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 Oil palm is highly valuable in tropical regions like Southeast Asia, including 

Indonesia. Therefore, accurate monitoring of oil palm trees is necessary for 

operational efficiency and reducing its environmental impact. Geospatial 

data, such as orthomosaic imagery from the unmanned aerial vehicle (UAV), 

can facilitate this goal. This research aims to integrate UAV data with deep 

learning algorithms, specifically Mask region-based convolutional neural 

network (R-CNN), to detect oil palm trees in Indonesia. We utilized Resnet-

50 as the backbone and trained the model using data sampled from the 

template matching tool in eCognition. Considering factors like cloud 

shadows and other features, such as other plants, buildings, and road 

segments, we divided the study area into three containing different feature 

combinations in each. The Mask R-CNN model achieved an accuracy 

exceeding 80%, which is sufficient and makes it suitable for large-scale oil 

palm tree detection using high resolution images from UAV. 
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1. INTRODUCTION 

Oil palm holds high commercial value in tropical regions such as Southeast Asia [1], including 

Indonesia. It has become a national strategic issue that plays an important role in the Indonesian economy 

[2], which has led to significant growth in the oil palm industry development in this country. Unfortunately, it 

brings a heavy toll on forests, biodiversity, and carbon stocks [3], and causes deforestation and carbon 

emissions [4]. In addition, converting fresh fruit bunches into crude palm oil produces several types of waste 

[5]. Therefore, accurate palm tree monitoring is necessary to minimize their environmental impact. 

Palm trees can be monitored effectively using geospatial data. Geospatial technology has undergone 

significant development, allowing the production of high-resolution and accurate data in recent times. 

Unmanned aerial vehicle (UAV) is one of the technologies that can be utilized for monitoring palm trees. The 

advantage of using UAV system is that it can produce a more detailed view of the earth's surface with very 

good resolution [6]. Orthophotos generated from UAV can visually interpret individual palm tree structures 

and plant density [7], [8]. However, a reliable technique is required to optimize the geospatial data obtained 

through UAV monitoring to produce accurate analysis.  

Deep learning, based on convolutional neural network (CNN), is a developed method in computer 

vision that can be applied for optimizing geospatial data. Since AlexNet [9] achieved satisfying results in the 
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ImageNet large scale visual recognition challenge (ILSVRC) in 2012, CNN has gained popularity. Then, 

research on deep learning has significantly advanced, including in earth observation [10]. Deep learning has 

been widely utilized for various geospatial and remote sensing applications, including land cover 

classification, segmentation, and object detection. Among the models used for these applications, CNN is the 

most commonly applied [11]. Hence, deep learning should be considered for mapping, particularly in 

monitoring palm trees. 

The application of deep learning for tree counting has become increasingly widespread. The detection 

and accurate counting of oil palm are crucial aspects of managing an oil palm plantation [12], including health 

and risk assessment, pest control, and sustainable management within the date palm industry [13]. Li et al. [14] 

successfully optimized artificial neural network (ANN) for detecting and counting oil palm trees, achieving a 

remarkable accuracy of over 78.35% in tree detection from high resolution satellite imagery. Ribera et al. [15] 

employed UAV in combination with CNN to accomplish a similar task and achieved a remarkably low mean 

absolute percentage error (MAPE) of only 6.7%. 

In our study, we employed Mask region-based convolutional neural network (R-CNN), a powerful 

deep learning model, to detect and count palm trees using UAV imagery. The application of Mask R-CNN for 

palm tree detection and counting from UAV imagery has been explored in several studies. Yarak et al. [16] 

used Faster-RCNN to test the ability of automatic oil palm detection at different flying altitudes with an 

accuracy of 49.3% and 89.84% at flying heights of 160 m and 140 m, respectively. Ocer et al. [17] utilized 

Mask R-CNN and feature pyramid network (FPN) to extract trees from high-resolution RGB UAV data. 

Despite scale and content variations, their model retained its high level of accuracy. Yu et al. [18] compared 

several algorithms, including local maxima (LM), marker-controlled watershed segmentation (MCWS), and 

Mask R-CNN, and the results indicated that Mask R-CNN was the most effective in utilizing the available 

information, thus producing the most accurate detection results. Given its proven success in detecting and 

counting palm trees, Mask R-CNN appears suitable for oil palm tree detection and counting tasks. This 

research aims to integrate UAV data and deep learning algorithms, especially Mask R-CNN, to detect oil 

palm trees in Indonesia. 

 

 

2. DATA AND METHOD 

2.1.  Data 

Aerial photography was taken at an altitude of 420 meters above ground level. The total area 

mapped is approximately 500 hectares. Determination of sidelap and overlap by 70% and 80% produced 186 

photos. The process of collecting aerial photo data uses a fixed-wing UAV. An illustration of the UAV flying 

height can be seen in Figure 1. 

 

 

 
 

Figure 1. Flying height of fixed wings UAV 

 

 

The vehicle used is a 1,880 mm wingspan skywalker with vehicle specifications as shown in  

Table 1. The unmanned vehicle uses a four-cell battery to fly for up to 60 minutes at optimal cruising 

altitude. In this oil palm mapping flight mission, the UAV used a Sony ILCE-Q1 CMOS type camera with a 

resolution of 20.1 mega pixels. The type of lens used is a mirrorless camera lens. The full specifications of 

the camera used can be seen in Table 1. 
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Table 1. Specification of UAV (left) and camera (right) 
SkyWalker 1900 V2.0 

Airframe:  SW 2014 (Wingspan 1880 mm) 
Flight controller: 3DR Pixhawk Cube 2.1 

GPS+compass:  3DR ublox M8N 

Radio controller:  2.4 Ghz 16 channels 
Radio telemetry:  866-915 Mhz 100-1000 mw 

(adjustable) 

Servo:  Digital servo 2.7 kg/0.13 sec 
Motor:  930 Kv brushless motor 

Sensor:  Digital airspeed sensor 

Battery:  Li-ion 4s5p-4s6p 
 

Sony ILCE-QX1 

Lens E-mount Sony 16 mm fixed, F2.8 ~ 
Pixel 20.1 MP 

Sensor Sensor CMOS Exmor 

Dimension 74×69.5×52.5 mm 
Type Mirrorless 

Sensor optical APS-C type (23.2×15.4 mm) 

Shutter speed 1/4000 to 30 sec 

 
 

 

  
 

 

 

The aerial photo acquisition was performed for the entire research area to obtain orthomosaic 

photos. Apart from that, control point measurements were also carried out, including ground control point 

(GCP) to increase the geometric accuracy of aerial photos and independent check point (ICP) to test the 

accuracy of orthomosaic results. The number of control points is eight for GCP and seven for ICP. These 

control points were measured using geodetic global navigation satellite system (GNSS) equipment with rapid 

static mode. Next, processing aerial photos using the structure from motion (SfM) method includes the 

alignment process for each photo, GCP pricking, build dense cloud, build digital elevation model (DEM), 

and build orthomosaic. Finally, the geometric accuracy test results of orthomosaic photos use the root mean 

square error (RMSE) value of the ICP point at the 90% confidence level. 

 

2.2.  Methods 

The deep learning algorithm used in this study is Mask R-CNN, which was developed by He et al. [19]. 

Mask R-CNN model can produce three distinct outputs: class, bounding box, and segment, making it an 

effective instance segmentation algorithm. Due to its ability to generate segments for each object, the Mask 

R-CNN model is well-suited for palm tree detection and counting. 

The advancement of geographic information system (GIS) technology has paved the way for 

integrating deep learning models into mapping software. One example is Mask R-CNN, which has been 

seamlessly incorporated into ArcGIS Pro software. The process for utilizing this technology begins with 

generating appropriate training data that is compatible with the Mask R-CNN model. It entails using both 

images and Masks/labels in a shapefile format as input data for the “Export Training Data for Deep 

Learning” tool, resulting in training data in patch or tile format. 

To enhance efficiency, we utilized the template matching tool in the eCognition software instead of 

manually creating labels. In order to minimize errors during automatic detection with this tool, we restricted 

the training area solely to the palm oil plantation. This approach reduces the possibility of misclassification 

due to other objects that may resemble palm trees, such as vegetation or trees around the settlement area. The 

training area, which is shown in Figure 2, encompasses an area of around 80 hectares. 

The images and labels are used as inputs for the “Export Training Data for Deep Learning” tool in 

ArcGIS Pro software. This tool has several important parameters, including tile size, stride, and metadata 

format. To create the training dataset, we set the tile size value to 256, resulting in tiles of size 256×256 

pixels. The stride parameter was set to 128, which creates an overlap of 50% for subsequent tiles. For this 

study, we used the Mask R-CNN model; therefore, the metadata format was set to RCNN Masks. Applying 

these parameters generated 3043 tile images, shown in Figure 3 as an example of the training data. 

We utilized the “Train Deep Learning Model” tool to initiate the training process. During this stage, 

we set the number of epochs to 10. Considering the hardware specifications, we selected a batch size of one. 

To align with the tile size value, we opted for a chip size 256. Additionally, we selected Resnet-50 as the 

backbone. Lastly, we set aside 10% of the entire dataset for validation. Next, predictions are made on unseen 

data or images not used in training.  

In this research, we divided the area into three criteria, assuming that the accuracy of the deep 

learning model can be influenced by cloud shadows and non-palm oil objects, like buildings and other plants. 

In Figure 4, we can observe a test image containing both an oil palm plantation and a settlement area, and it 

is also partially obscured by cloud shadows for area criteria 1 (red line). Then, area 2 is only an oil palm 

plantation area (light blue line), and area 3 is a subset of areas without cloud shadows (yellow line). Areas 

with extreme cloud shadows are not involved in oil palm detection (dark blue line). The total area used to 

detect palm oil is 114 hectares, including non-oil palm areas such as settlements, plantations, and roads, 74 

hectares for only oil palm plantations, and 20 hectares for subset areas without cloud shadows. Finally, we 

used the “Detect Objects Using Deep Learning” tool and set the threshold value of 0.6. Additionally, we set 

the return_bboxes parameter to “False” to obtain segment results rather than bounding boxes. 
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Figure 2. The training area consists of an image on the left and its corresponding label on the right, the 

training area is restricted solely to the oil palm plantation 
 

 

  
 

Figure 3. The training data, with the left panel showing the image and the right panel displaying its 

corresponding label 
 
 

 
 

Figure 4. Test image used in the prediction process, this image was used as part of the testing process to 

evaluate the accuracy of the deep learning model  

 

excluded areas with 

extreme cloud shadows 

(dark blue line) 

subset areas without 

cloud shadows (yellow 

line) 

areas with only oil 

palm plantations 

(light blue line) 
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2.3. Accuracy assessment of oil palm detection 

The accuracy of palm tree detection was evaluated by comparing the results of automatic extraction 

with ground truth values using the precision/recall method [20]. Precision/recall is an assessment method 

often used in deep learning to assess detection success. The process was conducted manually. The calculation 

formula for this method can be seen in (1) to (3): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (2) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  ((1 + 𝛼) 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙)/ (𝛼 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (3) 

 

True positive (TP) is the total number of palm oil centroids successfully identified using deep 

learning, also known as the ground truth value. Meanwhile, false negative (FN) is the number of palm tree 

centroids that are not detected. False positive (FP) is the number of centroids recognized as oil palm trees, but 

after validation, they appear as other objects that are not oil palms. The α value is a non-negative scalar of the  

F-measure calculation, using the threshold of 0.5 [21]. Precision (P) can be interpreted as the amount of noise 

that can be tolerated during the object identification process, while recall (R) is the number of palm trees that 

are detected correctly (ground truth). F-measure defines the harmonic mean between precision and recall, 

where precision and recall are combined into a single performance measure [22]. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Orthomosaic result 

The results of aerial photo processing produce an orthomosaic with a resolution of 13 cm, which is 

sufficient for detecting oil palm plants. According to Korom et al. [23], oil palm tree crowns are more 

straightforward to recognize using high-resolution aerial photos. Apart from spatial resolution, another thing 

that is no less important is the geometric accuracy of the resulting aerial photos. The results of the geometric 

evaluation show that the horizontal accuracy value using GCP obtained an accuracy of 0.250 meters (can be 

seen in Table 2). 

 

 

Table 2. Horizontal accuracy of aerial orthomosaic 

ID 
Orthomosaic result (m) GNSS result (m) DX 

(Meters) 

DY 

(Meters) 
DX2 DY2 DX2+DY2 

X Ortho Y Ortho X_GNSS Y_GNSS 

ICP1 534,004.513 227,363.575 534,004.713 227,363.597 0.200 0.022 0.04006 0.00050 0.04056 
ICP2 534,816.148 226,443.593 534,816.249 226,443.425 0.101 -0.168 0.01013 0.02808 0.03821 

ICP3 534,640.117 227,485.993 534,640.251 227,485.995 0.134 0.002 0.01804 0.00001 0.01804 

ICP4 534,035.909 226,993.827 534,036.015 226,993.856 0.106 0.029 0.01119 0.00082 0.01201 
ICP5 534,296.054 227,769.201 534,296.253 227,769.242 0.199 0.041 0.03946 0.00172 0.04119 

ICP6 534,937.667 228,069.383 534,937.804 228,069.337 0.137 -0.046 0.01886 0.00214 0.02099 

ICP7 533,938.515 228,126.433 533,938.597 228,126.545 0.082 0.112 0.00672 0.01247 0.01919         
Total (m) 0.190         
Variance 0.027         
STD (m) 0.165 

  
      

Accuracy 

(m) 

0.250 

 

  

Various indicators can be utilized to evaluate the training outcome. One such indicator is the loss 

graph that illustrates the progress of the training and validation over time, as demonstrated in Figure 5. It can 

be observed that the loss graph consistently decreases and eventually converges. Another measure of the 

model’s performance is the prediction samples compared with the ground truth. Figure 6 depicts the 

prediction samples, demonstrating that the model provides accurate predictions. 

 

3.2.  Object detection 

Figure 7 provides an example of successful segmentation, where the results are generally complete 

and correct, except for a few areas where several trees were not detected accurately. However, despite the 

successful results shown in Figure 7, there were still some errors in the model’s predictions. For instance, as 

presented in Figure 8(a) and (b), some non-palm vegetation was incorrectly detected as palm trees, which 

could lead to inaccurate estimations in applications that rely on precise segmentation. Furthermore, cloud 
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cover also caused errors in the detection process, as objects covered by cloud shadows were not detected 

accurately. Clouds alter the energy radiation transmission between sun-surface sensors, making it difficult for 

object information under clouds to reach sensors accurately [24]. Additionally, its shadows' spectral 

characteristics are identical to those of wetlands, water, and other ground objects, reducing recognition 

accuracy beneath cloud shadows [25]. 

 

 

 
 

Figure 5. The loss graph for both training and validation data, the y-axis represents the loss values, while the 

x-axis denotes the number of batches processed 
 

 

 
 

Figure 6. A side-by-side comparison of ground truth (left) and model predictions (right) 
 

 

 
 

Figure 7. The successful prediction results in a palm plantation area, showing that the model can accurately 

detect and segment objects in complex environments 
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(a) (b) 

  

Figure 8. The errors resulting from misclassification for: (a) non-palm vegetation was incorrectly identified 

as palm trees and (b) the errors caused by cloud shadow 

  

 

3.3.  Accuracy assessment 

Figures 9 and 10 show the overall prediction results for palm oil detection using Mask R-CNN in areas 

1 and 3, respectively. In area 1, we succeeded in detecting 5,780 centroids, while the FN and FP values were 

1,968 and 916 centroids, respectively. Then, area 2 with 5,706, 1,820, and 319 centroids on TP, FN, and FP, 

respectively. Finally, area 3 with 1,729, 466, and 38 centroids on TP, FN, and FP, respectively. Table 3 shows 

the results of palm oil detection accuracy on various criteria. Area 1 produces a detection accuracy of 82.02%, 

area 2 is 87.43%, and area 3 is 90.52%. Table 3 indicates that oil palm trees are best detected in area 3 with an 

accuracy of 90.52%. The segments were accurately produced in areas that were not obstructed by clouds. 

 

 

 
 

Figure 9. Detection results for oil palm plantation and a settlement area 
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Figure 10. Detection results for subset areas without cloud shadows 
 

 

Table 3. Automatic detection of oil palm trees at various criteria 
No. Criteria Coverage (Ha) Actual oil palm tree Detected oil palm tree Accuracy (%) 

1. Area 1 114 7,748 5,780 82.02 

2. Area 2 74 7,526 5,706 87.43 

3. Area 3 20 2,195 1,729 90.52 

 

  

4. CONCLUSION 

As the most significant economic plantation in Indonesia, oil palm monitoring techniques should be 

developed for efficient operation. In this study, we used a geospatial technique for data acquisition and a 

computer vision processing approach with deep learning Mask R-CNN to assess the ability of high-resolution 

images obtained from the UAV to detect oil palm trees. The results indicate that Mask R-CNN can 

distinguish oil palm trees from other plants, settlements, and road segments with more than 80% accuracy. 

Incorrect detection was found mainly in cloud shadow areas due to distinctive spectral values of oil palm 

trees compared to non-shadow areas. This observation was supported by the detection results excluding 

shadow areas, where an accuracy of 90.52% was achieved. An effort incorporating image preprocessing to 

enhance oil palm spectral in shadowed areas while preserving its spectral characteristics may be studied 

further for accuracy improvement. Overall, the obtained accuracy of oil palm tree detection using Mask R-

CNN in this study is sufficient, thus becoming a promising technique to detect palm oil over a large area 

using high-resolution images from UAV. 
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