
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 22, No. 5, October 2024, pp. 1128∼1137
ISSN: 1693-6930, DOI: 10.12928/TELKOMNIKA.v22i5.26385 ❒ 1128

Optimizing multi-tenant database architecture for efficient
software as a service delivery

Sanjeev Kumar Pippal1, Sumit Kumar2, Ruchi Rani3
1GL Bajaj Institute of Technology and Management, Uttar Pradesh, India

2Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune, India
3Department of Computer Science and Engineering, School of Computer Engineering and Technology, Dr.Vishwanath Karad MIT World

Peace University, Pune, India

Article Info

Article history:

Received Jun 8, 2024
Revised Jul 15, 2024
Accepted Aug 5, 2024

Keywords:

Cloud
Memory efficient
Multi-tenant database design
Query performance
Software as a service

ABSTRACT

A multi-tenant database (MTDB) is the backbone for any cloud app that em-
ploys a software as a service (SaaS) delivery paradigm. Every cloud-based SaaS
delivery strategy relies heavily on the architecture of multitenant databases. The
hardware and performance costs for quicker query execution and space savings
provided by the architecture of MTDBs are implementation costs. All tenants’
data may be kept in a single table with a common schema and database for-
mat, making it the most cost-effective MTDB configuration. The arrangement
becomes congested if tenants have varying storage needs. In this research, we
present a space-saving architecture that improves transactional query execution
while avoiding the waste of space due to different attribute needs. Extensible
markup language (XML) and JavaScript object notation (JSON) compare the
proposed system against the state of the art. The suggested multitenant database
architecture reduces unnecessary space and improves query performance. The
experimental findings show that the suggested system outperforms the state-of-
the-art extension table method.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sumit Kumar
Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University)
Pune 412115, Maharashtra, India
Email: er.sumitkumar21@gmail.com

1. INTRODUCTION
Cloud computing [1] can provide software and hardware as a service using technologies such as vir-

tualization and service-oriented architecture. Software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS) are the three most common types of cloud service delivery (infrastructure as
service). The core of any successful SaaS is multitenancy. It describes a highly customizable software solution
that can be utilized by several companies (tenants) and is highly adaptable to the needs of each company and
employee. Cost and efficiency benefits are realized by the cloud in the SaaS model thanks to the multitenant
database. Cloud computing has several advantages over conventional applications. These include a ”pay as
you go” approach, more business agility, a lower total cost of ownership, a more fault-tolerant system, quicker
startup time, and greater scalability. For a SaaS-based cloud service [2], a multi-tenant database (MTDB) [3]
meeting the above criteria is essential. Cloud-compliant services for specialized applications like enterprise
resource planning (ERP), customer relationship management (CRM), project management (PM), banking, and
email need an MTDB that is both space-efficient and extremely query-efficient. Many tables would be nec-

Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA



TELKOMNIKA Telecommun Comput El Control ❒ 1129

essary to accommodate the various functional needs of the concerned tenants with a subset of shared aims.
The aforementioned programme necessitates a MTDB to store its data. The cost of resources may be reduced,
resource usage can be improved, and efficiency can be increased by designing databases to accommodate many
users.

The amount of isolation is maximum due to the lack of resource sharing in the case of a separate
database design method to implement multitenancy, whereby each tenant uses their database at a high expense
for maintenance, procurement, and installation. However, with a shared database with a different schema
architecture, the database is shared across distinct schema. Thus, there is still some isolation. This architecture
is easy to create and very inexpensive. The cost savings from the shared database and shared schema model
of multitenancy are especially noticeable since the sharing occurs at the schema level, allowing many tenants
to use a single database server instance. Moreover, it reduces the cost of hardware and software while offering
the same degree of security, but software may be used to establish isolation.

Section 1 represents a brief introduction, and section 2 iterates through the short literature review
report with different types of tables proposed in the literature. Section 3 outlines the proposed method and
design. Section 4 analyzes and discusses performance evaluation. Finally, section 5 is the conclusion, briefly
summarizing the proposed model.

2. LITERATURE REVIEW
Follows are some of MTDB’s features that were used to showcase the case study:

2.1. Private table
There is a separate table for each renter. According to Aulbach et al. [4], the method used by private

tables makes it possible for each renter to have private tables. While all three tenants in Figure 1 are businesses,
they all have unique needs. As a result, all tables serve distinct purposes yet are kept together to accommodate
tenants’ requirements. The private table approach of MTDB ensures that each tenant has their unique schema,
eliminating the need for any data exchange and allowing for a high meta-data/data ratio and minimal buffer
use.

Figure 1. Private table

2.2. Universal table layout
In this method, which universal relation developed [5], [6], each column in a table is stored in its

separate row. The table is structured with a tenant column, a table column, and a fixed number of generic data
columns (e.g., 250). The idea for this method was first presented in a study by Maier and Ullman in 1983. The
primary benefit of this method is that it eliminates the need to generate fresh DDL when implementing new
changes. Unfortunately, indexing is not an option with these generic columns. Another drawback is that this
database will have many rows with empty data. The database management system (DBMS) needs to cope with
this well. The design needs to be revised due to including numerous NULL values, which are not type-safe and
need casting, and the need for indexing capability.

Optimizing multi-tenant database architecture for efficient software as ... (Sanjeev Kumar Pippal)



1130 ❒ ISSN: 1693-6930

2.3. Extension tables
Extension tables are a hybrid of the basic table and private table designs. Tables are shared across

tenants. However, tenants with unique data needs may create extension tables. In addition, it is possible to
share extension tables. Separate tables for extensions are now available. It has a better design than the private
table structure. However, the number of tables still rises as the number of tenants increases because of the need
for an additional join at runtime and the row column needed for rebuilding the row. There are fewer tables in
this configuration than in the private table layout. Extension table illustrates how the hospitality ACCOUNT and
sports ACCOUNT tables, which hold the relevant data for each tenant, are linked through the tenant id attribute
to accommodate the various needs of each tenant. Since row and column are both utilized to retrieve records,
decomposing extension tables into several tables necessitates an additional join at runtime. It provides a more
accurate depiction than the private table arrangement, and the number of tables may increase proportionally as
the number of renters does.

2.4. Pivot tables
Each attribute value in the logical table has its row, making this a generic and type-safe multitenant

database architecture. Because of how it was made, the need to deal with NULL values was removed entirely.
A pivot table is where each field’s value is kept in its row. Each data type has a specific pivot table, such as
”Pivot int” and ”Pivot string”. There is an improvement over UTL in that it requires actual typing instead of
just a table. Thus, valuable indexes may be made for these tables. A pivot table is built for only one column
[7].

2.5. Chunk folding
Since it is based on pivot tables, the general design works best when the dataset can be split into dense

subgroups. If highly populated subsets can be removed, reconstruction will need fewer joins. The fact that it
can be indexed is a bonus. This approach, dependent on chunk size, also reduces the meta-data/data ratio. In
the chunk folding method [8], these chunks are folded in different tables and combined.

A single chunk table contains all extensions, while the accounts table is the primary data storage, as
shown in Figure 2. An integral part of the tables is a ”Tenantid” property that links each row to its corresponding
tenant. In all, four different fields may be manipulated in the AccountROW table. Data values of type integer
or string may be persisted for individual logical columns in the logical table using the ”number” and ”string”
attributes, respectively. Chunk folding needs to consider the need for extensibility in programmes like CRM
and ERP.

Figure 2. Chunk folding

2.6. Multi-tenant shared table
This method of multitenant database architecture [9] divides the storage needs of features common

to all tenants. In a single schema application, just one schema explores the difficulty of scaling a multi-tenant
shared table. Jacobs suggested methods like the shared machine, process, and table. The multitenant design
presents several difficulties discussed in [10], [11]. Application-level security for multimedia applications is
detailed in [12]. For example, Kerberos [13], [14] may be used for security, and mutual authentication trust can
be established using the methods described in [15], [16].

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 5, October 2024: 1128–1137



TELKOMNIKA Telecommun Comput El Control ❒ 1131

2.7. Improved extension table
According to Chong et al. [17], the most popular industrial MTDB is an enhanced form of an exten-

sion table. The system holds each tenant’s data in its table, and the metadata associated with that table is stored
in a different database. Figure 3 shows an improved extension table.

Figure 3. Improved extension table

Most hosted services employ query transformation to transfer several logical tenant schemas in the
application to a single multi-tenant physical schema in the database, using features such as tenant ID. Limits
may be set on the total database queries (80-100 user sessions). This strategy’s scalability is restricted by the
number of tables that can be stored in the database, which is constrained by the amount of accessible main
memory. Because each table in MYSQL is allotted 8 KB of RAM, 800 MB of storage space is needed to
store 1,000,000 tables. Additionally, there is intense competition for the remaining cache space since buffer
pool pages are allotted individually for each table. Therefore, once a database server has more than about
50,000 tables, performance tends to suffer. Reducing the number of tables should be a top focus to minimize
performance issues.

Any software delivered as a service must have highly available databases [18]. SaaS applications use
multitenant database systems as their backend has grown exponentially [19]. The MTDB system is accessible
through the SaaS distribution mechanism. MTDB architectures provide CRM, supplier relationship manage-
ment (SRM), and business intelligence (BI). Elastic extension table (EET) is a MTDB architecture, and Yaish
and Goyal [20] presented a framework with an intermediary database layer allowing software applications and
relational database management systems (RDBMS) to obtain and store data in EET. The suggested design
needs a thorough evaluation of its performance. Matthew et al. [21] discuss the need for MTD databases,
the difficulties of deploying MTD, the need for database migration to achieve MTD’s flexibility, and the many
elements that go into deciding the MTD models to use. MTDB, difficulties in implementing MTD, database
migration for flexibility in MTD, and variables impacting the selection of MTD models are all identified and
summarised in [21]. Elmore et al. [22] imagine a DBMS in which multitenancy is viewed as virtualization
and where models of database multitenancy are analyzed from the perspectives of availability and scalability,
with further standardization of the forms of operation of MTDB in the cloud for an autonomous, elastic, and
manageable multitenant database. Data security, isolation, query performance, and response time speed are
only some challenges addressed in the novel MTDB schema architecture suggested in [23]. The suggested
technique has the drawback of sacrificing one aspect of performance for the other: storage capacity.

Yaish et al. [24] have expanded their previous work on EET to show how the tables of tenants may
be modified to meet the needs of specific users. Significant performance gains were seen when compared to
SalesForce.com’s commercial MTDB. Curino et al. [25] outline three main challenges that must be overcome
before companies can effectively outsource their database software and management. This outsourcing ap-
proach should appeal to many users and be cost-effective for the service providers. They introduce a new way
of handling databases called ”database-as-a-service” (DBaaS), which ensures that everything from setting up
and scaling the database to managing its performance, backups, privacy, and who can access it is handled by
the service provider. To make this new approach even better than existing methods, the DBaaS model focuses
on handling different types of tasks that the database needs to handle. It also allows users to run SQL queries

Optimizing multi-tenant database architecture for efficient software as ... (Sanjeev Kumar Pippal)



1132 ❒ ISSN: 1693-6930

on encrypted data, meaning sensitive information stays secure even while processing. Additionally, it uses a
smart way of dividing the data, called graph-based data partitioning, to ensure the database can handle many
tasks without slowing down. To guarantee data integrity with privacy and performance isolation in multi-tenant
blockchain-based systems, Weber et al. [26] have developed a scalable platform design. The suggested archi-
tecture provides each tenant with their authorized blockchain, where they may store their data and run smart
contracts independently. Data integrity, performance isolation, data privacy, configuration flexibility, availabil-
ity, cost-effectiveness, and scalability are all attained by the suggested architecture, as shown by the assessment
results. Ma and Yang [27] analyze the characteristics of multitenant data and suggest multitenant multiple
wide tables that are vertically scalable. This layout strikes an ideal middle ground between tenant preferences
and overall efficiency. The experimental findings show that in terms of spatial intensity and read performance,
multiple-wide tables with vertical scalability are superior to both single-wide tables and single-wide tables
with vertical scalability. According to Song et al. [28], there are two ways to personalize a multi-tenant SaaS
using microservices: invasive and non-intrusive. With its ability to strike a good mix between independence,
integration, and economies of scale, the microservice-based customization solution shows promise for meeting
general customization needs. Using foundation DB, Chrysafis et al. [29] suggest record layer is a free and
open-source framework that implements a relational database-like data store in the form of a record-oriented
data layer on top of foundation DB. They also show how Apple’s cloud backend service, cloud kit, uses the
record layer to provide apps that serve hundreds of millions of people with a strong abstraction layer. The aim
of [30] is to highlight the trade-offs, resemblances, and distinctions that need to be considered when determin-
ing and implementing the required level of separation between tenants. This study evaluates different levels of
tenant isolation through a cross-case analysis of selected open-source cloud-hosted software engineering tools.
Our findings reveal that factors such as minimal client latency and bandwidth during the transfer of multiple
files between repositories, as well as the substantial size of generated data, intensive resource usage by specific
software operations, and varying workload levels, can diminish the extent of isolation. They also imply that
software architects should consider the compromises, similarities, and differences we highlight to meet the
tenants’ demands for privacy. Examples of several approaches to database architecture for the Account tables
of three tenants with identifiers 15, 30, and 40. Tenant 15 has a hotel-related extension, tenant 30 has a sports-
related extension, and tenant 40 has an expansion for agents. Follows are some of MTDB’s features that were
used to showcase the case study:

3. METHOD
The suggested method, seen in Figure 4, involves using a single table to hold all characteristics, an

extension of the shared database common schema approach. As illustrated in Figure 4, XML/JSON fields are
used as table attributes to handle the varied needs, and these fields contain all tenancy-specific attributes given
as XML/JSON tagged objects. All 4th-generation programming languages come equipped with XML/JSON
file parsers, such as simple API for XML (SAXn), document object model (DOM), or JSON parsers, making
reading and processing these files simple. Space savings are built into the MTDB for cloud applications under
the SaaS delivery paradigm since the number of required characteristics decreases as the number of unique
attributes across tenants decreases. The design also improves the basic recommended approach’s query per-
formance significantly. All queries, except select ones that need parsing, benefit from the suggested layout.
Our implementation of a caching system for select queries, shown schematically in Figure 5 allows us to boost
speed significantly.

Figure 4. Proposed XML table

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 5, October 2024: 1128–1137



TELKOMNIKA Telecommun Comput El Control ❒ 1133

Figure 5. Query processing framework

3.1. Method
The test environment uses an ERP-CRM-hosted service. Customer requests are made through their

browsers. The service is used to benchmark MTDB designs and is described as a standard MTDB for SaaS
cloud distribution. The following permutations have been implemented:
- Using XML or JSON for the XML attribute
- Using XML or JSON file as a link in the attribute

We’ve built up an experiment with 10 nodes, all hosted on the cloud. All of the data at these vertices
reflects queries made by database users. The use of resources by these nodes is seen in Figure 6. In the
configuration, we keep track of how much space each node takes up on its memory, CPU, network, and disc.

Figure 6. Testbed configuration

3.2. Taking into account the extension table method
Using the setup mentioned above, we evaluate the efficiency of our proposed multitenant-based database

queries to that of an extension table-based method. XML and JSON implementations, with and without
application-level caching, are compared for speed. Both methods’ efficiencies are evaluated in metrics like
the number of general SQL queries run per unit time (i.e., insertion, deletion, updation, and selection). Finally,
we compare the two methods’ capacity for storing newly added tenant-specific attributes, measuring it against
the average query execution time for queries linked to adding attributes to the database.

Figure 7 shows the results of running some sample SQL queries using both methods. Compared to the
current method, the chart clearly shows that the suggested method executes 318 (using JSON) and 124 (using
XML) SQL insertion queries faster. Additionally, more than 750 (JSON) and 564 (XML) SQL deletion queries
are conducted using the suggested technique instead of the extension table strategy. Similarly, update queries
show a performance boost over an extension table-based strategy. The proposed approach provides faster query
execution rates than the extension table-based approach, but the extension table-based approach outperforms
the proposed approach in SQL selection queries. However, nearly the same performance is achieved when both
approaches are used with caching. The algorithm for selecting caching is shown in Algorithm 1.

Optimizing multi-tenant database architecture for efficient software as ... (Sanjeev Kumar Pippal)



1134 ❒ ISSN: 1693-6930

Figure 7. Query performances

Algorithm 1: Algorithm for selecting caching
Input: query type, query txt
Output: Query Execution

1 switch query type do
2 case 1 do
3 Insertion
4 end
5 Query Execution for insertion Query;

1. User supplied information is inserted for all common attributes between the tenants in a conventional way.
2. XML/JSON attribute: For the XML or JSON attribute, an XML/JSON file is formed with user-supplied information.
3. All user-supplied information is tagged with appropriate tags and inserted further.

6 case 2 do
7 Updation
8 end
9 Query Execution for updation Query;

1. User supplied information is inserted for all common attributes between the tenants in a conventional way.
2. XML/JSON attribute: For the XML or JSON attribute, the attribute to be updated is fetched from XML/JSON attribute using its tag.

After modification to tagged value, the complete modified XML file is pushed back into the database.
3. Cached data is invalidated and marked dirty.

10 case 3 do
11 Deletion
12 end
13 Query Execution for Deletion Query;
14 Information is deleted for all common attributes between the tenants as well as XML or JSON attributes in a conventional way. case 4 do
15 Selection
16 end
17 Query Execution for Selection Query without caching;

1. Information is retrieved for all common attributes between the tenants in a conventional way.
2. Information stored in the XML or JSON attribute is parsed with SAX, DOM, or JSON parser.

Query Execution for Selection Query with caching;

1. A cache is checked for a non-dirty copy of information, and if not present in the cache, the below steps are followed.
2. Information is retrieved for all common attributes between the tenants conventionally.
3. Information stored in the XML or JSON attribute is parsed with SAX, DOM, or JSON parser.

18 end

4. PERFORMANCE EVALUATION
To evaluate how well the two approaches work in light of adding new characteristics to the database,

the execution time of equivalent queries in both approaches is tracked—no more than 15. Figure 8 displays the
outcomes of these two approaches. The graph reveals that our recommended approach finishes each query with
75 additional attributes in around 5.382 ms. In contrast, the average query execution time for the extension
table-based approach rises to 20.708 ms.

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 5, October 2024: 1128–1137



TELKOMNIKA Telecommun Comput El Control ❒ 1135

More research is needed to estimate the space needed in the database to accommodate the tenant-
specific new properties. Here, we track how much room is required for new features in the table-based tech-
niques we propose and develop. Figure 8 demonstrates that the proposed approach can accommodate far more
data than the extension table approach, meaning there is no typical growth in storage needs as the number of at-
tributes grows. The proposed method uses XML to store tenant-specific attributes, allowing for more attributes
to be added with minimal storage size (which is further improved by using JSON). In contrast, the extension-
based method requires the creation of a linked and mapped table, which increases the storage space required for
the newly added attributes. Figure 9 shows how the suggested method uses much less space than the extension
table-based alternative to store the same amount of data. As seen in Figure 10, the suggested method reduces
the time it takes to run several queries simultaneously compared to the extension table method.

Figure 8. Performance for added attributes Figure 9. Storage requirements for added attributes

Figure 10. Concurrent query execution

5. CONCLUSION
In the proposed system, the MTDB is the back end. XML field attributes store several attributes in

a single field as an XML/JSON file, reducing storage needs while increasing transactional efficiency. The
experimental results demonstrate that the proposed method not only achieves efficient query execution per
unit time but also needs significantly less query execution time for added attributes and can accommodate a
greater number of attributes with a correspondingly smaller increase in storage space. The suggested method
consistently outperforms the state-of-the-art in all experiments. The design’s query speed and ability to save
storage space are strong suits.

Optimizing multi-tenant database architecture for efficient software as ... (Sanjeev Kumar Pippal)



1136 ❒ ISSN: 1693-6930

REFERENCES
[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” NIST, Sep. 2011, doi: 10.6028/nist.sp.800-145.
[2] M. Hui, D. Jiang, G. Li, and Y. Zhou, ”Supporting Database Applications as a Service,” 2009 IEEE 25th International Conference

on Data Engineering, Shanghai, China, 2009, pp. 832-843, doi: 10.1109/ICDE.2009.82.
[3] D. Jacobs and S. Aulbach, ”Ruminations on Multi-Tenant Databases,” Datenbanksysteme in Business, Technologie und Web (BTW

2007), 12. Fachtagung des GI-Fachbereichs ”Datenbanken und Informationssysteme” (DBIS), Aachen, Germany, Proceedings,
2007, pp 514–521.

[4] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-Tenant Databases for Software as a Service:Schema-Mapping
Techniques,” SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp.
1195-1206, doi: 10.1145/1376616.137673.

[5] H. Hacigumus, B. Iyer and S. Mehrotra, ”Providing database as a service,” Proceedings 18th International Conference on Data
Engineering, San Jose, CA, USA, 2002, pp. 29-38, doi: 10.1109/ICDE.2002.994695.

[6] D. Maier and J. D. Ullman, “Maximal objects and the semantics of universal relation databases,” ACM Transactions on Database
Systems (TODS), vol. 8, no. 1, pp. 1 - 14, 1983, doi: 10.1145/319830.319831.

[7] E. J. Domingo, J. T. Nino, A. L. Lemos, M. L. Lemos, R. C. Palacios and J. M. G. Berbı́s, ”CLOUDIO: A Cloud Computing-Oriented
Multi-tenant Architecture for Business Information Systems,” 2010 IEEE 3rd International Conference on Cloud Computing, Mi-
ami, FL, USA, 2010, pp. 532-533, doi: 10.1109/CLOUD.2010.88.

[8] G. P. Copeland and S. N. Khoshafian. “A decomposition storage model,” ACM SIGMOD Record, vol. 14, no. 4, pp. 268-279, 1985,
doi: 10.1145/971699.318923.

[9] M. Grund, M. Schapranow, J. Krueger, J. Schaffner, and A. Bog, ”Shared Table Access Pattern Analysis for Multi-Tenant Appli-
cations,” 2008 IEEE Symposium on Advanced Management of Information for Globalized Enterprises (AMIGE), Tianjin, China,
2008, pp. 1-5, doi: 10.1109/AMIGE.2008.ECP.37.

[10] Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H. An, ”A Study and Performance Evaluation of the Multi-Tenant Data
Tier Design Patterns for Service Oriented Computing,” 2008 IEEE International Conference on e-Business Engineering, Xi’an,
China, 2008, pp. 94-101, doi: 10.1109/ICEBE.2008.60.

[11] C. -P. Bezemer and A. Zaidman, “Challenges of Reengineering into Multi-Tenant SaaS Applications”, Report TUD-SERG-2010-
012, Delft University of Technology Software Engineering Research Group Technical Report Series, pp. 1-12, 2010.

[12] P. C. Chapin, C. Skalka, and X. S. Wang, “Authorization in trust Management: Features and Foundations,” ACM Computing Surveys
(CSUR), vol. 40, no. 3, pp. 1 - 48, 2008, doi: 10.1145/1380584.1380587.

[13] Neuman C. RFC 1510, “The Kerberos network authentication service (V5),” 1993.
[14] P. L. Hellewell, T. W. van der Horst and K. E. Seamons, ”Extensible Pre-authentication Kerberos,” Twenty-Third Annual Computer

Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 2007, pp. 201-210, doi: 10.1109/ACSAC.2007.33.
[15] C. Lin and V. Varadharajan, ”Trust based risk management for distributed system security - a new approach,” First International

Conference on Availability, Reliability and Security (ARES’06), Vienna, Austria, 2006, pp. 8-13, doi: 10.1109/ARES.2006.139.
[16] P. Liu, R. Zong, and S. Liu, ”A New Model for Authentication and Authorization across Heterogeneous Trust-Domain,”

2008 International Conference on Computer Science and Software Engineering, Wuhan, China, 2008, pp. 789-792, doi:
10.1109/CSSE.2008.1152.

[17] F. Chong, G. Carraro, R. Wolter. Multi-tenant data architecture. Available online: http://msdn.microsoft.com/en-
us/library/aa479086.aspx. (Date Accessed 6 March, 2020).

[18] S. Pippal, S. Singh, R. K. Sachan, and D. S. Kushwaha, ”High availability of databases for cloud,” 2015 2nd International Confer-
ence on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2015, pp. 1716-1722.

[19] S. K. Pippal and D. S. Kushwaha, ”A simple, adaptable and efficient heterogeneous multi-tenant database architecture for ad hoc
cloud,” Journal of Cloud Computing: Advances, Systems and Applications, 2013, doi: 10.1186/2192-113X-2-5.

[20] H. Yaish and M. Goyal, ”A Multi-tenant Database Architecture Design for Software Applications,” 2013 IEEE 16th International
Conference on Computational Science and Engineering, Sydney, NSW, Australia, 2013, pp. 933-940, doi: 10.1109/CSE.2013.139.

[21] O. Matthew, C. Dudley, and R. Moreton, ”A review of multi-tenant database and factors that influence its adoption,” UK Academy
for Information Systems Conference Proceedings 2014, 2014.

[22] A. J. Elmore, S. Das, D. Agrawal, and Amr El Abbadi, ”Towards an Elastic and Autonomic Multitenant Database,” Proceedings of
the Network Database Workshop, 2011.

[23] A. I. Saleh, M. A. Fouad, and M. Abu-Elkheir, ”A Hybrid Multi-Tenant Database Schema for MultiLevel Quality of Service,”
International Journal of Advanced Computer Science and Applications (IJACSA), vol. 5, no. 11, pp. 132-139, 2014.

[24] H. Yaish, M. Goyal, and G. Feuerlicht, ”Evaluating the Performance of Multi-tenant Elastic Extension Tables,” Procedia Computer
Science, vol. 29, pp. 614-626, 2014, doi: 10.1016/j.procs.2014.05.055.

[25] C. A. Curino et al., ”Relational Cloud: A Database-as-a-Service for the Cloud,” CIDR 2011, Fifth Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, 2011, 235-240.

[26] I. Weber, Q. Lu, A. B. Tran, A. Deshmukh, M. Gorski, and M. Strazds, ”A Platform Architecture for Multi-Tenant Blockchain-
Based Systems,” 2019 IEEE International Conference on Software Architecture (ICSA), Hamburg, Germany, 2019, pp. 101-110,
doi: 10.1109/ICSA.2019.00019

[27] K. Ma and B. Yang, ”Multiple Wide Tables with Vertical Scalability in Multitenant Sensor Cloud Systems,” International Journal
of Distributed Sensor Networks, vol. 2014, pp. 1-10, 2014, doi: 10.1155/2014/583686.

[28] H. Song, P. H. Nguyen, and F. Chauvel, ”Using Microservices to Customize Multi-Tenant SaaS: From Intrusive to Non-Intrusive,”
Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices 2017/2019), 2019, pp.
1:1-1:18, doi: 10.4230/OASIcs.Microservices.2017-2019.1.

[29] C. Chrysafis et al., ”FoundationDB Record Layer: A Multi-Tenant Structured Datastore,” SIGMOD ’19: Proceedings of the 2019
International Conference on Management of Data, 2019, pp. 1787-1802, doi: 10.1145/3299869.3314039.

[30] L. C. Ochei, J. M. Bass, and A. Petrovski, ”Degrees of tenant isolation for cloud-hosted software services: a cross-case analysis,”
Journal of Cloud Computing, 2018, doi: 10.1186/s13677-018-0121-8.

TELKOMNIKA Telecommun Comput El Control, Vol. 22, No. 5, October 2024: 1128–1137



TELKOMNIKA Telecommun Comput El Control ❒ 1137

BIOGRAPHIES OF AUTHORS

Sanjeev Kumar Pippal received B.Tech degree from MJP Rohilkhand University, M.Tech,
and Ph.D. from MNNIT Allahabad. His area of interest is cloud computing, distributed computing,
and blockchain. He is certified in machine learning and deep learning. He has published over 30
research papers in SCI/ Scopus international journals and conferences. He has filed four patents and
published 02 patents. He can be contacted at email: Sanpippalin@gmail.com.

Sumit Kumar received a Bachelor’s degree in Electronics and Telecommunication from
Kurukshetra University, Kurukshetra, India in 2005, the Master’s degree from Guru Jambheshwar
University of Science and Technology, Haryana, India in 2008, and a Ph.D. degree from Jamia Millia
Islamia, Delhi, India in 2017. He works as a Professor at the Electronics and Telecommunication De-
partment of Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune,
Maharashtra, India. His research areas are machine learning and deep learning. He can be contacted
at email: er.sumitkumar21@gmail.com.

Ruchi Rani received a Bachelor’s degree in Computer Science Engineering from Kuruk-
shetra University, Kurukshetra, India in 2008, the Master’s degree from Maharshi Dayanand Uni-
versity, Haryana, India in 2012. She is currently pursuing a Ph.D. degree from the Department
of Computer Science Engineering, Indian Institute of Information Technology, Kottayam, Kerala,
and working as an Assistant professor at the Department of Computer Engineering and Technology,
School of Computer Engineering and Technology, Dr.Vishwanath Karad MIT World Peace Univer-
sity, Pune 411038, Maharashtra, India. Her research interests include machine learning and deep
learning. She can be contacted at email: ruchiasija20@gmail.com.

Optimizing multi-tenant database architecture for efficient software as ... (Sanjeev Kumar Pippal)

https://orcid.org/0000-0002-3720-0765
https://scholar.google.co.in/citations?user=Q9nCmF8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=54279333400
https://www.webofscience.com/wos/author/record/ABA-6837-2020
https://orcid.org/0000-0002-6332-2870
https://scholar.google.co.in/citations?user=jyP8jvoAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57190867920
https://www.webofscience.com/wos/author/record/S-6251-2017
https://orcid.org/0000-0002-6157-0272
https://scholar.google.com/citations?hl=en&user=FNyGEAYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56321161900
https://www.webofscience.com/wos/author/record/ABO-6638-2022

	Introduction
	Literature review
	Private table
	Universal table layout
	Extension tables
	Pivot tables
	Chunk folding
	Multi-tenant shared table
	Improved extension table

	Method
	Method
	Taking into account the extension table method

	Performance Evaluation
	Conclusion

