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 Skin cancer is a dangerous and prevalent cancer illness. It is the abnormal growth of 

cells in the outermost of the skin. Currently, it has received tremendous attention, 
highlighting an urgent need to address this worldwide public health crisis. The purpose 

of this study is to propose a convolutional neural network (CNN) to help dermatology 

physicians in the inspection, identification, and diagnosis of skin cancer. More 
precisely, we offer an automated method that leverages deep learning techniques to 

categorize binary categories of skin lesions. Our technique enlarges skin cancer by 

utilizing data pre-processing and augmentation to address the imbalanced class 
problem. Subsequently, fine-tuning is conducted on the pre-trained models visual 

geometry group (VGG-19) and MobileNetV2 to extract and classify the image features 

using transfer learning. The model is tested on the society for imaging informatics in 
medicine international skin imaging collaboration (SIIM-ISIC) 2020 dataset and 

achieved an accuracy of 95.16%, sensitivity of 90.83%, specificity of 99.2%, area under 

curve (AUC) of 97.57%, and precision of 99.06%. The proposed model based on 
MobileNetV2 outperforms the other techniques. 
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1. INTRODUCTION 

Skin cancer is one of the most difficult types of cancer to detect and is currently the fifth most common 

type of cancer [1]. This type of cancer is a serious disease in which abnormal skin cells grow out of control. In 

general, skin cancer is divided into various types, the most common of which are basal cell carcinoma, 

squamous cell carcinoma, and melanoma [2]. 

These are the most frequent, accounting for 90% of all skin malignancies, with basal cells accounting 

for 75% and squamous cells accounting for 20%. Carcinoma often develops beyond the age of fifty and is 

easily curable in the majority of instances. Basal cell carcinomas never metastasize, but squamous cell 

carcinomas do, primarily in lymph nodes around the tumor. Cancers often go through various stages. Squamous 

cell carcinomas may begin as a localized lesion in the epidermis. A crust (actinic keratosis) or eczema (Bowen’s 

disease) appears on the skin’s surface. The deeper infiltration of the dermis characterizes the stage of invasive 

carcinoma [3]. 

Melanoma accounts for just 4% of all skin cancer types but is responsible for around 75% of all skin 

cancer deaths [4]. Melanomas, the deadliest kind of skin cancer, arise from melanocyte cells, which produce 

melanin, which is responsible for the brown or red coloring of the skin. There are two skin pigmentation types: 

brown pigments, which provide a tan and some UV protection, and red pigments (red skin), which do not. 

Subjects who primarily generate red pigments do not tan and are consequently at a higher risk of developing 

skin cancer. People who live in mountainous areas are more likely to get skin cancer because of their exposure 

to sunshine and the nature of the color of their skin [5]. Malignant melanoma must be discovered and treated 

https://creativecommons.org/licenses/by-sa/4.0/
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as soon as possible because it may spread throughout the body and generate metastases that are extremely 

difficult to cure [6]. The “beauty mark” or mole is a benign lesion caused by an accumulation of melanocytes 

in the dermis, which explains its brown or red hue. It is critical to do self-examination and consult when there 

is a change in an existing lesion moles or a new lesion that does not subside after 1 to 2 months. Changes in an 

existing mole including the size, shape, or color or by the appearance of a new mole are usually the first 

indicators of melanoma [7]. If identified early enough, melanoma can be successfully treated with a simple 

surgical procedure, significantly improving the chances of survival. With treatment, patients at this stage have 

a five- and ten-year overall survival rate of more than 90% [8]. That is why early detection and treatment can 

dramatically improve the outcome of the disease. 

A dermatologist can either confirm or check out a skin cancer diagnosis. The appearance of the lesion 

is often adequate, but in all questionable situations, a microscopic examination will be required. The clinical 

ABCD mnemonic (asymmetry, border irregularity, color variegation, and diameter greater than 6 mm), is one 

of the most frequently used techniques. Unfortunately, some forms of malignant melanoma may not be 

detectable by the ABCD clinical rule because the problem in detecting melanomas is that their characteristics 

overlap with those of benign moles [9]. A more effective method for the detection of malignant melanoma is 

through dermoscopy. Is an invaluable tool for evaluating skin lesions, and it is a more useful technique used 

by dermatologists that improves the diagnostic accuracy of melanoma [10]. However, some types of melanoma 

remain difficult to classify, such as those in patients with multiple atypical moles and nodular melanomas.  

A further technique that can improve the efficiency of skin cancer assessment is the use of AI. Developing 

convolutional neural networks (CNN) classification models for skin cancer, and melanoma in this context, is 

motivated by a goal to improve public health, improve healthcare accessibility, lower healthcare costs, and 

advance medical knowledge, all while employing the power of technology and innovation. 

In this study, we propose a deep-learning model for the automatic classification of melanoma. In 

particular, we leverage CNN with the adoption of transfer learning to boost the overall performance and detect 

the disease in its early stage. The training CNN model is mostly based on the dataset from which it machine 

learns. The quality, diversity, and size of the dataset will remain a major factor in the performance and 

realizability of machine learning models; but in some cases, the dataset itself is sometimes the source of its 

limitations. The model always requires that the classes be properly balanced and that the dataset be rich enough 

for the model to learn these features quickly. These limitations of imbalanced classes are being increasingly 

highlighted in the field of statistical learning for the healthcare domain, and it is necessary to propose good 

classifiers in the face of these problems. The class imbalance has been the primary cause of the abnormalities 

in the melanoma dataset, as patients infected with melanoma had a considerably lower number of images than 

patients with non-melanoma, as illustrated in Table 1. 

 

 

Table 1. Metadata description 
 Not melanoma (benign) Melanoma (malignant) 

No. of images 32542 584 
No. of images/sex   

Male 16716 364 

Female 15761 220 
No. of images/age   

<20 798 8 

<40 and >20 10239 89 
>40 21437 487 

No. of images/anatomical position   

Upper extremity 4872 111 
Lower extremity 8293 124 

Torso 16588 257 

Palms/soles 370 5 
Head/neck 1782 74 

Oral/genital 120 4 

No. of patient 2055 428 
No. of patient/sex  

Male 977 168 

Female 1076 260 
No. of patient/anatomical position   

Upper extremity 1400 93 

Lower extremity 1623 108 
Torso 1942 207 

Palms/soles 195 5 

Head/neck 816 67 
Oral/genital 77 3 
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Our proposed solution to this problem is to augment the dataset with new images derived from the 

original one using flipping, rotations, zoom, and shearing. However, several researchers have conducted 

various related approaches that focus on these issues: The number of images taken by [5] is equal to 1800 

instances, which is 3 times less than the number of images taken in our proposal work. Rashid et al. [11] used 

the same dataset as our work, but they included 4522 malignant melanoma images taken from the ISIC 2019 

dataset to remedy the problem of imbalanced classes. 

Our contributions can be summarized as follows: 

− We propose two CNNs based on pre-trained models, which are VGG-19 and MobileNetV2. 

− The last classification layer (sigmoid) contains two neurons: the benign class and the malignant class. 

− The issue of imbalanced classes is handled through data augmentation. 

− The two CNN models are evaluated using the international skin imaging collaboration (ISIC) dataset. 

The remainder of this paper is structured as follows: section 2 summarises the available research 

studies. Section 3 presents the methodology where we first provide an overview of the SIIM-ISIC 2020 dataset, 

followed by its preprocessing, then, we explain data augmentation, classification model and network 

deployment, and training and model assessment. Section 4 covers the suggested model’s experimental 

outcomes including evaluation and comparative research. The last section concludes this paper. 

 

 

2. RELATED WORKS 

Various machine learning techniques [12], [13] and deep learning models have emerged for the 

analysis of medical images most especially skin lesion images [14]. Hurtado and Reales [5] proposed a new 

system for classifying skin cancer using images from a standard camera. They explored the impact of smoothed 

bootstrapping, a technique for augmenting datasets, on classification outcomes. The study compared eight 

classifiers, including support vector machines (SVM), k-nearest neighbor (KNN), and ANN, with and without 

data augmentation. Results showed that the ANN with data augmentation achieved the best performance and 

balance, reaching an area under curve (AUC) of 87.1%. Rashid et al. [11] introduced a new deep transfer 

learning model utilizing MobileNetV2 for melanoma classification, distinguishing between malignant and 

benign skin lesions. They evaluated the model’s effectiveness using the ISIC 2020 dataset and supplemented 

it with images from the ISIC 2019 dataset, which had a significant class imbalance with less than 2% malignant 

samples. To address this, they employed various data augmentation techniques to enhance dataset diversity. 

Experimental results indicated that their deep learning approach outperformed existing techniques in terms of 

accuracy and computational efficiency. The proposed architecture achieved an impressive diagnostic accuracy 

of 98.2%, highlighting its effectiveness in melanoma classification. Li et al. [15] reviewed 45 research efforts 

on identifying skin diseases using deep learning technology since 2016. They assess this research in terms of 

illness kind, dataset, data processing technology, data augmentation technology, skin disease images 

identification model, deep learning framework, evaluation indicators, and efficiency of the model. Li et al. [16] 

presented an overview of deep learning methods and their applications in diagnosing skin diseases. They began 

with an introduction to skin problems and the methodologies for gathering dermatological photographs. They 

examined popular deep learning architectures as well as common frameworks for the implementation of deep 

learning algorithms. Srinivasu et al. [17] proposed a computerized skin disease classification process using 

deep learning based on long short-term memory (LSTM). The HAM10000 dataset has been used and the 

proposed method has outperformed other methods with an accuracy of more than 85%. 

A novel model has been constructed by Goceri [18] using MobileNet, where a novel hybrid loss 

function has been used, the suggested technique achieves an accuracy of 94.76%. Adegun and Viriri [19] 

proposed a deep learning-based method that overcomes limitations for automatic melanoma lesion detection 

and segmentation. An improved encoder-decoder network with encoder and decoder subnetworks linked by a 

series of skip paths that propose bringing the semantic level of the encoder feature maps closer to the semantic 

level of the decoder feature maps. The DL model achieves an accuracy and dice coefficient of 95% and 92% 

on the ISIC 2017 dataset, and an accuracy and dice coefficient of 95% and 93% on the PH2 datasets. 

Hussien and Alasadi [20] proposed a deep learning approach for classifying melanoma skin cancer using a 

CNN model with 27 layers, which shows promising results. The CNN model is meticulously crafted to extract 

features from skin lesion images and categorize them into melanoma and non-melanoma classes. This model 

incorporates multiple convolution layers, batch normalization layers, max-pooling layers, fully connected 

layers, dropout layers, and data augmentation techniques, all of which contribute to the accuracy and 

generalization of the model. Experimental findings on publicly accessible benchmark datasets for skin lesion 

classification demonstrate that the proposed CNN model surpasses existing state-of-the-art approaches. A good 

accuracy, equal to 99.99%, was achieved in the model’s detection. Codella et al. [21] proposed a system that 

combines recent developments in deep learning with established machine learning approaches to create 

ensembles of methods that are capable of segmenting skin lesions, as well as analyzing the detected area and 
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surrounding tissue to detect melanoma. When compared to the average of eight expert dermatologists on a 

subset of 100 test images, the proposed system produces a higher accuracy (76% versus 70.5%), and specificity 

(62% versus 59%) evaluated at a sensitivity (82%). Li and Shen [22] proposed two deep learning methods to 

address three main tasks emerging in the area of skin lesion image processing, namely lesion segmentation 

(task 1), lesion dermoscopic feature extraction (task 2), and lesion classification (task 3). The proposed deep 

learning frameworks are evaluated on the ISIC 2017 dataset. The experimental results show the promising 

accuracies of the proposed frameworks, i.e., 0.753 for task 1, 0.848 for task 2, and 0.912 for task 3 were 

achieved. Kassani and Kassani [23] evaluate the performance of several state-of-the-art CNN. To improve the 

quality of images, the authors use several pre-processing steps. Both pre-processing and data augmentation 

could have a positive impact on the final accuracy. Naeem et al. [24] collected state-of-the-art research 

identifying recent research trends, challenges, and opportunities for melanoma diagnosis and explored existing 

solutions for the diagnosis of melanoma detection using deep learning, to help researchers in the field of 

melanoma detection, a proposed model, challenges and opportunities have been presented. 

Furthermore, Zhang [25] made use of an upgraded neural network framework to achieve prompt 

feature learning and ideal melanoma image segmentation. A batch normalization layer is used between the 

convolution layer and the activation layer (such as ReLU or ELU) to solve the problem of gradient 

disappearance and explosion. Reis et al. [26] proposed a deep learning-based CNN named InSiNet where the 

performance of the model is based on multiple pre-trained models used in this study such as GoogleNet, 

DenseNet-201, ResNet152V2, and EfficientNetB0. The developed InSiNet architecture managed to achieve a 

precision of 94.59%, 91.89%, and 90.54% in ISIC 2018, 2019, and 2020 datasets, respectively. Wan et al. [27] 

proposed a multi-scale long attention network (MSLANet) for skin lesion classification, which is composed of 

three long attention networks (LANet) where each LANet can fuse the context information and improve 

discriminative representation ability through the long attention mechanism. The results show that the developed 

MSLANet architecture outperforms the state-of-the-art methods achieving a rank-1 average AUC of 93.7% on 

the ISIC 2017 dataset and an AUC of 92.4% on the SIIM-ISIC 2020 dataset. Mijwil [28] selected and trained 

a deep learning network to analyze more than 24,000 skin cancer images using a convolutional neural network 

(ConvNet) model by applying three architectures InceptionV3, ResNet, and VGG19. To identify the best 

architectures in the classification of these images as well as attaining exceedingly satisfactory results, many 

variables are taken into consideration. According to the test results, the best architecture is InceptionV3, which 

achieved a diagnostic accuracy of roughly 86.90%, precision of 87.47%, sensitivity of 86.14%, and specificity 

of 87.66%. 

 

 

3. METHOD 

3.1.  Dataset description 

For our research purposes, we looked at the use of ISIC datasets. The ISIC 2020 dataset [29], which 

is frequently used, was designed to identify melanoma since it is based on binary classification. The ISIC 

produced the official dataset of the SIIM-ISIC melanoma classification, which contains 33126 dermoscopic 

images of benign and malignant skin lesions from over 2056 individuals. These images were then sorted out 

into two classes as follows: 32542 images representing a percentage of 98.2% for class 0 (benign) and 584 

images with a percentage of 1.8% for class 1 (confirmed melanomas). The metadata that is presented with the 

dataset contains the additional information associated with the dermoscopic images. This metadata provides 

important context and information about the dataset and can include various details described in Table 1. 

 

3.2.  Data pre-processing 

The biggest obstacle to accuracy when using deep learning algorithms in the dermatology domain is 

the lack of datasets. As shown in the previous section, there is an observable imbalance in the dataset that 

should be taken into consideration. We have found that the distribution of skin lesion classes in the ISIC 2020 

dataset is very imbalanced, as can be seen in Table 1. The imbalanced classes can make the model learn bias 

in favor of the majority sample class more than the minority sample class. To avoid this problem, we have used 

a data augmentation approach, to increase class 1 (malignant) to be roughly equivalent to class 0 (benign). This 

is detailed in Figure 1. 

After filtering duplicate image names based on unique patient code and anatomical position, the 

previously obtained 32542 images for the benign class were reduced to no more than 6271. We constructed the 

input dataset from 6271 images for class 0 (benign class) and 584 for class 1(malignant class), as shown in the 

chart represented in Figure 1. If we operate with such an initial imbalanced dataset, then bad metrics are 

guaranteed as results.  
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Figure 1. Data augmentation approach 
 
 

Before applying data augmentation techniques, we have a larger number of samples for the training 

set, which is often required for CNN models. As a first step, an image generator has been created. The image 

data generator applies augmentation to each image where six different augmentation parameters are used to the 

original images: horizontal flip, vertical flip, image zoom range=0.4, image rotation range=17, shear range=0.4, 

height shift range=0.6 

Before image augmentation, the total number of original images was 584, whereas after, it became 

5840 augmented images for class 1 (malignant). In total, we have 12111 images, both of class 0 (benign) and 

class 1 (malignant). From these 584 original class 1 images, the execution of the image data generator is 

repeated 9 times, which is the number of 5256 (9 times 584) augmented images that are generated. A sample 

image of the malignant class is shown in Figure 2(a). Figure 2(b) illustrates the outcome of augmenting this 

image, producing nine variations. 
 

 

 
(a) (b) 

 

Figure 2. Images from data generator; (a) original image and (b) 9 augmented images 
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3.3.  Classification model and network deployment 

Naeem et al. [24] CNN is a deep learning algorithm designed for images and video. A CNN has 

multiple layers, an input layer, hidden layers (feature extraction), a fully connected layer (classification), and 

an output layer. After the rapid development of deep learning models, in practice, various pre-trained 

classification models are used on different datasets, such as AlexNet [30], VGG [31], GoogLeNet Tom to 

diseases classification [32], Inception [33], ResNet [34], and MobileNet [35]. 

The pre-trained models VGG-19 and MobileNetV2 are developed by Oxford University and Google AI, 

respectively. The layers and architecture of the VGG-19 network are shown in Figure 3(a), while Figure 3(b) 

presents the pre-trained architecture of MobileNetV2. 

 

 

 

(a) 

 

 

(b) 

 
Figure 3. Network architecture description; (a) VGG-19-based model and (b) MobilerNetV2-based model  

 

 

About VGG-19, the points that need to be noted are that it has an input shape (None, 224, 224, 3) and 

we have four last layers of the output, three fully connected layers include the prediction layer with 1000 values 

because the database has 1000 classes of images. On the other hand, the MobileNetV2 model has the same 

input shape as VGG-19 and has two connected layers including 1000 classes of prediction layers. 

A softmax of 1000 categories is used as the output layer for both VGG-19 and MobileNetV2 models, 

we remove this layer and replace it with a binary sigmoid activation output layer since we have a binary 

classification problem. At first, after freezing the network, we remove the last fully connected layers and 

replace them with our six defined layers as shown in Figure 3. We also applied the dropout regularization to 

each of the added layers to avoid overfitting problems. 

 

3.4.  Training and model evaluation 

The proposed model architecture for skin melanoma classification is shown in Figure 4. It is composed 

of six main building blocks: image preprocessing (that generates the image data input), Train-Validation-Test 

dataset split, feature extraction using VGG-19 and MobileNetV2 pre-trained models, added dense output 

layers, and finally training classification and performance evaluation. 

The data collected after the data augmentation technique needs to be divided into three different 

ensembles: training, validation, and test [36], as shown in Figure 4. In addition, the division image between the 

two classes was conducted as shown in Table 2. The dataset was split into 80% training data and 20% test data. 

In addition, we split the training data into 75% of the training set data and 25% of the validation set data. (i.e., 

60% of the training set and 20% of validation from the total dataset, Figure 4 demonstrates this setting). 
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Figure 4. Proposed model for melanoma prediction 

 

 

Table 2. Splitting dataset into Train, validation, and test sets 
Train and validation  Test 

Class (0) benign  Class (1) malignant Class (0) benign  Class (1) malignant 

5017 4672 1254 1168 

 

 

The classification evaluation is based on a confusion matrix and the following instances: 

− True negative (TN): the classifier correctly predicts the originally negative class (benign class). 

− False positive (FP): the originally negative class (benign class) is incorrectly predicted, as well as the 

prediction is positive class. 

− True positive (TP): the classifier correctly predicts the originally positive class (melanoma class). 

− False negative (FN): the originally positive class (melanoma class) is incorrectly predicted, as well as the 

prediction is negative class. 

A predictive model’s performance may be better understood by looking at the confusion matrix, which 

also shows which classes are properly and mistakenly predicted as well as the kinds of mistakes that occur. In 

this type of confusion matrix, each cell in Table 3 has a specific and well-understood name, summarized as: 

 

 

Table 3. Confusion matrix 
 Predicted class 0 Predicted class 1 

True class 0 TN FP 
True class 1 FN TP 

 

 

After training the model, the subsequent stage involves assessing performance using metrics such as 

accuracy, precision, specificity, and sensitivity. These performance metrics have been detailed in Table 4. 

There is another useful metric for evaluating the performance of binary classification, especially when the 

dataset is imbalanced. This metric is called AUC. It quantifies the ability of the model to discriminate between 

positive and negative classes across all possible thresholds. A higher AUC value is an indication of better 

model discrimination. 

 

 

Table 4. Performance metrics 
Metric Formula Description 

Accuracy 𝑇𝑃 + 𝑇𝑁

total number of samples
 
The number of correct predictions divided by the total 

number of predictions. 

Precision TP

TP + FP
 

Evaluate the accuracy of the positive predictions made 
by a model. 

True positive rate (TPR)/sensitivity TP

TP+FN
 or 1 − 𝐹𝑁𝑅 

Refer to the rate at which the classifier correctly 

identifies instances from the positive class. 
True negative rate (TNR)/specificity  TN

TN+FP
 or 1 − 𝐹𝑃𝑅 

Refer to the rate at which the classifier correctly 

identifies instances from the negative class. 
False positive rate (FPR) FP

FP+TN
 or 1 − 𝑇𝑃𝑅 

The model incorrectly predicts negative classes as 

positive classes. 

False negative rate (FNR) FN

FN+TP
 or 1 − 𝑇𝑁𝑅 

The model incorrectly predicts positive classes as 
negative classes. 
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4. RESULTS AND DISCUSSION 

This section explains the results of our research and at the same time gives a comprehensive 

discussion. The experiment was carried out on Kaggle. The model has been implemented on the TensorFlow 

platform using the open-source Keras packages and the python programming language. In addition, it used the 

Adam optimizer with a learning rate equal to 0.0001 and the Binary Focal Crossentropy loss function. Our 

classification model is based on VGG-19 and MobileNetV2 architectures (see Figure 3), and the input images 

dataset distribution (training and validation see Figure 4) are described in the classification model and network 

deployment section. 

 

4.1.  Validation and training result 

Figure 5 represents the accuracy and loss of our proposed CNN model based on VGG-19 and 

MobileNetV2 on the training and validation sets as training progresses through each epoch. The training 

accuracy increases steadily throughout the training process, while the validation accuracy may plateau or even 

decrease after a certain number of epochs. 

Initially, both training and validation accuracies have low values. After epoch 5, the accuracies 

improve during this phase and the loss will continue to decrease as the model adjusts its parameters to provide 

a better fit to the data. For the later epochs, the rate of improvement in both accuracy and loss is slowed down 

and finally stabilizes at the end. According to Figure 6 (accuracy part), we obtained a validation rate of 93.11% 

using the model based on VGG-19 and a validation rate of 94.58% using the model based on MobileNetV2. 

We also show in Figure 5 that the MobileNetV2 model is less sensitive to overfitting with respect to 

the VGG-19 model; this is mainly demonstrated by the weak zig-zag of the accuracy-validation curve of 

MobileNetV2 (while the VGG-19 has a curve with a larger zig-zag, as compared with that of MobileNetV2). 

Furthermore, the optimal stopping iteration for the MobileNetV2 model belongs to the interval (60, 80); this is 

mainly supported by the fact that both the validation and the training curves for accuracy are almost stagnant. 

 

 

  

  
 

Figure 5. Accuracy/loss of VGG-19/MobileNetV2-based models vs epochs 

 

 

Figure 6 also shows a detailed comparison between the VGG-19-based model and the MobileNetV2-

based model. Three metrics were considered: model accuracy, AUC, and precision. We mainly observe a slight 
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difference between the two models for both AUC and precision performance on the training shown in Figure 

6(a) and validation sets shown in Figure 6(b). More specifically, when we use the VGG-19-based model, we 

obtain a validation AUC of 94.83% and a precision of 97.2%. However, the performance of the MobileNetV2-

based model improves even more, with a validation AUC equal to 96.8% and a precision equal to 98.1%. This 

result confirms the superiority of the MobileNetV2-based model over the other one in the context of melanoma 

diagnosis. 

 

 

 
(a) 

 
(b) 

 

Figure 6. Performance metrics for all models; (a) training and (b) validation 

 

 

4.2.  Evaluation and comparative study 

The performance of the proposed models is reported in terms of accuracy, precision, AUC, sensitivity, 

and specificity, and was evaluated on a test set of 2422 images from two classes. The overall performance 

achieved by the model is summarized as follows, where the confusion matrix is illustrated in Figures 7, Figure 

7(a) was identical to Figure 7(b) and the evaluation and performance of both state-of-the-art methods and our 

proposed approach are detailed in Table 5. 

 

 

 
(a) 

 
(b) 

 

Figure 7. Confusion matrix of; (a) VGG-19-based model and (b) MobileNetV2-based model 

 

 

From the confusion matrix, we show how well the model can classify instances into benign and 

malignant classes. The correct predictions were shown on the diagonal in the confusion matrix. It showed that 

the model of the proposed approach was correctly identified. In the case of VGG-19, it correctly classified 

1217 out of 1254 benign images and 1048 out of 1168 malignant images. If using MobileNetV2, we achieved 

the best results, accurately classifying 1244 of 1254 benign images and 1061 of 1168 malignant images. 

To properly assess our suggested approach, we compared the performance metrics of our models to 

existing state-of-the-art melanoma ISIC 2020 image classification algorithms [26]-[28]. The contrast can be 

illustrated in Table 5. 
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Table 5. Performance of the proposed models vs. state-of-the-art techniques 
 Accuracy (%) AUC (%) Precision (%) Sensitivity (%)  Specificity (%) 

Reis et al. [26] 90.54 -- -- 93.33 88.64 
Wan et al. [27] 95.6 92.4 -- 59.6 97.4 

Mijwil [28] 86.90 -- 87.47 86.14 87.66 

Based on VGG-19 93.51 95.20 96.58 89.72 97.04 
Based on MobileNetV2 95.16 97.57 99.06 90.83 99.2 

 

 

Hence, in terms of accuracy our model outperformed models [26], [28]. Notably, our proposed 

network achieved a remarkable AUC score of 95.20, surpassing the benchmark from [27] by 3%. The precision, 

too, played its part with a resounding 9% improvement over the model [28]. Sensitivity stood tall at 90.83%, 

as compared in [26]–[28] and finally, yet importantly, specificity was at 99.2%, outperforming not only [26] 

but also [28]. 

 

 

5. CONCLUSION 

Skin cancer, especially melanoma, has emerged as one of the world’s leading growing diseases; this 

will inevitably lead to death. The importance of early detection of melanoma has been to initiate treatment as 

early as possible to have a chance of a successful cure. This paper has dealt with the critical task of identifying 

and categorizing melanoma skin cancer using the SIIM-ISIC 2020 dataset and a deep CNN. We have proposed 

to implement the data augmentation technique to resolve the class imbalance problem in the ISIC 2020 dataset, 

which has been a common issue for research workers applying supervised learning techniques. It has also 

proposed a unique model for image classification that had been adapted to our particular application, as well 

as fine-tuned and applied variants to the VGG-19 and MobileNetV2 pre-trained neural networks. The suggested 

approach has been thoroughly tested, taking into consideration important performance variables such as 

accuracy, precision, specificity, and sensitivity, as well as AUC. The results of the experiment confirm the 

efficiency of our model since the proposed approach that has been employed by using data augmentation 

technique and implementing our model improvements has yielded remarkable results when using the VGG-19 

architecture, with a test accuracy of 93.51%, an AUC of 95.20%, a precision of 96.58%, a sensitivity of 89.72%, 

and a specificity of 97.04%. Notably, for the MobileNetV2 architecture, the model has produced even better 

results, with an accuracy of 95.16%, an AUC of 97.57%, a precision of 99.06%, a sensitivity of 90.83%, and a 

specificity of 99.2%. In the proposed approach, it has been shown that the model based on MobilenetV2 is 

better than the model based on VGG-19, and also that it has been better than existing works in terms of 

accuracy, AUC, precision, sensitivity, and specificity. This study underscores the potential of deep learning in 

improving melanoma diagnosis accuracy, thereby enhancing patient care. Recommendations for future 

research focus on the adoption of a multi-model approach. This strategy harnesses various machine learning 

algorithms strengths to enhance precision and accuracy in melanoma classification tasks. 
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