testbed 

Data 

Generation 

Control 

Data 

Variation 



   ISSN: 1693-6930 

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 5, October 2024: 1320-1330 

1324 

 
 

Figure 2. Training set 

 
 

 
 

Figure 3. Testing set 
 

 

 
 

Figure 4. Validation set 
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Table 1. Attacks and patterns 
AttackType AttackPattern 

Normal No attack 
DOS ICMP flood | SYN flood | LANDOS | smurf 

MiTM ARP spoofing | ICMP redirect | port hijacking 

Port scan Stealthy port scanning 
Interdiction False data injection | data manipulation 

Switching DHCP spoofing | MAC flood 

 

 

3.2.  Features of dataset selected 

The dataset used had 16 features, described as: packet sequence identification number (PktSeqID); 

packet arrival TimeStamp (time); packet size (length); (source port); destination port (SrcPort); cumulative 

bytes transmitted per packet in a network communication (CumByte); the time duration of a packet 

transmission or session (duration); packet’s relative time with reference to the initial time (RelativeTime); 

protocol port numbers (ProtocolNo); the rate of data transmission, typically in bits per second in BPS (rate); 

source-to-destination transmission rate, representing the rate of data transmission from the source to the 

destination (srate); destination-to-source transmission rate, representing the rate of data transmission from the 

destination to the source (drate); the count of packets transmitted in a network communication (Pkts); 

destination-to-source packet count, representing the count of packets transmitted from the destination to the 

source (Dpkts); source-to-destination packet count, representing the count of packets transmitted from the 

source to the destination (Spkts) and sequence number. In TCP communication, sequence numbers are used to 

order and reassemble packets (Seq). 

 

3.3.  Data cleaning and preprocessing 

A number of steps were followed to thoroughly clean and preprocess the network traffic data, ensuring 

that it is free from noise, irrelevant information, and inconsistencies. This began with data inspection and 

understanding of the structure and content of the dataset using expert knowledge, handling of missing data, 

data normalization and scaling, and feature selection. Categorical data were encoded into numerical values 

using techniques such as one-hot encoding and label encoding. The cleaning process makes the dataset more 

reliable and suitable for research, analysis, and the development of cybersecurity solutions. 

 

3.4.  Annotation and ground truth 

The labeling of the dataset was based on expert knowledge and descriptive attack patterns found in 

the literature. This means that each instance in the dataset is associated with a label indicating whether it 

represents normal network behaviour or a specific type of attack. The dataset includes instances for various 

attack types and patterns, which were crafted and launched one after the other. This labeling approach 

simplifies the categorization of the datasets for use in research and experimentation. 

 

3.5.  Model development and performance evaluation 

Preliminary experiments were conducted using three prominent DL algorithms: the GRU, the DBN, 

and LSTM. The significance of employing these models and combinations lies in their ability to capture 

complex temporal dependencies and patterns inherent in smart grid data; learn hierarchical representations of 

features for more effective detection of anomalies; adapt and generalize well to diverse and evolving cyber 

threats; provide interpretable results, aiding cybersecurity analysts in understanding and responding to detected 

intrusions and enhance the resilience and security posture of SGN by detecting and mitigating cyber threats in 

real-time [22], [23]. 

The dataset was preprocessed to extract relevant features and prepare the data for modeling. This 

involved normalization, encoding categorical variables, handling missing values, and splitting the data into 

training, validation, and testing sets. Each model architecture was designed based on its specific characteristics 

and capabilities. For example, GRU and LSTM are recurrent neural network (RNN) variants suitable for 

sequential data, while DBN is a DL model capable of learning hierarchical representations of features [24]. 

The models were trained using the prepared dataset, with hyperparameters tuned through techniques like grid 

search. The training involved optimizing the model parameters to minimize a chosen loss function. For this 

binary classification problem, the binary cross-entropy was selected [25]. The hyperparameters of the models, 

such as learning rate, batch size, number of layers, and activation functions were fine-tuned to achieve optimal 

performance. Regularization techniques, such as dropout or ridge regression (L2) regularization, may be 

applied to prevent overfitting and improve generalization. The performance of the models was evaluated using 

appropriate metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating 

characteristic curve (AUC-ROC). Additionally, the missed alarm rate (MAR) and false alarm rate (FAR) were 

utilized as the cost metrics for evaluating the performance of the models. 
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4. RESULTS AND DISCUSSION 

The comprehensive analysis, as summarized in Table 2, provides a detailed snapshot of the 

performance outcomes for these classifiers. Firstly, the GRU model exhibited exceptional accuracy and 

precision, boasting an impressive 99% for both metrics. Furthermore, it excelled in terms of recall and detection 

rate, reaching a remarkable 99.7%. This level of precision and recall balance resulted in an F1-score of 93.3%, 

showcasing the model’s ability to achieve an equilibrium between minimizing false positives and false 

negatives. Additionally, the GRU model demonstrated a low FAR of 0.0299, signifying its capability to keep 

false alarms to a minimum. It also boasted a very low MAR of 0.0034, indicating that it effectively identified 

a vast majority of actual intrusion instances while avoiding overlooking them. 

Similarly, the DBN exhibited an accuracy and precision of 99%. However, it displayed a slightly 

lower recall of 98.7%, indicating a slightly reduced strength to correctly identify positive samples compared to 

GRU. With the DBN, FAR was measured at 0.0091, signifying a somewhat lower rate of false alarms compared 

to GRU. The model’s MAR was slightly higher at 0.0130, suggesting that it may miss a few more intrusion 

instances compared to GRU. Moving beyond these metrics, the study extended the evaluation to include 

training and validation losses and the accuracies of both classifiers. Additionally, the analysis includes visual 

representations in the form of confusion matrices, loss-epoch plots, and accuracy-epoch plots. These figures 

further illuminate the behaviour and performance dynamics of the GRU and DBN models. 

 

 

Table 2. Model performance results 
Classifier Performance metrics 

Accuracy (%) Precision (%) Recall (%) F1-score (%) Detect rate (%) FAR MAR 

GRU 99.0 99.0 99.7 93.3 99.7 0.0299 0.0034 

DBN 99.0 99.7 98.7 99.2 99.7 0.0091 0.0130 
LSTM 98.58 98.66 99.5 99.1 99.57 0.0411 0.0053 

 

 

The LSTM recorded a high accuracy of 98.58%, indicating a strong classification performance and 

precision of 98.66% which suggests that the LSTM effectively minimized false positives. The remarkable 

recall rate of 99.47% signifies LSTM’s adeptness at capturing true positive cases, while an F1-score of 99.06% 

indicates a symbiotic equilibrium between precision and recall. This suggests that the LSTM missed identifying 

a substantial number of important instances. The data points were chronicled throughout 10 training epochs, 

which offer insights into the models learning trajectories as summarized in Table 3. The loss-epoch plot for the 

GRU, showcases the model’s learning process. Initially, the training loss was relatively high but experienced 

a rapid reduction. As the number of training epochs increased, the loss decreased gradually, with a slight surge 

observed after the eighth epoch. In contrast, the validation loss started lower and displayed some modulated 

fluctuations, with a sharp decline following the eighth epoch. Furthermore, Figure 5 provides the accuracy of 

the GRU pictorially across various epochs. It illustrates that both training and validation accuracy consistently 

improved as the number of epochs increased. The loss-epoch plot for the GRU, as depicted in Figure 6, 

showcases the model’s learning process. Initially, the training loss was relatively high but experienced a rapid 

reduction. As the number of training epochs increased, the loss decreased gradually, with a slight surge 

observed after the eighth epoch. In contrast, the validation loss started lower and displayed some modulated 

fluctuations, with a sharp decline following the eighth epoch. 

 

 

Table 3. Model training and validation results 
Classifier Epoch 

1 2 3 4 5 6 7 8 9 10 

GRU Train loss 0.0844 0.0551 0.0502 0.0477 0.0453 0.0456 0.0440 0.0448 0.0427 0.0506 

Valid loss 0.0560 0.0518 0.0494 0.0439 0.0489 0.0404 0.0445 0.0460 0.0502 0.0246 

Train acc 96.8% 98.1% 98.3% 98.4% 98.4% 98.5% 98.5% 98.5% 98.6% 98.5% 
Valid acc 98.1% 98.3% 98.3% 98.4% 98.3% 98.4% 98.5% 98.4% 98.5% 99.0% 

DBN Train loss 0.1604 0.1264 0.1197 0.1110 0.1041 0.0928 0.0835 0.0746 0.0653 0.0565 

Valid loss 0.1451 0.1176 0.1153 0.1036 0.0948 0.0832 0.0712 0.0794 0.0650 0.0518 
Train acc 92.1%  93.9% 94.4% 94.9 %  95.3%  95.9% 96.5% 97.0% 97.6%  98.0%  

Valid acc 93.3%  94.3%  95.00%  95.3%  95.7% 96.8%  97.2%  96.8%  96.9%  98.8%  

LSTM Train loss 0.0845 0.0562 0.0488 0.0472 0.0444 0.0467 0.0480 0.0532 0.0466 0.0454 
Valid loss 0.0702 0.0458 0.0623 0.0471 0.0481 0.0612 0.0752 0.0407 0.0443 0.0415 

Train acc 96.80% 98.10% 98.33% 98.41% 98.41% 98.41% 98.425 98.36% 98.49% 98.56% 

Valid acc 97.40% 98.32% 98.08% 98.36% 98.29% 98.36% 97.92% 98.54% 98.47% 98.58% 
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The loss-epoch plot, as illustrated in Figure 7, revealed a consistent and notable reduction in the loss 

metric as the number of epochs progressed. This trend remained consistent for both the training and validation 

phases of the algorithm’s execution. Such a pattern indicates that the DBN model was effectively learning from 

the data, gradually improving its predictive capabilities over time. Figure 8 provides an insightful visualization 

of the accuracy across epochs for DBN. It depicted an upward trajectory in both training and validation 

accuracy as the number of epochs increased. This observation underscores the model’s continuous learning 

and improvement throughout the training process. These results contribute to understanding the performance 

of the DBN. They signify the DBN’s effectiveness in learning, predicting, and discriminating between data 

points, further validating its role in our multi-layered machine learning framework. The detection rate of 

99.47% of the LSTM points to its effectiveness in identifying positive instances. The FAR of 0.0411 and MAR 

of 0.0053 indicate a controlled number of false alarms and effective minimization of missed intrusions 

respectively. LSTM showed a decreasing training loss, indicating its capability to learn and reduce errors over 

training epochs and the validation loss followed a similar decreasing trend, suggesting that LSTM generalized 

well according to Figure 9. The training accuracy showed incremental improvement, demonstrating its capacity 

to fit the training data effectively, and the validation accuracy generally increased, indicating LSTM’s ability 

to generalize to unseen data as seen in Figure 10. 

 

 

 
 

Figure 5. GRU loss-epoch 

 

 

 
 

Figure 6. GRU accuracy-epoch 

 

 

 
 

Figure 7. DBN loss-epoch 

 

 
 

Figure 8. DBN accuracy-epoch 
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Figure 9. LSTM loss-epoch 

 
 

Figure 10. LSTM accuracy-epoch 
 

 

5. CONCLUSION 

The research highlights the crucial role of useful datasets in cybersecurity research, particularly as it 

applies to SGN. By leveraging a contrived dataset generated from CyberGrid, the paper showcases how such 

datasets can facilitate experimentation, evaluation, and development of cybersecurity solutions. The utilization 

of CyberGrid, a virtual testbed established by the Cybersecurity Research Lab at Obafemi Awolowo 

University, validates its effectiveness as a platform for simulating cyberattacks in substation automation 

systems. This validation enhances confidence in the accuracy and reliability of the dataset generated from the 

testbed. Consequently, the research evaluates DL algorithms, including GRU, DBN, and LSTM, for intrusion 

detection in SGN. By experimenting with these algorithms using the contrived dataset, the paper provides 

insights into their performance and suitability for addressing cybersecurity challenges in the smart grid domain. 

Specifically, the preference for GRU, DBN, and LSTM models underscores their potential for accurately 

detecting and classifying cyber threats in substation automation systems. These findings have practical 

implications for cybersecurity practitioners and researchers involved in securing SGN. They provide guidance 

on selecting appropriate DL algorithms and highlight the importance of utilizing relevant datasets for effective 

intrusion detection and cybersecurity strategy development. Overall, the research contributes to advancing the 

understanding and application of DL techniques in addressing cybersecurity challenges in the smart grid, while 

emphasizing the significance of curated datasets in facilitating meaningful research outcomes. 
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