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 With today’s advanced technology and rapidly growing energy demands, the 

reliability of electrical power systems has reached an important level. With 

extensive monitoring and protection, system issues like voltage drops, power 

irregularities, and frequency variations can have destructive consequences on 

the power network. Therefore, as frequency relays play a critical role in 

protecting power generators and load equipment from power frequency shifts, 

relays have evolved from electromechanical to solid-state devices with 

ongoing optimization to handle integrated modern networks. Traditional 

numerical relays use Fourier transform to identify frequency changes, which 

necessitates numerous data samples and has limitations with transient 

waveform data. To address these challenges, this work proposes a new relay 

algorithm based on instantaneous discrete testing and wavelet transform for 

frequency analysis, aimed at enhancing relay performance. This new approach 

demonstrates promising advantages, including significant reductions in data 

sample requirements, compilation complexity, decision-making time, and 

improved handling of transient waveforms. 
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1. INTRODUCTION  

Because of today's technology revolution, rapid population expansion, and the significant rise in 

energy consumption, demand for electrical power systems has increased. Therefore, as electrical power is 

essential in all daily tasks, the protection of power generation, distribution, and electrical load is one of the 

main tasks of the power company [1]–[3]. In accordance with IEEE Standard C37.106-2003 (R2009), for power 

generation plant abnormal frequency protection, IEEE Standard C37.117-2007 (guide for the application of 

protective relays used for abnormal frequency load shedding and restoration), and IEEE Standard C37.102-

2006 (AC generator protection), the protective relay role is to trigger a system withdrawal from service when 

it experiences abnormality in a manner that could damage the network. When disruption occurs due to a large 

load added or taken off, the frequency of the grid may alter quickly due to the inertia presented in the grid. 

Therefore, it is vital to preserve the frequency of the grid within tolerable ranges, mainly in islanded mode. 

Therefore, utilizing frequency relays assists in continuing and stabilizing the frequency efficiently.  

As protective relays were invented to offer the last line of defense in an electrical network, they can 

be one of the most vulnerable to power system disturbances [4]. Yet, due to power quality, improper relay 
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operations may occur based on flawed input values [5]. Therefore, these protective devices have advanced 

significantly from electromechanical to solid-state devices to achieve the highest level of speed, accuracy, and 

reliability [6]. As power frequency variation occurs due to variance among power generation and load 

consumption, a growing number of power feeders (renewable resources) or a sudden increase in consumption 

load removal will lead to an unbalanced power system frequency with an over-frequency phenomenal [7]. On 

the other hand, as the power system experiences heavy load effects or losses from other generating sources, an 

under-frequency phenomenon will be observed. In either case, power generators are protected by the prime 

mover speed governor. In fact, an accurate frequency estimation is very essential for correct phasor assessment 

where a frequency error creates a phasor fault and causes failure in frequency detection, which leads to failure 

in protection and control functions. In case of failure and due to the compilation of power sources, distributed 

generation, and renewable energy sources connected to the power grid, an active guard such as a frequency 

relay must accurately perform to isolate the power system in case of frequency deviation beyond the tolerated 

limit and prevent a blackout by islanding [8]. Several papers have focused on the approaches and design of 

frequency relays to enhance fault detection. 

Numerical relays revolve around power system protection and control to provide advanced reliability 

in [9]. However, as in [3], [10], [11], continuous monitoring is required over a long period. That is, as many 

power failures may occur in microseconds to hours, a large amount of data will be collected, stored, compiled, 

and transmitted to the circuit breaker. It was suggested to adjust the fault threshold at which disturbances occur 

to prevent relay memory overload and expedite response time in [10]. Yet, as power systems continuously 

expand in size and configuration and a variety of input resources are attached to the overall power system, such 

as photovoltaics and windmills, protection devices must be optimized to handle the massive effect of potential 

frequency changes. On the other hand, in [12]–[17], the microgrid was proposed as a promising structure to 

advance fault performance. Yet, as microgrids scaled for small distribution and load systems, large-scale 

distribution networks could not be implemented as a result of technical difficulty and were extremely expensive 

[15], [18]. It was proposed to set a shedding predetermine load as a frequency drop under a threshold called 

under frequency load shedding (UFSL) in [19]. However, such a technique may lead to the destruction of 

power plants (turbines and generators) since auxiliaries cannot sustain such a low frequency [19]–[21]. While 

other works had a focus on islanding detection using the phase-space technique [22]–[24], some works 

proposed algorithms by fuzzy logic to detect UFLS [25]. Yet, as these solutions can be applied to improve 

network frequency stability, blackouts are still subject to occurrence [18]. Therefore, early detection of power 

network frequency deviation could give the best indication of power system conduct and determine the best 

action. However, these strategies have shown limitations based on relay conventional algorithms due to 

dynamic transient waveform changes and a large number of analyzed data samples [3]. As a result, a massive 

storage area is required, and complicated algorithms are used. Meanwhile, this paper will discuss the further 

enhancement that can be made to the numerical frequency algorithm to improve response time, precision 

measurement, and compiling process by implementing a new analysis algorithm and increasing fault detection. 

This work uses the discrete wavelet transform (DWT) to improve the performance of modern 

numerical relays. This technique will allow for the analysis of frequency components before numerical relay 

computation. By eliminating noise interference and reducing computational processes, unexpected changes in 

the waveform frequency data can be detected. Numerous DWTs will be considered in distinct operating to 

define the dependability of the system in extracting and characterizing power system frequency faults. The 

proposed technique exploits the special capabilities of the wavelet transform’s decomposition, dilation, 

filtering, and translation into the power frequency analysis [26]–[30]. As an ultimate goal, this approach will 

facilitate a faster, simpler, and more efficient power frequency fault detection algorithm, embedded into a 

digital power frequency relay to differentiate between normal and faulty conditions for instantaneous testing 

without changing relay settings. 

 

 

2. POWER SYSTEM FREQUENCY EFFECT AND PROTECTION MODEL 

As power system frequency control allows the flow of generated power waveforms by numerous 

generators, system frequency could be subject to variations due to load and generator mismatches [31]. That 

is, in the event of generator failure, severe overload demands will occur, driving the power line system 

frequency to drop, as illustrated in Figure 1. Meanwhile, in the event of an unexpected load drop, a rise in 

power system frequency will result, as shown in Figure 2. 

Therefore, in either case, frequency parameters are the main element in power system classification [32], 

where the characterization of the power system must be maintained within a predefined frequency level. As 

frequency variations occur in the power system, a severe failure could arise on the generation, distribution, and 

consumer sides. The effect of frequency variation can be drastic in both long-term and instantaneous 

consequences. That is, on the load side, the apparatus is designed to work at a standard frequency (50 Hz or  

60 Hz) for safety. As frequencies distort, the effectiveness and life span of apparatus and electrical power cables 
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will decline. While frequency spikes will lead to cable insulation damage and catastrophic motor speed, frequency 

drops cause transformers and motors to overload and have a high potential for short circuits over some time. 
 
 

 
 

Figure 1. Frequency drop due to severe overload demands 
 

 

 
 

Figure 2. Frequency rise in power system 

 

 

3. FREQUENCY RELAY 

To maintain a healthy power system, any deviation in system frequency must be detected as a sign of an 

imbalance between load and generation. However, due to the rise of power generation by renewable energy 

sources such as wind, solar, and water flow, the distribution system is now subject to frequency alteration due to 

various intermittent inputs [1], [2], [33]. As a result, frequency relays play a critical role in sensing power system 

frequency alteration and initiating load shedding to preserve and restore balance to parts of the network in cases 

of under-frequency phenomena or disconnecting generators in cases of over-frequency. As frequency is defined 

as a number of recurrences over a precise period, the power system frequency is the number of completed voltage 

or current signals series per second. However, as in conventional synchronous generator power systems, the power 

frequency source is regularly based on the synchronous generator rotation speed as in (1): 

 

𝑓𝑒 = 𝑓𝑚 ×
𝑝

2
 (1) 

 

where 𝑓𝑒 is electrical frequency (voltage/current signal frequency); 𝑓𝑚 is mechanical frequency; and 𝑃 is 

number of poles. 

Yet, with the rapid increase of renewable energy generation and transient dynamics, power grids must 

be maintained in steady operation despite the potential variations in frequency that can cause network failure [34]. 

Renewable integration influences grow into substantial stability issues at larger size penetrations [35], [36]. 

Therefore, conventional frequency relays based on the performance of conventional transmission systems need 

to be replaced with digital relays, as frequency rapid changes are likely. Since numerical power relays rely on 

digital analysis using frequency measurement algorithms, analog power waveforms are converted into 

numerical data for processing. This involves steps like digitization (via an analog-to-digital converter), relay 

algorithm processing, and digital output based on pre-set thresholds [18], [30], as illustrated in Figure 3. 

Generally, as the fundamental frequency of a power network is predefined as 50 Hz or 60 Hz (based 

on the network configuration), the main role of the frequency relay is to define and detect the network 

emergency condition. However, to detect power system frequency dynamic changes, a relative frequency 
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deviation (RFD) for instantaneous frequency is applied to measure the difference between the fundamental 

frequency 𝑓𝑛 and the system frequency 𝑓𝑠, and in (2): 

 

𝑅𝐹𝐷 =
𝛥𝑓

𝑓𝑛
=

𝑓𝑠−𝑓𝑛

𝑓𝑛
 (2) 

 

 

 
 

Figure 3. Numerical frequency relay work scheme 

 

 

The analyzed output waveform provides essential information about the system’s condition when 

frequency components deviate from the nominal value. Since certain frequency variations are permissible, the 

numerical relay algorithm must assess the waveform, quantify deviations from the nominal frequency, and 

meet specific requirements to stabilize the power system and operate within predefined limits. 

 

 

4. WAVELET TRANSFORM VS FOURIER TRANSFORM 

In power systems, one of the key elements to maintaining a healthy system provider is maintaining 

power frequency at a fixed frequency rate. That is, as two major systems worldwide, 50 and 60 Hz, are used 

with an allowable deviation of ±0.05%, power frequency must be constantly analyzed to detect allowable 

deviation and cut off the power supply in case of harmful frequency alteration. In classical frequency analysis, 

the Fourier transform is a powerful means to characterize waveforms based on the transformation of time-

based domains into frequency pattern domains [15], [37], as shown in Figure 4. 
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Figure 4. Fourier transform algorithm from time to frequency domain 
 

 

Yet, a major drawback can be identified as the waveform time characteristic  

disappearing [28], [29], [31], [32]. As a result, frequency domain analysis prevents distinguishing frequency 

change time occurrences [33]. For a stationary signal with a constant frequency, the Fourier transform has 

shown great analysis. However, in transitory frequency changes, the Fourier analysis will lose its ability to spot 

frequency data changes [33], [38]. Therefore, in this work, a new algorithm of wavelet transform is proposed 

to analyze power frequency in a numerical relay. With special parameters and mathematical functions based 

on mother wavelet as in (3): 

 

𝜓(𝑡) = |𝑎|𝜓 {
𝑡−𝜏

𝑎
} (3) 

 

Wavelets have two distinctive features dilation and translation that allow for adjustable window 

analysis of waveform frequency components at various scales. This enables the development of data mining 

models and the extraction of transient information, as illustrated in Figure 5. 
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Figure 5. Wavelet transform analysis in time and frequency 
 

 

With a mean value of zero, a numerous wavelet can be extracted from a specific mother wavelet 𝜓 as 

a tool for better window analysis fit and characterization in time and frequency domains. In addition, the 

wavelet transform is compiled as a bank of filters. While low-pass filters extract the approximation coefficients 

of the waveform, high-pass filters convey the details of the coefficients to present waveform data in numerous 

frequency components at diverse resolutions [30], [33], as shown in Figure 6. 
 

 

 
 

Figure 6. Wavelet high and low pass filtering process 
 

 

The wavelet transform enables frequency analysis by breaking down the waveform into two meaningful 

sets of data samples, each representing half of the decomposed waveform. This process can be repeated across 

multiple levels of decomposition while preserving the waveform’s energy [28], [29], [31]–[33], [38], as shown in 

Figure 7. 
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Figure 7. Wavelet decomposition process into half the waveform in each decimation level 
 

 

As a result, with the wavelet special property of data decomposition, an instantaneous power 

frequency step was interleaved as in (4), and special banks of filtering for approximation and details 

coefficients provided scaling and decomposition as in (5). 
 

𝑓 ≅ (I,|𝑤[1]|,I,|𝑤[2]|,...,I,|𝑤[𝑛]|...) (4) 
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By obtaining low pass coefficients [
√2

2
(𝐴 − |𝑤(1)|), 

√2

2
(𝐴 − |𝑤(2)|),⋯ ,

√2

2
(𝐴 − |𝑤(𝑛)|)], the decision 

to trigger the circuit breaker was based on coefficients acceding to a predetermined frequency step threshold for a 

wavelet. The predetermined threshold values were based on actual waveform maximum and minimum data 

coefficients at a range of frequency steps for a specific wavelet. Yet, as an orthogonal wavelet with compact support 

preserves energy, decimated integers are obtained in multiples of the DWT scale [28], [29], [31]–[33], [38]. As a 

result, in this study, the original waveform was decimated to 1,477 data samples in the first decomposition level and 

738 samples in the second level. As shown in Tables 1 to 3, for this case study, wavelet coefficients for a range of 

frequencies step within the tolerated frequency of 49.5–50.5 Hz and beyond for the Daubechies, Haar, and Coiflets. 
 
 

Table 1. Daubechie12 wavelet coefficients analysis for a range of frequencies 48.8-51.2 Hz 
Phase A 

Over frequency-hertz  50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9 51.0 51.1 51.2 
Maximum frequency step 364.76 695.22 962.51 1239.70 1288.70 1346.50 1413.50 1416.20 1422.10 1439.70 1425.10 1459.20 

Under frequency-hertz  49.9  49.8 49.7 49.6 49.5 49.4 49.3 49.2 49.1 49.0 48.9 48.8 

Minimum frequency step -367.83 -689.68 -936.48 -1223.10 -1321.10 -1406.20 -1439.10 -1440.10 -1438.70 -145.00 -1429.10 -1441.10 
Phase B 

Over frequency-hertz  50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9 51.0 51.1 51.2 

Maximum frequency step 366.93 648.51 952.17 1213.30 1294.70 1325.40 1449.00 1448.80 1469.40 1445.20 1426.50 1435.50 
Under frequency-hertz  49.9 49.8 49.7 49.6 49.5 49.4 49.3 49.2 49.1 49.0 48.9 48.8 

Minimum frequency step -337.66 -635.02 -1004.10 -1271.60 -1355.40 -1432.20 -1451.60 -1451.70 -1428.90 -1443.90 -1438.20 -1447.20 

Phase C 
Over frequency-hertz  50.1 50.2 50.3 50.4 50.5 50.6 50.7 50.8 50.9 51.0 51.1 51.2 

Maximum frequency step 368.06 715.89 980.54 1211.60 1271.90 1321.50 1407.40 1452.80 1462.00 1444.40 1447.70 1445.40 

Under frequency-hertz  49.9 49.8 49.7 49.6 49.5 49.4 49.3 49.2 49.1 49.0 48.9 48.8 
Minimum frequency step -372.23 -672.53 -958.27 -1265.80 -1345.90 -1433.60 -1441.00 -1447.80 -1463.80 -1451.40 -1432.90 -1449.20 

 

 

Table 2. Coif5 wavelet coefficients analysis for a range of frequencies 48.8-51.2 Hz 
Phase A 

Over frequency-hertz  50.1  50.2  50.3  50.4  50.5  50.6  50.7  50.8  50.9  51.0  51.1  51.2  

Maximum frequency step 319.95 599.84 864.76 1100.90 1233.30 1299.90 1282.50 1256.60 1249.90 1264.40 1256.90 1245.50 

Under frequency-hertz  49.9  49.8  49.7  49.6  49.5  49.4  49.3  49.2  49.1  49.0  48.9  48.8  

Minimum frequency step -322.21 -610.02 -869.08 -1102.00 -1228.10 -1237.50 -1236.30 -1245.00 -1245.00 -1245.60 -1239.10 -1235.10 

Phase B 

Over frequency-hertz  50.1  50.2  50.3  50.4  50.5  50.6  50.7  50.8  50.9  51.0  51.1  51.2  
Maximum frequency step 319.95 599.84 864.76 1100.90 1233.30 1299.90 1282.50 1256.60 1249.90 1254.40 1256.90 1245.50 

Under frequency-hertz  49.9  49.8  49.7  49.6  49.5  49.4  49.3  49.2  49.1  49.0  48.9  48.8  

Minimum frequency step -322.21 -610.02 -869.08 -1102.00 -1228.10 -1237.50 -1236.30 -1245.00 -1245.00 -1245.60 -1233.10 -1239.10 
Phase C 

Over frequency-hertz  50.1  50.2  50.3  50.4  50.5  50.6  50.7  50.8  50.9  51.0  51.1  51.2  

Maximum frequency step 322.25 609.53 865.30 1098.40 1234.80 1274.90 1257.30 1251.50 1253.00 1250.30 1252.30 1274.90 
Under frequency-hertz  49.9  49.8  49.7  49.6  49.5  49.4  49.3  49.2  49.1  49.0  48.9  48.8  

Minimum frequency step -320.68 -602.97 -869.12 -1101.00 -1235.30 -1264.10 -1253.60 -1241.00 -1237.10 -1246.30 -1236.40 -1236.90 

 
 

Table 3. Coeflit wavelet coefficients analysis for a range of frequencies 48.8-51.2 Hz 
Phase A 

Over frequency-hertz  50.1  50.2  50.3  50.4  50.5  50.6  50.7  50.8  50.9  51.0  51.1  51.2  

Maximum frequency step 326.95 623.74 886.28 1145.00 1287.90 1339.00 1339.90 1325.40 1358.50 1311.60 1302.70 1309.60 

Under frequency-hertz  49.9  49.8  49.7  49.6  49.5  49.4  49.3  49.2  49.1  49.0  48.9  48.8  

Minimum frequency step -339.97 -653.06 -896.46 -1130.50 -1268.40 -1326.50 -1306.40 -1324.50 -1319.10 -1298.20 -1274.70 -1306.00 
Phase B 

Over frequency-hertz  50.1  50.2  50.3  50.4  50.5  50.6  50.7  50.8  50.9  51.0  51.1  51.2  

Maximum frequency step 330.99 619.23 891.26 1130.80 1290.30 1336.40 1301.40 1333.90 1331.30 1308.40 1313.80 1323.80 
Under frequency-hertz  49.9  49.8  49.7  49.6  49.5  49.4  49.3  49.2  49.1  49.0  48.9  48.8  

Minimum frequency step -336.40 -615.85 -894.42 -1162.70 -1277.80 -1298.80 -1294.60 -1307.60 -1281.60 -1271.10 -1288.20 -1287.90 

Phase C 
Over frequency-hertz  50.1  50.2  50.3  50.4  50.5  50.6  50.7  50.8  50.9  51.0  51.1  51.2  

Maximum frequency step 338.72 649.98 904.08 1161.60 1301.10 1325.00 1332.40 1301.70 1308.10 1321.80 1328.70 1315.70 

Under frequency-hertz  49.9  49.8  49.7  49.6  49.5  49.4  49.3  49.2  49.1  49.0  48.9  48.8  
Minimum frequency step -334.22 -645.38 -917.63 -1149.70 -1280.40 -1322.20 -1311.30 -1307.30 -1322.30 -1333.20 -1297.20 -1287.40 

 

 

5. SIMULATIONS AND RESULTS  

In this work study, a power system was simulated in MATLAB/Simulink to mimic a real-time 

numerical frequency (over-frequency or under-frequency) relay. Power frequency scenarios were simulated in 

real-life circumstances to test the performance of the new measurement algorithm. The scenarios were well 

considered within the tolerated frequencies and beyond to observe the implications and performance of both 
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the conventional Fourier frequency measurement algorithm and the new proposed DWT measurement 

algorithm. Consequently, the performance and the control actions of the digital frequency relay were compared 

under the prospective frequency changes and tolerated margins.  

As intended for this relay, the circuit breaker will trip the power system based on frequency relay 

detection for frequency deviations beyond the tolerated limit. A conventional frequency relay based on the Fourier 

transform was used to compare performance with the new proposed DWT-based relay. The operation and output 

for both relays were compared in terms of required data sample analysis, relay compiling duration, accuracy 

performance, and relay decision time in triggering the power system circuit breaker, as shown in Figure 8. 
 
 

 
 

Figure 8. System setup for instantaneous numerical frequency relay testing  
 

 

As the three phases of the power waveform were examined for frequency alteration, the subject data 

was filtered and analyzed by the wavelet algorithm. Decomposed waveform and coefficients were extracted 

and compiled to determine RFD by maximum alteration as in Figure 9.  
 

 

 
 

Figure 9. Wavelet coefficients extraction and compiling process 
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Meanwhile, a pre-determined threshold of maximum and minimum values for numerous frequencies 

under test was obtained. For instance, in Tables 1 to 3, testing was performed for power frequencies ranging 

from 48.8 to 51.2 Hz to cover frequency alteration within and outside the tolerated limit using three types of 

mother wavelet. As the maximum and minimum values for wavelet coefficient were determined for the 

tolerated frequency alteration, a pre-set threshold was embedded into the new proposed relay setting. As a 

result, the numerical power relay activates the circuit breaker based on frequency changes beyond the allowable 

limit, as shown in Figures 10 and 11, for over-frequency and under-frequency system disconnects. 

 

 

  
  

Figure 10. Over-frequency system disconnect 

algorithm 

Figure 11. Under-frequency system disconnect 

algorithm 

 

 

6. DISCUSSION 

In the overall simulation testing, as shown in Figure 8, both algorithms of the Fourier transform and 

wavelet were examined for power frequency relays in a 50 Hz network. As allowable ±0.05% frequency 

deviation, both algorithms have allowed power waveforms with frequencies up to 50.5 Hz and down to 49.5 Hz, 

as in Figure 12. However, waveforms that exceeded the frequency tolerated margins (50.6 Hz and above and 

49.6 Hz and below) were disconnected based on both measurement algorithms, as shown in Figure 13. 

 

 

 
 

Figure 12. No fault frequency waveform (allowable ±0.05% frequency deviation) 

 

 

 
 

Figure 13. Faulted frequency system disconnect algorithm (exceeding frequency tolerance) 
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However, as illustrated in Table 4, relay response time was measured based on cut-off frequencies. 

While an average response time of 0.424 sec for the conventional Fourier measurement algorithm relay, an 

average of 0.317 sec was defined for the wavelet measurement algorithm relay. That is, a reduction of 25% in 

relay response was observed to improve the operation of the numerical frequency relay and the reliability of 

the power network. 

 

 

Table 4. Power frequency relay response time  
Over frequency 

(Hz) 
Fourier method 
(time in sec.) 

Wavelete method 
(time in sec.) 

Under frequency 
(Hz) 

Fourier method 
(time in sec.) 

Wavelete method 
(time in sec.) 

50.6 0.425 0.396 49.4 0.444 0.387 

50.7 0.426 0.375 49.3 0.442 0.3538 

50.8 0.425 0.35 49.2 0.442 0.3096 
50.9 0.424 0.291 49.1 0.4427 0.329 

51.0 0.424 0.295 49.0 0.4417 0.307 

51.1 0.424 0.2595 48.9 0.442 0.2707 

51.2 0.424 0.253 48.8 0.4427 0.2513 

 

 

In contrast, while the Fourier transform algorithm captured and analyzed 2,866 data samples. Only 

733 samples were required for wavelet analysis. As illustrated in Figures 14 and 15 for Fourier and wavelet 

methods, respectively. 

 

 

 
 

Figure 14 Original power waveform used by Fourier transform 

 

 

 
 

Figure 15. Wavelet decomposed power waveform 
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7. CONCLUSION 

As power generation and load demands suffer an unbalanced phenomenon, the power system will 

undergo frequency instability, develop unsound operation, and may lead to a blackout. For reliable operation, 

many researchers have investigated the enhancement of digital power relays, as they have better performance, 

accuracy, and response time for abnormalities. Therefore, in this work study, a power system was simulated in 

MATLAB/Simulink with frequency instability to test the digital frequency relay performance with the new 

proposed algorithm and compare results with classical analysis algorithms. In this test, the proposed algorithm 

of wavelet transform detection and analysis was tested for the tolerated frequency changes (49.5–50.5 Hz) to 

ensure the continuity of the power network and conclusive of DWT relaying algorithm decisions. Meanwhile, 

the testing was performed outside the allowable limits of frequency variation to measure accuracy, response 

time, and the discontinuity of the power network to bring the system frequency back to normal operation. As 

a result, the new proposed testing algorithm has shown an advanced frequency relay operation in terms of 

accuracy detection, less compiling samples, and a 25 % reduction in time response. 
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