
TELKOMNIKA Telecommunication Computing Electronics and Control

Vol. 23, No. 1, February 2025, pp. 108~118

ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v23i1.26331  108

Journal homepage: http://telkomnika.uad.ac.id

Comparative analysis of cross-platform development

methodologies: a comprehensive study

Raiymbek Jangassiyev1, Zhanat Umarova1, Aisaule Ussenova1, Zlikha Makhanova1, Nurlybek

Zhumatayev2, Manat Amirov3, Gulzhan Koishibekova1
1Department of Information Systems and Modeling, Information Technology and Energetic Scientific School, Auezov University,

Shymkent, Kazakhstan
2Department of Computing systems and Software, Information Technology and Energetic Scientific School, Auezov University,

Shymkent, Kazakhstan
3Department of Information Communication Technologies, Information Technology and Energetic Scientific School, Auezov

University, Shymkent, Kazakhstan

Article Info ABSTRACT

Article history:

Received May 3, 2024

Revised Nov 6, 2024

Accepted Nov 26, 2024

 In an era marked by the proliferation of devices and operating systems,

delivering native-feeling applications across platforms has become

indispensable. This paper scrutinizes native development through the lens of

cross-platform frameworks, investigating their merits, major contenders such

as React Native, Flutter, Xamarin, and the nascent .NET MAUI, and their

practical implementations. By dissecting the distinct strengths and

considerations of each framework, we provide developers with insights to

make judicious decisions commensurate with their requirements and

proficiencies. This inquiry underscores how cross-platform frameworks

empower developers to broaden their audience reach while upholding native

performance standards, thereby shaping the trajectory of app development

through sustained innovation and integration with emergent technologies.

Keywords:

.NET MAUI

Cross-platform development

frameworks

Flutter

GUI

React Native

Xamarin

This is an open access article under the CC BY-SA license.

Corresponding Author:

Zhanat Umarova

Department of Information Systems and Modeling, Auezov University

Tauke khan Avenue, 5, Shymkent, Kazakhstan

Email: Zhanat-u@mail.ru

1. INTRODUCTION

In a rapidly evolving technological landscape, the demand for seamless and intuitive user

experiences across a multitude of devices has never been greater. Gone are the days when mobile app

development was solely focused on smartphones and occasional forays into tablet applications. Today, the

spectrum of app-enabled devices spans from internet of things (IoT) gadgets to autonomous vehicles [1],

underscoring the need for adaptable and versatile development solutions.

Traditionally, native app development has been the cornerstone of mobile application creation,

offering unparalleled performance and user experience tailored to specific platforms. However, the native

approach is not without its limitations. Chief among these is the inherent platform dependency of native app

SDKs, which necessitates separate development efforts for each platform. For instance, iOS and Android

SDKs are distinct entities, making it technically challenging to create a single app that seamlessly runs across

multiple platforms [2].

In response to these challenges, the emergence of cross-platform development frameworks has

revolutionized the app development landscape. These frameworks, such as React Native, Flutter, Xamarin,

and the innovative .NET MAUI, offer developers a compelling alternative by bridging the gap between

native performance and code recyclability. By enabling developers to write code once and deploy it across

https://creativecommons.org/licenses/by-sa/4.0/

TELKOMNIKA Telecommun Comput El Control 

Comparative analysis of cross-platform development methodologies: a … (Raiymbek Jangassiyev)

109

various platforms, cross-platform frameworks empower them to sculpt unparalleled user experiences while

maximizing development efficiency [3], [4].

This paper embarks on an in-depth exploration of cross-platform development using frameworks,

delving into the strengths and considerations inherent in each approach. Through comparative analysis, real-

world examples, and prognostication of future trends, we unravel the pivotal role of cross-platform

frameworks in shaping the future of app development. Join us on this journey as we navigate the realm of

native development using cross-platform frameworks, unlocking their potential to drive broader reach,

superior performance, and continuous innovation in the ever-evolving landscape of app development [5].

a. Comparative analysis of app development types

Cross-platform development encompasses diverse methodologies aimed at creating applications that

seamlessly operate across multiple operating systems. The selection of an appropriate approach is contingent

upon specific project requirements, the proficiency of the development team, and the desired performance

standards. This paper provides a comprehensive breakdown of the principal types of cross-platform

development [6]. Table 1 presents a comparative analysis of various types of app development, including

Native app development, Hybrid app development, Progressive Web apps (PWAs), Cloud-Based app

development, and low-code/no-code platforms.

Table 1. Comparative analysis of app development types

Feature
Native app

development

Hybrid app

development
PWAs

Cloud-based app

development

Low-code/no-

code platforms

Performance Near-native Moderate Lower Native-like (depends on
implementation)

Variable

User

experience

Native-like Native-like with

potential
limitations

Native-like

browser
experience

Depends on platform

implementation

Variable

Development

time

Faster due to code

reuse

Faster initial

development

Fastest Moderate Fastest

Development

cost

Can be higher due to

expertise needed

Lower Lower Variable Lower

Code
reusability

High Moderate Limited High Limited

Native

feature access

High Limited Limited Native-like (depends on

platform implementation)

Limited

Offline

functionality

Limited Variable Available Yes, with caching Variable

Platform
support

All major platforms All major platforms Web browsers All platforms Most platforms

Development

expertise

Requires familiarity

with frameworks and
native development

Moderate web

development skills

Web

development
skills

Backend and cloud

development skills

Limited coding

experience

Table 1 compares the performance, user experience, development time, and other features of

different types of app development. Native app development achieves near-native performance and user

experience, but requires code reuse and expertise. Hybrid app development provides moderate performance

and user experience with some limitations, and has a faster initial development time. Progressive web apps

have lower performance and user experience that depend on their implementation, and are the fastest option

to develop. Cloud-based app development has variable performance and user experience that depend on the

platform, and has a moderate development time. Low-code/no-code platforms have variable performance and

user experience, and offer the fastest development time. Table 1 can help developers choose a suitable

framework for app development.

b. Survey of leading and emerrging frameworks

Let us now embark on an exploration of specific exemplars that underscore the potency of cross-

platform development facilitated by frameworks. React Native: endorsed by Facebook, React Native harnesses

the prowess of JavaScript and React, thereby endowing a sense of familiarity for web developers alongside

access to an expansive community. Noteworthy applications developed with React Native include Facebook,

Instagram, and Bloomberg. Figure 1 architectures of Flutter and Xamarin; Figure 1(a) flowchart of React Native

architecture and Figure 1(b) flowchart of Xamarin architecture shows a flowchart illustrating the basic overview

of React Native architecture between native modules and JavaScript during application execution [7], [8].

Figure 1(a) illustrates the architecture shared by Flutter and Xamarin, consisting of three key

sections: Native, Bridge, and JavaScript. In this structure, the Native segment manages platform-specific UI

and events, while the Bridge facilitates seamless communication between Native and JavaScript components.

The JavaScript section houses the business logic and React components, orchestrating event handling, data

transfer, processing, and UI updates across the application [9], [10].

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 1, February 2025: 108-118

110

(a) (b)

Figure 1. Architectures of Flutter and Xamarin: (a) flowchart of React Native architecture and

(b) flowchart of Xamarin architecture

Flutter, developed by Google, utilizes Dart for rapid development and integrates hot reloading

functionality, making it conducive for complex projects. Its extensive widget library and robust performance

have garnered favor from notable companies like Alibaba, Reflectly, and Google Ads. Xamarin, owned by

Microsoft, leverages C# and integrates seamlessly with Visual Studio, appealing particularly to .NET

developers. Pinterest, Uber Eats, and Microsoft Office Mobile are among its distinguished users. The

Xamarin architecture, depicted in Figure 1(b), showcases how it combines native libraries and C#/.NET

APIs, allowing developers to write code in a single language while achieving near-native performance and

accessing native features. .NET MAUI, spearheaded by Microsoft, utilizes C# and XAML to extend its reach

across Android, iOS, macOS, and Windows through a unified codebase. Benefiting from the strengths of the

.NET and Xamarin communities, .NET MAUI promises native-level performance, appealing to both existing

Xamarin developers and new ventures alike [10].

When evaluating these frameworks, the importance of open-source considerations should not be

underestimated, as reliance on third-party libraries can lead to technical debt and increased maintenance

complexity. The quantity and quality of third-party components and packages may vary between

frameworks, influencing long-term project viability [11], [12]. Figure 2 shows the usage of cross-platform

mobile frameworks by software developers worldwide from 2019 to 2022 in a bar graph. The y-axis displays

the percentage of developers using each framework, while the x-axis lists the different frameworks.

Figure 2. Usage according to Statista Developer Survey (Statista, 2024) [13]

TELKOMNIKA Telecommun Comput El Control 

Comparative analysis of cross-platform development methodologies: a … (Raiymbek Jangassiyev)

111

These are the main observations from Figure 3, Flutter usage has consistently increased from 30% in

2019 to 46% in 2022. React Native has also increased, but not as significantly, from 42% in 2019 to 48% in

2022. Cordova and Ionic have declined over the years. Xamarin has remained relatively stable with slight

fluctuations, while Unity, Native Script, and other less common frameworks have lower percentages but are

still included in the data. It is imperative to recognize that the selection of the “optimal” framework hinges

upon the precise requisites of your project, the proficiencies of your team, and the target platforms. It

behooves one to meticulously scrutinize each option, evaluating its strengths, weaknesses, and the support it

garners from the community, prior to arriving at an informed decision.

2. METHOD

2.1. Comparative analysis of frameworks. utilization and performance assesment of cross-platform

frameworks

Identifying the ideal framework for your project hinges on its unique requirements, but

understanding usage trends and performance can provide valuable insight. Here’s a comparative analysis of

the discussed frameworks based on available data:

a. Utilization metrics:

− React Native: with the largest developer community and ecosystem, React Native leads in popularity

(42.1% utilization rate according to Statista’s Developer Survey 2023), offering abundant resources and

strong community support.

− Flutter: despite being newer, Flutter has rapidly gained traction, especially in enterprise adoption, thanks

to its feature-rich widget library and hot reloading functionality. Google Trends shows a rising interest in

Flutter compared to React Native.

− Xamarin: while still popular, particularly among .NET developers, Xamarin’s growth lags behind Flutter.

However, its robust toolset and integration with Visual Studio remain attractive.

− .NET MAUI: as a newcomer, comprehensive usage statistics are still emerging. However, its potential

within the .NET community and focus on native performance bode well for its future.

b. Performance evaluations:

Comparative assessments like the 2023 State of JavaScript report highlight performance differences,

but these are often minor for typical applications. Framework optimizations aim to further minimize these

differences over time.

Figure 3 shows a horizontal bar graph titled ‘PERFORMANCE BENCHMARKS’ sourced from

HTTPS://JSPERF.APP/. It compares the start times (in seconds) of applications built with three different

frameworks: Native, Flutter, and React Native on Android devices. Native apps start the fastest (0.6 s), followed by

Flutter (0.8 s) and React Native (1.2 s). This shows that Native apps launch faster than the other two frameworks.

Figure 4 shows a horizontal bar graph representing the steady-state performance in frames per second

(FPS) of three different mobile application development frameworks: Native, Flutter, and React Native. The FPS

is averaged across devices. Native apps have the highest FPS (63), followed by Flutter (62) and React Native

(60). This shows that Native apps perform slightly better than Flutter and significantly better than React Native.

Figure 3. Start time comparison of app development

frameworks (jsperf.app) [14]

Figure 4. Steady-state performance of app

development frameworks (jsperf.app) [14]

Performance profiles may vary depending on the specific usage scenarios and device configurations.

Significant differences can be observed in benchmarks such as cold start times, with Flutter demonstrating faster

initialization, although it may be slightly slower in stable operational scenarios compared to React Native [15].

In terms of development steps, native and Xamarin.iOS are very close. Features can be implemented similarly

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 1, February 2025: 108-118

112

in both, and UI design is facilitated by a what you see is what you get (WYSIWYG) visual tool [16]. Table 2

presents a comparative analysis of four mobile app development frameworks: React Native, Flutter, Xamarin,

and .NET MAUI.

Table 2. Battle of the frameworks: a comparative study
Feature React Native Flutter Xamarin .NET MAUI (NEW)

Usage rank 1 2 3 Not established

Developer community Largest Large & growing Established Large .NET community
Key languages JavaScript Dart C# C# & XAML

Performance compared

to Native

Near Native Near Native Near Native Potential for high

performance
Popular apps Facebook, Instagram,

Bloomberg

Alibaba, Reflectly,

Google Ads

Pinterest, Uber Eats,

Microsoft Office Mobile

New - No Major Apps

Yet

In Table 2, React Native is ranked first in terms of usage, followed by Flutter in second place, and

Xamarin in third place. .NET MAUI has not yet established a usage rank. React Native has the largest

developer community, while Flutter has a large and growing community. Xamarin has an established

community, while .NET MAUI is a newer technology with a developing community. It is worth noting that

these technologies are supported by the large .NET community. React Native uses JavaScript, Flutter uses

Dart, Xamarin uses C#, and .NET MAUI uses both C# and XAML.

When comparing CPU time usage by application, Flutter technology outperformed React Native.

The average usage was around 97%. The React Native technology used about 130% of the CPU time (i.e., it

used more than one core) and the total amount of memory used by the application for the Flutter software

framework varied between 50 MB and 120 MB. For an application developed using the React Native

development framework, the value of this memory fluctuated around 75 MB [16].

3. RESULTS AND DISCUSSION

3.1. Performance analysis of .NET MAUI and Xamarin frameworks

The .NET MAUI platform enables developers to create mobile and desktop applications using a

single interface. It offers ample opportunities to organize the structure and select user interface controls.

Separating the GUI definition from the program logic allows for more efficient development and

maintenance of applications. Additionally, MAUI’s deep integration with other .NET tools and services

ensures high application performance.

Figure 5 is an implementation of the Game of Life for .NET Multi-platform App UI (.NET MAUI).

Life is a cellular automaton invented by mathematician John Conway in 1970 and popularized in Scientific

American [17], [18]. Using the information provided in Figure 5, this analysis examines the performance of

the .NET MAUI framework. The memory usage remains stable at approximately 230 MB, indicating that the

Game of Life program does not consume excessive memory and is well-optimized in this aspect.

Figure 5. Debugging the Game of Life on Windows (.NET MAUI)

The CPU usage shows minimal spikes, suggesting that the .NET MAUI framework handles

processing efficiently, ensuring smooth performance without overburdening the CPU. In conclusion, the

Game of Life program demonstrates that the .NET MAUI framework utilizes memory and CPU resources

TELKOMNIKA Telecommun Comput El Control 

Comparative analysis of cross-platform development methodologies: a … (Raiymbek Jangassiyev)

113

efficiently. This suggests that .NET MAUI could be a reliable choice for developers seeking optimized

performance from their applications. To enhance the study’s informativeness, the application was executed

on the Android platform. Figure 6 illustrates the performance demonstration.

Figure 6. Debugging the Game of Life on Android (.NET MAUI)

This analysis presents the performance of the .NET MAUI framework on the Samsung Galaxy S21+

device, based on the information provided in Figure 5. The CPU usage is relatively low, at 26%, suggesting

that the Game of Life program is not overly taxing on the device’s processing capabilities when run on the

.NET MAUI framework. The GPU usage is also low, at 10%, indicating that the application is not

demanding in terms of graphical processing. This could be due to the efficient rendering or minimal

graphical content in the application. The application uses only 5.97MB of memory, which is relatively low

and indicates that it is not consuming excessive resources. This suggests that the .NET MAUI framework is

an efficient option for developers who want to optimize their application’s performance on mobile devices.

However, it is important to note that performance may be influenced by other factors, such as code efficiency

and overall system configuration. Therefore, a comprehensive performance analysis should take these factors

into account. Figure 7 is an implementation of the Game of Life for Xamarin.Forms [19].

Figure 7. Debugging the Game of Life on Windows (Xamarin)

Based on the data presented in Figure 7, the performance of the Xamarin framework can be

analyzed as follows: The program consumes 68 MB of memory, indicating that it is well-optimized and does

not consume excessive memory; The CPU usage is 0%, indicating that the Xamarin framework handles

processing efficiently, ensuring smooth performance without overburdening the CPU.

The Game of Life program demonstrates that the Xamarin framework uses memory and CPU

efficiently, indicating that it could be a dependable option for developers seeking optimized application

performance. However, a more comprehensive analysis is required to compare Xamarin with other

development tools. When comparing the memory and CPU usage of the same program on a Ryzen 9 5900X

processor, it was observed that the .NET MAUI framework uses approximately 230 MB of memory and has

minimal CPU usage. On the S21+ device, the memory usage is around 5.97 MB. Therefore, the selection

between Xamarin and .NET MAUI may depend on the specific requirements of the application and the

hardware on which it is intended to run. Performance analysis should consider factors such as code efficiency

and system configuration, as they can influence performance. To improve the study’s comprehensibility, we

executed the application on the Android platform. The performance demonstration is illustrated in Figure 8.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 1, February 2025: 108-118

114

Figure 8. Debugging the Game of Life on Android (Xamarin)

Figure 8 presents data on the performance of the Xamarin framework on the Samsung Galaxy S21+

device. The CPU usage was found to be relatively low at 13%, indicating that the Game of Life program does

not heavily tax the device’s processing capabilities when run on the Xamarin framework. The GPU usage

was at 6.7%, suggesting that the application is not graphically demanding. This may be a result of efficient

rendering or minimal graphical content in the application. The application’s total memory usage is 5.14 MB,

which is relatively low and indicates that it is not consuming excessive resources. This is a positive sign of

optimization. Table 3 displays the test results for the Samsung Galaxy S21+ device.

Table 3. Comparison of resource usage in .NET MAUI and XAMARIN frameworks
Framework CPU usage (%) GPU usage (%) GPU memory (MB)

.NET MAUI 26 10 5.97
Xamarin 13 6.7 5.14

This text compares the performance of the Game of Life program on the .NET MAUI and Xamarin

frameworks using data from Table 3. The CPU usage of .NET MAUI is higher (26%) than that of Xamarin

(13%), which suggests that .NET MAUI is performing more computations or processes in the background.

The GPU usage is not mentioned in this fragment of text. However, it is worth noting that the GPU usage of

.NET MAUI is higher (10%) than that of Xamarin (6.7%), which may be due to more intensive graphical

rendering tasks. Additionally, the memory usage of .NET MAUI is slightly higher (5.97 MB) than that of

Xamarin (5.14 MB), indicating that .NET MAUI may be using more resources for its operations [20]-[30].

Mobile applications are vital for our daily lives, as they offer various functions. With the growing

number of applications, it is crucial to build successful, trouble-free, and easy-to-use applications [31]-[40].

Cross-platform development frameworks enable real-world applications to achieve this goal. Table 4 shows

some examples of renowned apps built with each framework, and their capabilities across diverse domains.

Table 4. Examples and capabilities of applications built with various frameworks
Framework Example apps Capabilities

React Native Facebook, Instagram, Bloomberg Scalability, user interaction, engagement, dynamic user experience, real-time

data and news, uniform and responsive interface

Flutter Alibaba, Reflectly, Google Ads E-commerce mechanisms, seamless animations, captivating visual designs,

interactive and data-centric experiences

Xamarin Uber Eats, Pinterest, Microsoft
Office Mobile

Location-centric services, mobile commerce, visually-arresting and immersive
experience, productivity tools, enterprise-grade applications

.NET MAUI N/A Native performance, migration from Xamarin, potential within .NET developer

community

Finally, this analysis has evaluated four frameworks for app development: React Native, Flutter,

Xamarin, and .NET MAUI [41]-[51]. Table 4 illustrates their differences in terms of performance, user

experience, development time, and other features, using examples of well-known apps built with each

framework. The table also demonstrates that each framework has its advantages and disadvantages, and that

there is no ideal solution for app development. Developers should select a framework that meets their

requirements and preferences. Generally speaking, “that’s the only way we know how”, “that’s the cheapest

way”, or “I don’t really know” should be considered with caution. Further studies or practices can explore

new trends and developments in app development frameworks and their impact on the app industry and

users. Both the .NET MAUI and Xamarin frameworks demonstrate efficient resource usage. However, it

TELKOMNIKA Telecommun Comput El Control 

Comparative analysis of cross-platform development methodologies: a … (Raiymbek Jangassiyev)

115

appears that .NET MAUI may have higher resource usage compared to Xamarin, possibly due to additional

features or optimizations, such as support for dark themes. The decision to use either .NET MAUI or

Xamarin should be based on the application’s specific requirements and the intended hardware. It is worth

noting that both frameworks are part of the .NET ecosystem and share many features and capabilities, which

could facilitate transitioning between them if needed [52]-[55].

4. CONCLUSION

The horizon of cross-platform development shines with promise. Offering boundless opportunities

to craft exemplary user experiences across a myriad of platforms. Through the assimilation of novel

technologies, cultivation of community collaboration, and unwavering emphasis on performance, security,

and scalability. Developers stand poised to harness the transformative potential of cross-platform

frameworks, ushering in the dawn of innovative applications.

Our exploration into the .NET MAUI, Xamarin, React Native, and Flutter frameworks has provided

valuable insights into their performance characteristics. All these frameworks exhibit efficient memory and

CPU usage, with .NET MAUI showing more optimization for mobile devices. The frame rate of 4 FPS for

both .NET MAUI and Xamarin frameworks, as observed in the Game of Life program, is by design and does

not indicate performance issues.

In today’s interconnected realm, the imperative of engaging diverse audiences across multiple

platforms underscores the quintessence of app success. Cross-platform development, epitomized by

frameworks such as React Native, Flutter, Xamarin, and the fledgling .NET MAUI, emerges as a compelling

solution, empowering developers to manifest the ethos of “write once, run anywhere” with a semblance of

near-native performance and efficacy.

Our exploration traversed the myriad avenues of cross-platform development, delineating the merits

and nuances of each approach. We ventured into the realms of popular frameworks, illuminating their unique

strengths, utilization metrics, performance evaluations, and real-world triumphs witnessed in the likes of

Facebook, Alibaba, and Uber Eats. Furthermore, we cast a gaze into the vista of tomorrow, envisioning

strides in performance optimization, integration with nascent technologies such as artificial intelligence (AI)

and IoT, and the perpetual democratization of development through the refinement of tools. The addition of

our findings from the .NET MAUI, Xamarin, React Native, and Flutter frameworks enriches this exploration.

Understanding the contemporary landscape, the latent potential of each framework, and the exhilarating

vistas on the horizon equips developers to orchestrate judicious decisions and harness this technology to

fashion high-caliber, adaptable applications that resonate with broader audiences and engender superlative

user experiences.

Cross-platform development transcends the realm of transient trends; it emerges as an omnipotent

tool sculpting the trajectory of app creation. As we move forward, the choice between .NET MAUI,

Xamarin, React Native, and Flutter will depend on the specific requirements of the application and the

hardware it is intended to run on. All these frameworks, being part of the broader ecosystem of cross-

platform development, share many features and capabilities, which could make transitioning between them

easier if necessary. This flexibility and adaptability are what make cross-platform development a powerful

tool in the hands of developers.

REFERENCES
[1] C. Rieger and T. A. Majchrzak, “Towards the defi nitive evaluation framework for cross-platform app development approaches,”

Journal of Systems and Software, vol. 153, pp. 175–199, 2019, doi: 10.1016/j.jss.2019.04.001.
[2] M. Q. Huynh, P. Ghimire, and D. Truong, “Hybrid App Approach: Could It Mark the End of Native App Domination?,” Issues in

Informing Science and Information Technology, vol. 14, pp. 049–065, 2017, doi: 10.28945/3723.

[3] T. A. Majchrzak, A. Biørn-Hansen, and T.-M. Grønli, “Progressive Web Apps: The Definite Approach to Cross-Platform
Development?” Proceedings of the Annual Hawaii International Conference on System Sciences, 2018, doi:

10.24251/hicss.2018.718

[4] A. Y. Pchelkin and N. F. Gusarova, “Cross-Platform Development Based on Web Technologies to Support Solutions in Problem-
Oriented Management Systems,” Economics Law Innovaion, 1, pp. 41–47, 2022, doi: 10.17586/2713-1874-2022-1-41-47

[5] T. Guo, “Cloud-Based or On-Device: An Empirical Study of Mobile Deep Inference,” 2018 IEEE International Conference on

Cloud Engineering (IC2E), Orlando, FL, USA, 2018, pp. 184-190, doi: 10.1109/IC2E.2018.00042.
[6] A. C. Bock and U. Frank, “Low-Code Platform,” Business & Information Systems Engineering, vol. 63, no. 6, pp. 733–740, 2021,

doi: 10.1007/s12599-021-00726-8

[7] A. Manchanda, “The Ultimate Guide to Cross Platform App Development Frameworks in 2024,” Net Solutions,
https://www.netsolutions.com/insights/cross-platform-app-frameworks-in-2019/, (Accessed September 7, 2023).

[8] Microsoft. (2024). Xamarin - Build cross-platform apps with .NET. https://dotnet.microsoft.com/en-us/apps/xamarin.

[9] K. Shah, H. Sinha and P. Mishra, “Analysis of Cross-Platform Mobile App Development Tools,” 2019 IEEE 5th International
Conference for Convergence in Technology (I2CT), Bombay, India, 2019, pp. 1-7, doi: 10.1109/I2CT45611.2019.9033872.

[10] T. Majchrzak and T.-M. Grønli, “Comprehensive Analysis of Innovative Cross-Platform App Development Frameworks,”

Proceedings of the Annual Hawaii International Conference on System Sciences, 2017, doi: 10.24251/hicss.2017.745.

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 1, February 2025: 108-118

116

[11] Statista, “Cross-platform mobile frameworks used by software developers worldwide from 2019 to 2022,” 2024, Available:

https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/.
[12] M. Kovács and Z.C. Johanyák, “Comparative Analysis of Native and Cross-Platform iOS Application Development,” Műszaki

Tudományos Közlemények, vol. 15, no. 1, pp. 61–64, 2021, doi: 10.33894/mtk-2021.15.12.

[13] M. Markowski and J. Smołka, “A comparative analysis of the Flutter and React Native frameworks,” Journal of Computer
Sciences Institute, vol. 29, 346–351, 2023, doi 10.35784/jcsi.3794.

[14] I. V. Ponomarev, “Features of the .NET MAUI framework for creating a cross-platform applications,” System Technologies, vol.

1, no. 144, pp. 51–57, 2023, doi: 10.34185/1562-9945-1-144-2023-07.
[15] Microsoft. (2024, February 13). .NET MAUI - Game of Life [Code Sample]. [Online]. Available: https://learn.microsoft.com/ru-

ru/samples/dotnet/maui-samples/apps-gameoflife/.

[16] P. R. Hiwale, A. A. Kalsait, K. Y. Choukade, A. S. Puri, and P. V. Shirbhate, “Review On Cross-Platform Mobile Application
Development,” International Journal for Research in Applied Science and Engineering Technology, vol. 10, no. 1, pp. 1433–

1439, 2022, doi: 10.22214/ijraset.2022.40004.

[17] Microsoft. (2024, February 16). What is .NET MAUI? https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-
maui-7.0.

[18] J. White, “Going native (or not): Five questions to ask mobile application developers,” Australasian Medical Journal, vol. 6, no.

1, pp. 7–14, 2013, doi: 10.4066/amj.2013.1576.
[19] I. H. Sarker, M. M. Hoque, Md. K. Uddin, and T. Alsanoosy, “Mobile Data Science and Intelligent Apps: Concepts, AI-Based

Modeling and Research Directions,” Mobile Networks and Applications, vol. 26, no. 1, pp. 285–303, 2020, doi: 10.1007/s11036-

020-01650-z.
[20] Y. K. Dwivedi et al., “Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and

agenda for research, practice and policy,” International Journal of Information Management, vol. 66, 2022, doi:

10.1016/j.ijinfomgt.2022.102542.
[21] X. Qiao, P. Ren, S. Dustdar, and L. Liu, “Web AR: A Promising Future for Mobile Augmented Reality—State of the Art,

Challenges, and Insights,” in Proceedings of the IEEE, vol. 107, no. 4, pp. 651-666, April 2019, doi:
10.1109/JPROC.2019.2895105.

[22] S. Xanthopoulos and S. Xinogalos, “A Comparative Analysis of Cross-platform Development Approaches for Mobile

Applications,” ACM International Conference Proceeding Series, 2013, pp. 213–220, doi: 10.1145/2490257.2490292.
[23] D. You and M. Hu, “A Comparative Study of Cross-platform Mobile Application Development,” 12th Annual Conference of

Computing and Information Technology Research and Education, New Zealand, 2021.

[24] A. Biørn-Hansen, T.-M. Grønli, G. Ghinea, and S. Alouneh, “An Empirical Study of Cross-Platform Mobile Development in
Industry,” Wireless Communications and Mobile Computing, pp. 1-12, 2019, doi: 10.1155/2019/5743892.

[25] A. Ahmad, K. Li, C. Feng, A. Syed, A. Yousif, and S. Ge, “An Empirical Study of Investigating Mobile Applications

Development Challenges,” in IEEE Access, vol. 6, pp. 17711-17728, 2018, doi: 10.1109/ACCESS.2018.2818724.
[26] M. Martinez, “Two Datasets of Questions and Answers for Studying the Development of Cross-Platform Mobile Applications

using Xamarin Framework,” 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems

(MOBILESoft), Montreal, QC, Canada, 2019, pp. 162-173, doi: 10.1109/MOBILESoft.2019.00032.
[27] M. Abdal, T. Mohamed, S. Jan, F. Khan, and A. Khattak, “A Comparative Analysis of Mobile Application Development

Approaches,” Proceedings of the Pakistan Academy of Sciences, vol. 58, pp. 35-45, 2021, doi: 10.53560/PPASA(58-1)717.

[28] M. Işitan and M. Koklu, “Comparison and Evaluation of Cross Platform Mobile Application Development Tools,” International
Journal of Applied Mathematics Electronics and Computers, vol. 8, no. 4, pp. 273-281, 2020, doi: 10.18100/ijamec.832673.

[29] C. Ferreira et al., “An Evaluation of Cross-Platform Frameworks for Multimedia Mobile Applications Development,” in IEEE

Latin America Transactions, vol. 16, no. 4, pp. 1206-1212, Apr. 2018, doi: 10.1109/TLA.2018.8362158.
[30] P. Nawrocki, K. Wrona, M. Marczak, and B. Śnieżyński, “A Comparison of Native and Cross-Platform Frameworks for Mobile

Applications,” Computer, vol. 54, pp. 18-27, 2021, doi: 10.1109/MC.2020.2983893.

[31] L. P. Barros, F. Medeiros, E. Moraes, and A. F. Júnior, “Analyzing the Performance of Apps Developed by using Cross-Platform
and Native Technologies,” International Conference on Software Engineering and Knowledge Engineering, 2020, doi:

10.18293/SEKE2020-122.

[32] A. Javeed, “Performance Optimization Techniques for ReactJS,” 2019 IEEE International Conference on Electrical, Computer
and Communication Technologies (ICECCT), Coimbatore, India, 2019, pp. 1-5, doi: 10.1109/ICECCT.2019.8869134.

[33] X. Jia, A. Ebone, and T. Yongshan, “A performance evaluation of cross-platform mobile application development approaches”

MOBILESoft ‘18: Proceedings of the 5th International Conference on Mobile Software Engineering and Systems, 2018, pp. 92-
93, doi: 10.1145/3197231.3197252.

[34] H. Zahra and S. Samer, “A Systematic Comparison Between Flutter and React Native from Automation Testing Perspective,”

2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 2022, pp. 6-
12, doi: 10.1109/ISMSIT56059.2022.9932749.

[35] T. Zohud and S. Zein, “Cross-Platform Mobile App Development in Industry: A Multiple Case-Study,” International Journal of

Computing, pp. 46-54, 2012, doi: 10.47839/ijc.20.1.2091.
[36] H. V. Gamido and M. V. Gamido, “Comparative Review of the Features of Automated Software Testing Tools,” International

Journal of Electrical and Computer Engineering, vol. 9, no. 5, pp. 4473-4478, 2019, doi: 10.11591/ijece.v9i5.pp4473-4478.

[37] P. Meirelles, C. Rocha, F. Assis, R. Siqueira, and A. Goldman, “A Students’ Perspective of Native and Cross-Platform
Approaches for Mobile Application Development,” Computational Science and Its Applications – ICCSA, pp. 586-601, 2019,

doi: 10.1007/978-3-030-24308-1_47.

[38] M. Mahendra and B. Anggorojati, “Evaluating the performance of Android based Cross-Platform App Development
Frameworks,” ICCIP ‘20: Proceedings of the 6th International Conference on Communication and Information Processing, 2020,

pp. 32-37, doi: 10.1145/3442555.3442561.

[39] P. K. Aggarwal, P. S. Grover, and L. Ahuja, “A Performance Evaluation Model for Mobile Applications,” 2019 4th International
Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 2019, pp. 1-3, doi: 10.1109/IoT-

SIU.2019.8777497.

[40] D. T. Bui et al., “New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling,” Water, vol.
10, no. 9, 2019, doi: 10.3390/w10091210.

[41] I. C. Morgado and A. C. R. Paiva, “The iMPAcT Tool for Android Testing,” Proceedings of the ACM on Human-Computer

Interaction, vol. 3, pp. 1-23, 2019, doi: 10.1145/3300963.

TELKOMNIKA Telecommun Comput El Control 

Comparative analysis of cross-platform development methodologies: a … (Raiymbek Jangassiyev)

117

[42] C. M. Pinto and C. Coutinho, “From Native to Cross-platform Hybrid Development,” 2018 International Conference on
Intelligent Systems (IS), Funchal, Portugal, 2018, pp. 669-676, doi: 10.1109/IS.2018.8710545.

[43] A. Alkhalifah, “Predicting Mobile Cross-Platform Adaptation Using a Hybrid Sem–ANN Approach,” Computer Systems Science

and Engineering, vol. 42, no. 2, pp. 639-658, 2022, doi: 10.32604/csse.2022.022519.
[44] K. Majrashi, M. Hamilton, A. L. Uitdenbogerd, and S. Al-Megren, “Cross-Platform Usability Model Evaluation,” Multimodal

Technologies and Interaction, vol. 4, no. 4, 2022, doi: 10.3390/mti4040080.

[45] C. Rieger and T. A. Majchrzak, “Towards the Definitive Evaluation Framework for Cross-Platform App Development
Approaches,” Journal of Systems and Software, vol. 153, pp. 175-199, 2019, doi: 10.1016/j.jss.2019.04.001.

[46] W. Niemiec, R. Borges, and E. Cota, “Mobilex: a generic framework for cross-platform mobile development based on web

language,” SBES ‘22: Proceedings of the XXXVI Brazilian Symposium on Software Engineering, pp. 347-352, 2022, doi:
10.1145/3555228.3555274.

[47] Y. Cheon and C. Chavez, “Converting Android Native Apps to Flutter Cross-Platform Apps,” 2021 International Conference on

Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2021, pp. 1898-1904, doi:
10.1109/CSCI54926.2021.00355.

[48] F. Brudy et al., “Cross-Device Taxonomy: Survey, Opportunities and Challenges of Interactions Spanning Across Multiple

Devices,” CHI ‘19: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1-28, 2019, doi:
10.1145/3290605.3300792.

[49] A. S. A. Alwabel and X.-J. Zeng, “Data-driven modeling of technology acceptance: A machine learning perspective,” Expert

Systems with Applications, vol. 185, p. 115584, 2021, doi: 10.1016/j.eswa.2021.115584.
[50] P. Kr. Chopdar, N. Korfiatis, V. J. Sivakumar, and M. D. Lytras, “Mobile shopping apps adoption and perceived risks: A cross-

country perspective utilizing the Unified Theory of Acceptance and Use of Technology,” Computers in Human Behavior, vol. 86,

pp. 109-128, 2018, doi: 10.1016/j.chb.2018.04.017.
[51] C. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, with Applications in R, in Springer

Texts in Statistics (STS), Latest edition, Springer, 2021, doi: 10.1007/978-1-0716-1418-1.

[52] K. Sohn and O. Kwon, “Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products,”
Telematics and Informatics, vol. 47, p. 101324, 2020, doi: 10.1016/j.tele.2019.101324.

[53] Z. Kalinić, V. Marinković, L. Kalinić, and F. Liébana-Cabanillas, “Neural Network Modeling of Consumer Satisfaction in Mobile

Commerce: An Empirical Analysis,” Expert Systems with Applications, vol. 175, p. 114803, 2021, doi:
10.1016/j.eswa.2021.114803.

[54] H. Rafique, A. O. Almagrabi, A. Shamim, F. Anwar, and A. K. Bashir, “Investigating the Acceptance of Mobile Library

Applications with an Extended Technology Acceptance Model (TAM),” Computers & Education, vol. 145, p. 103732, 2020, doi:
10.1016/j.compedu.2019.103732.

[55] M. Ahmad, “Analysis of cross platform mobile application development frameworks,” Ph.D. thesis, Institute of Applied

Computer Systems, Riga Technical University, Rīga, Latvia, 2023.

BIOGRAPHIES OF AUTHORS

Raiymbek Jangassiyev received the bachelor of technic and technologies degree

in Information Systems in 2023. Currently he is a master’s student in the Department of

Information Systems and Modeling at Auezov University. His research interests include

information systems, web programming, mobile applications, and IoT. He can be contacted at

email: jangasiev@gmail.com.

Zhanat Umarova received her Ph.D. degree in Informatics, Computer

Engineering and Control from Ministry of Education and Science, in 2013. Currently she

works as an Associated Professor of Information Systems and Modeling Department at M.

Auezov South Kazakhstan University. She has supervised and co-supervised more than 20

masters’ students. She has authored or coauthored more than 100 publications. Her research

interests include mathematical modeling, computer simulation, information security and data

protection in information systems, and mobile technologies. She can be contacted at email:

Zhanat-u@mail.ru.

https://orcid.org/0009-0000-7616-419X
https://orcid.org/0000-0002-0257-4417
https://scholar.google.com/citations?user=zGlqA0sAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=54421451100
https://publons.com/wos-op/researcher/3647157/zhanat-umarova/

  ISSN: 1693-6930

TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 1, February 2025: 108-118

118

Aisaule Ussenova received a bachelor’s degree in Mathematics and teaching in

1988. Currently, he works as a senior lecturer at the Department of Information Systems and

Modeling at the M. Auezov South Kazakhstan University. She is the author or co-author of

more than 200 publications. Her research interests include mathematical modeling, computer

simulation, and information communication technologies, mobile technologies. She can be

contacted at email: Ais_usen@mail.ru.

Zlikha Makhanova received the degree of Candidate of Pedagogical Sciences by

the decision of the Committee of the Knowledge and Science Industry of the Republic of

Kazakhstan on June 14, 2011. Currently she works as an Associated Professor of Information

Systems and Modeling Department at the Auezov University. She has authored or coauthored

more than 160 publications. Her research interests include mathematical modeling,

information communication technologies, mobile technologies, and web technologies. She can

be contacted at email: zlikha70@bk.ru.

Nurlybek Zhumatayev received a Ph.D. in Computer Science, Computer

Engineering and Management in 2012. Currently, he works as an associate professor of the

Department of Computer Engineering and Software at the Auezov University. He is the author

or co-author of more than 75 publications. His research interests include computer graphics,

computer modeling, information security, and data protection. He can be contacted at email:

nuralmiras@mail.ru.

Manat Amirov received his master degree in Computer Science in 2020.

Currently, he works as a senior lecturer of the Department of Information and Communication

Technologies at the Auezov University. He is the author or co-author of more than 25

publications. His research interests include computer science, and information communication

technologies. He can be contacted at email: manat_amirov@mail.ru.

Gulzhan Koishibekova received her master degree in Computer Science in 2016.

Currently, she works as a lecturer of the Department of Information Systems and Modeling at

the Auezov University. She is the author or co-author of more than 25 publications. Her

research interests include computer science, information systems, and mobile technologies.

She can be contacted at email: koyshybekovag@mail.ru.

https://orcid.org/0009-0002-5479-8719
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=aisaule+ussenova&btnG=
https://www.scopus.com/results/authorNamesList.uri?sort=count-f&src=al&sid=585ce52e4fa6f5f578f87162c7969406&sot=al&sdt=al&sl=44&s=AUTHLASTNAME(Usenova)+AND+AUTHFIRST(Aisaule)&st1=Usenova&st2=Aisaule&orcidId=&selectionPageSearch=anl&reselectAuthor=false&activeFlag=true&showDocument=false&resultsPerPage=20&offset=1&jtp=false¤tPage=1&previousSelectionCount=0&tooManySelections=false&previousResultCount=0&authSubject=LFSC&authSubject=HLSC&authSubject=PHSC&authSubject=SOSC&exactAuthorSearch=false&showFullList=false&authorPreferredName=&origin=searchauthorfreelookup&affiliationId=&txGid=1e8e220e5fdab56bde1bb5c140bec801
https://www.webofscience.com/wos/author/record/17167979
https://orcid.org/0009-0009-3375-0194
https://scholar.google.com/citations?hl=en&user=Ip1DPJcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56682845600
https://www.webofscience.com/wos/author/record/25057031
https://orcid.org/0000-0002-1469-028X
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=nurlybek+zhumatayev&btnG=
https://www.scopus.com/authid/detail.uri?authorId=57219280040
https://www.webofscience.com/wos/author/record/29562536
https://orcid.org/0000-0001-7087-7391
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=manat+amirov&oq=manat+amirov
https://orcid.org/0009-0007-6496-0798
https://scholar.google.com/scholar?hl=en&as_sdt=0,5&q=gulzhan+koishibekova&btnG=

