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 The fifth-generation (5G) wireless communications system offers faster data 

rates, lower latency, and more interconnecting devices. Various 5G channel 

models were developed to study its stochastic characteristics before 

implementation. These channel models generate multipath components that 

are grouped into clusters. The multipath clusters serve as datasets in 

multipath clustering. The clustering results are then used to examine the 

propagation properties of the 5G system. However, datasets are prone to 

outliers. They tend to affect clustering accuracy. Hence, this study clusters 

the datasets generated by the channel models using five clustering 

approaches, removes the outliers using mean-shift outlier detection, and 

clusters the datasets free of outliers again using the same clustering 

algorithms. Outlier detection shows that 5G channel model datasets contain 

noise, and outlier removal improves the modeling characteristics, as 

demonstrated by enhanced clustering accuracy. Results show that most of 

the outliers are detected in the 2×SD threshold. The removal of the outliers 

using the said threshold increased the clustering accuracy of K-means and 

AC-Single in Semi-Urban B1 LOS multiple links by 78.85% and 55%, 

respectively, and DBSCAN in Semi-Urban B2 LOS multiple links by 

57.14%. Outlier detection and removal also work well with 5G channel 

model datasets. 
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1. INTRODUCTION 

The fifth-generation (5G) wireless system increased bandwidth, shortened latency, and permitted 

more interconnecting devices. The physical implementation of 5G is costly; hence, correct modeling of the 

5G system is necessary. 5G channel models such as the European Cooperation in Science and Technology 

(COST 2100) [1], International Mobile Tecommunications-2020 (IMT-2020) [2], Quasi-Deterministic Radio 

Channel Generator (QuaDRiGa) [3], and Wireless World Initiative New Radio II (WINNER II) [4] are used 

to study the stochastic properties of 5G before putting up the physical system. These 5G channel models 

generate wireless multipath components (MPCs) that form multipath clusters (MCs) when they have a similar 

delay, angle of departure, and angle of arrival. The MPCs and MCs serve as datasets used in multipath 

clustering to study the propagation characteristics of 5G. Understanding the characteristics of 5G channels 

helps designers compare and deploy the most appropriate wireless technologies. 

A previous study [5] on multipath clustering has shown that clustering accuracy is low due to 

outliers. However, clustering accuracy can be improved when outliers are removed from the dataset. 

https://creativecommons.org/licenses/by-sa/4.0/
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Examples are the synthetic and map datasets using an outlier removal clustering algorithm [6], the Forest 

Cov dataset using a scalable and robust clustering algorithm [7], Real-World datasets using an improved 

cuckoo search-based K-means [8], UCI datasets using local density and natural neighbor-based outlier 

detection [9], synthetic and real datasets using angle-based outlier factor [10], and 2-D datasets using mean-

shift outlier detection and filtering [11]. 

Even multipath datasets contain outliers. A previous study [12] tried to detect and remove the 

outliers of the COST 2100 dataset involving just indoor scenarios. It used mean-shift outlier detection [11] to 

identify and remove outliers and simultaneous clustering and model selection matrix affinity (SCAMSMA) 

[13] for the clustering. Results were positive, as clustering accuracy improved by an average of 2.2%. It was 

the first study to implement outlier detection on multipath datasets, but it only used one 5G channel model 

(COST 2100) and two indoor channel scenarios. The current study expands the previous research by 

considering four 5G channel models (COST 2100, IMT-2020, QuaDRiGa, and WINNER II) and their 

complete channel scenarios (total of thirty-three). This paper contributes to the characterization of multipath 

datasets by detecting their outliers. Furthermore, this research addresses the problem of improving the 

accuracy of clustering multipaths by removing outliers. Lastly, by pruning the outliers, the users can optimize 

the parameters of the channel model for a more accurate implementation of 5G technology. 

 

 

2. METHOD 

The flowchart for the methodology is shown in Figure 1. The datasets generated by the channel 

models are clustered to get the clustering accuracy. The outliers in the datasets are removed to create new 

datasets free of outliers. They are again clustered to get the new accuracy. The original clustering accuracy 

from the datasets with outliers is then compared to the new clustering accuracy from those without outliers. 

 

 

 
 

Figure 1. The flowchart of method 

 

 

2.1.  Datasets for outlier detection and clustering 

The datasets consist of MPCs and MCs generated by the 5G channel models. They serve as 

reference data in multipath clustering. They were also used in the process of outlier detection and removal. 

The COST 2100 dataset was taken from [14], whereas the IMT-2020, QuaDRiGa, and WINNER II datasets 

were lifted from [15]. 

Table 1 shows the summary of the four datasets. Each channel scenario has thirty sheets of Excel 

file data. COST 2100 has eight channel scenarios. The number of clusters and multipaths varies for each 

channel scenario. The numbers given pertain to the maximum number of clusters and multipaths per channel 

scenario. The IMT-2020 dataset has eleven channel scenarios with the same number of clusters and 

multipaths per channel scenario. It is the most among the four datasets. The QuaDRiGa dataset has the same 

number of clusters and multipaths per channel scenario. However, it has only eight channel scenarios. Lastly, 

the WINNER II dataset has six channel scenarios, the least among the four. Like IMT-2020 and QuaDRiGa, 

WINNER II has the same number of clusters and multipaths per channel scenario. 
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Table 1. Number of clusters and number of multipaths per cluster for each channel scenario 
Channel model Channel scenario Number of clusters Number of multipaths 

 
 

 

COST 2100 
 

 

 
 

 

 
 

 

 
IMT-2020 

 

 

 

 

 
 

 
 

QuaDRiGa 

 
 

 

 
 

 

WINNER II 
 

 

 

Indoor B1 LOS single link 
Indoor B2 LOS single link 

Semi-Urban B1 LOS single link 

Semi-Urban B2 LOS single link 
Semi-Urban B1 NLOS single link 

Semi-Urban B2 NLOS single link 

Semi-Urban B1 LOS multiple links 
Semi-Urban B2 LOS multiple links 

InH A LOS 

InH A NLOS 
RMa A LOS 

RMA A NLOS 

RMa A O2I 
UMa A LOS 

UMa A NLOS 

UMa A O2I 

UMi A LOS 

UMi A NLOS 

UMi A O2I 
BERLIN UMa LOS 

BERLIN UMa NLOS 
BERLIN UMi Campus LOS 

BERLIN UMi Campus NLOS 

BERLIN UMi Square LOS 
BERLIN UMi Square NLOS 

Industrial LOS 

Industrial NLOS 
Indoor A1 LOS 

Indoor A1 NLOS 

UMa C2 LOS 
UMa C2 NLOS 

UMi B1 LOS 

UMi B1 NLOS 

27 
26 

35 

38 
34 

33 

63 
66 

15 

19 
11 

10 

10 
12 

20 

12 

12 

19 

12 
15 

25 
12 

20 

12 
20 

25 

26 
12 

16 

8 
20 

8 

16 

81 
78 

945 

1,026 
1,632 

1,584 

1,701 
1,782 

1,425 

3,895 
31,768 

26,600 

58,520 
11,172 

77,140 

216,144 

12,084 

24,187 

109,440 
18,000 

30,000 
7,200 

12,000 

7,200 
12,000 

7,500 

7,800 
3,600 

4,800 

9,600 
24,000 

4,800 

9,600 

 

 

2.2.  Clustering approaches 

The datasets with outliers were clustered using K-means [16], K-medoids [17], agglomerative 

hierarchical clustering (AC-Single) [18], density-based spatial clustering of applications with noise 

(DBSCAN) [19], and spectral clustering (SC) [20]. Their MATLAB implementations can be found in [21]. 

The datasets without outliers were again clustered using the above mentioned five clustering approaches. The 

clustering process is shown in Figure 2. The clustering of datasets with outliers is illustrated in Figure 2(a), 

while the clustering of datasets without outliers is presented in Figure 2(b). 

 

 

  
(a) (b) 

 

Figure 2. Clustering of datasets: (a) with outliers and (b) without outliers [11] 

 

 

2.3.  Outlier detection and removal 

The outliers were detected using the mean-shift outlier detector [11]. The detector uses the mean-shift 

technique, which replaces every object by the mean of its K-nearest neighbors (KNN). The method forces an 

object to move towards a dense area. Outliers are then determined by the movement of the objects using an 

outlier score. An object has a higher chance of being an outlier if it has a more significant movement. 

The mean-shift outlier detector analyzes the distribution of the calculated outlier scores to detect the 

outliers. The standard deviation (SD) of all the scores is used as the global threshold. The study uses three 

popular outlier thresholds: 2×SD, 2.5×SD, and 3×SD [22]. Any object with an outlier score higher than the 

outlier threshold is considered an outlier. 

 

2.4.  Clustering accuracy 

The Jaccard index (𝜂) is used to evaluate the clustering accuracy of the five clustering approaches. 

It represents the intersection over the union of the reference data and the clustered data. Its numeric values 

can range from 0 to 1, with one being the highest. A Jaccard index of 1 means a perfect match between the 
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reference data and the clustered data, while an index of 0 means no match between the two datasets. The 

Jaccard index objectively shows the match and mismatches between the reference and clustered data. The 

clustering metric can be computed as follows: 

 

𝜂 =
𝑚11

𝑚11+𝑚10+𝑚01
 (1) 

 

where: 

𝑚11 is the number of pairs that are correctly classified.  

𝑚01 is the number of pairs that are not correctly classified.  

𝑚10 is the number of pairs that are incorrectly classified when they are not supposed to. 

 

2.5.  Comparison of clustering accuracy 

The Jaccard indices of the clustered datasets with outliers and datasets without outliers are compared 

using SD and box plots. The SD of the Jaccard indices of the thirty sheets of Excel data per channel scenario 

is calculated using the Excel function STDEV.S. The Excel formula estimates the SD of a sample, ignoring 

logical values and text in the sample. The SDs of the Jaccard indices are then compared to determine the 

compactness of clusters in datasets with outliers and datasets without outliers. A smaller SD indicates a more 

compact MC. Moreover, the Jaccard indices can be used to identify which of the clustering approaches is 

robust. Robustness depends on the clustering performance for all channel scenarios. A clustering approach is 

robust when it performs well for all channels. 

Analysis of variance (ANOVA) is also used to determine the consistency of clustering performance. 

The one-way ANOVA of MATLAB (anova1) [23] is used to generate the box plot [24], as shown in Figure 3. 

The red mark indicates the median, the bottom edge of the blue box is the 25th percentile, and the top edge is 

the 75th percentile. The whiskers extend to the most extreme data points not considered outliers. The outliers 

are marked individually by the red ‘+’ symbol. One-way ANOVA determines whether data from several 

groups have a common mean. The ANOVA1 tool gives the F-statistic probability value (p-value) and the box 

plots of the independent variable. It tests the hypothesis that the samples in the independent variable are 

drawn from populations with the same mean against the alternative hypothesis that the population means are 

not all the same. If the p-value is smaller than the significance level of 0.05, the test rejects the null 

hypothesis that all group means are equal and concludes that at least one group means differs from the others. 

Using box plots, two medians are significantly different at the 5% significance level if their intervals do not 

overlap. 

 

 

 
 

Figure 3. Box plot of Jaccard indices showing the performance of a clustering approach 

 

 

3. RESULTS AND DISCUSSION 

Simulations were done using a laptop with an Intel 11th-generation processor, 2.4 GHz speed, and 

16 GB of RAM. Spyder of Anaconda 3 [25] was used for the outlier detection and removal, while MATLAB 

2023a was used to cluster the datasets, compute the Jaccard index, and generate anova1 boxplots. The 

clustering accuracy of the datasets with outliers is discussed first, followed by outlier detection and removal. 

Furthermore, the clustering performance of the datasets without outliers is elaborated. Lastly, the clustering 

results of the datasets with and without outliers are compared. 
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3.1.  Clustering of datasets with outliers 

The four datasets were clustered using the MATLAB implementations of the five clustering 

approaches. The mean Jaccard indices of the 30 sheets of Excel data per channel scenario are shown in Table 2. 

The blank entries indicate that the computational requirements exceed the 16 GB RAM of the computer. The 

clustering performance for all channel scenarios is shown in Figure 4. The channel scenarios are arranged 

chronologically as presented in Table 2, with channel scenario 1 about indoor B1 LOS single link, channel 

scenario 2 indoor B2 LOS single link, and so on up to channel scenario 33 UMi B1 NLOS. The five 

clustering approaches work well with channel Scenarios 1 and 2, the two indoor scenarios of COST 2100, 

with K-medoids as the most accurate. This is due to the small number of MPCs per MC. The accuracy of the 

five clustering approaches ranges from 0 to 0.1 for channel scenarios 3 to 33. The low accuracy is due to the 

fact that there are more MPCs per MC for the scenarios. The clustering approaches have almost the same 

accuracies in the semi-urban scenarios of COST 2100 (channel scenarios 3 to 8). Also, nearly the same 

values are evident for IMT-2020 channel scenarios 9 to 19, except channel scenario 13, when SC has no data, 

and channel scenarios 15, 16, and 19, when both AC-Single and SC have no data. 

 

 

Table 2. Mean Jaccard indices of datasets with outliers. Blank entries have higher computational memory 

requirements which exceed the 16 GB RAM of the computer 
Channel model Channel scenario K-means K-medoids DBSCAN AC-Single SC 

 
 

 

COST 2100 
 

 

 
 

 

 
 

 

 

IMT-2020 

 

 
 

 

 
 

 

 
QuaDRiGa 

 

 
 

 
 

 

WINNER II 

Indoor B1 LOS single link 
Indoor B2 LOS single link 

Semi-Urban B1 LOS single link 

Semi-Urban B2 LOS single link 
Semi-Urban B1 NLOS single link 

Semi-Urban B2 NLOS single link 

Semi-Urban B1 LOS multiple links 
Semi-Urban B2 LOS multiple links 

InH A LOS 

InH A NLOS 
RMa A LOS 

RMA A NLOS 

RMa A O2I 

UMa A LOS 

UMa A NLOS 

UMa A O2I 
UMi A LOS 

UMi A NLOS 

UMi A O2I 
BERLIN UMa LOS 

BERLIN UMa NLOS 

BERLIN UMi Campus LOS 
BERLIN UMi Campus NLOS 

BERLIN UMi Square LOS 

BERLIN UMi Square NLOS 
Industrial LOS 

Industrial NLOS 
Indoor A1 LOS 

Indoor A1 NLOS 

UMa C2 LOS 
UMa C2 NLOS 

UMi B1 LOS 

UMi B1 NLOS 

0.5391 
0.4323 

0.0228 

0.0242 
0.0217 

0.0217 

0.0104 
0.0133 

0.0464 

0.0332 
0.0558 

0.0530 

0.0524 

0.0528 

0.0320 

0.0473 
0.0500 

0.0296 

0.0479 
0.0634 

0.0366 

0.0825 
0.0487 

0.0777 

0.0467 
0.0272 

0.0248 
0.0756 

0.0608 

0.1135 
0.0442 

0.0927 

0.0446 

0.5660 
0.4719 

0.0257 

0.0201 
0.0218 

0.0256 

0.0116 
0.0130 

0.0487 

0.0333 
0.0566 

0.0530 

0.0526 

0.0531 

0.0317 

0.0474 
0.0506 

0.0298 

0.0478 
0.0625 

0.0354 

0.0815 
0.0487 

0.0772 

0.0463 
0.0266 

0.0240 
0.0754 

0.0612 

0.1117 
0.0441 

0.0910 

0.0444 

0.2952 
0.1754 

0.0219 

0.0215 
0.0234 

0.0227 

0.0106 
0.0112 

0.0345 

0.0270 
0.0476 

0.0526 

0.0526 

0.0435 

0.0256 

0.0435 
0.0435 

0.0270 

0.0435 
0.0359 

0.0308 

0.0815 
0.0441 

0.0740 

0.0383 
0.0283 

0.0279 
0.0782 

0.0541 

0.0667 
0.0344 

0.0864 

0.0367 

0.4141 
0.4096 

0.0251 

0.0231 
0.0226 

0.0221 

0.0120 
0.0120 

0.0361 

0.0274 
0.0476 

0.0527 

0.0526 

0.0436 

- 

- 
0.0435 

0.0270 

- 
0.0345 

0.0205 

0.0436 
0.0258 

0.0436 

0.0257 
0.0207 

0.0198 
0.0440 

0.0325 

0.0668 
0.0257 

0.0669 

0.0324 

0.2352 
0.2246 

0.0241 

0.0253 
0.0240 

0.0224 

0.0149 
0.0136 

0.0460 

0.0318 
0.0570 

0.0529 

- 

0.0506 

- 

- 
0.0499 

0.0287 

- 
0.0418 

0.0251 

0.0553 
0.0327 

0.0582 

0.0322 
0.0241 

0.0224 
0.0563 

0.0452 

0.0796 
0.0302 

0.0769 

0.0373 

 

 

The industrial scenarios of QuaDRiGa (channel scenarios 26 and 27) have almost the same Jaccard 

indices of 0.02. However, the clustering approaches have varying indices for the rest of QuaDRiga (channel 

scenarios 20 to 25) and WINNER II (channel scenarios 28 to 33). K-medoids is the most consistent clustering 

approach, registering the highest clustering accuracy in most channel scenarios. On the other hand, AC-

Single is the least consistent of the clustering approaches as it gives the least clustering accuracy in most 

channel scenarios. 
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Figure 4. Clustering performance for all channel scenarios 

 

 

3.2.  Outlier detection and removal 

The outliers were detected and removed using the mean-shift outlier detection. The method is 

implemented in Python using Spyder in Anaconda 3. The outliers are based on the outlier thresholds 2×SD, 

2.5×SD, and 3×SD. A datapoint outside of the threshold is considered an outlier. The mean of its KNN 

replaces it. Table 3 gives the number of outliers for the 30 sheets of Excel data per channel scenario based on 

the outlier threshold. The 2×SD outlier threshold gives the most outliers since a smaller region is considered 

for normal datapoints. On the other hand, the 3×SD outlier threshold results in the least number of outliers 

due to a larger region being considered for normal datapoints. 

Most outliers are generated by the IMT-2020 RMa A O2I channel scenario using the 2×SD outlier 

threshold, as shown in Table 3. This is due to a large propagation area with many interacting objects (IO), 

such as houses, buildings, and trees. Also, MPCs experience attenuation, scattering, diffraction, or reflection 

when traveling outdoors to indoors. 

 

 

Table 3. Number of outliers for the 30 sheets of data per channel scenario based on the outlier score threshold 
Channel model Channel scenario 2×SD 2.5×SD 3×SD 

 

 
 

COST 2100 

 
 

 

 
 

 

 
 

 

IMT-2020 
 

 

 
 

 

 
 

 

QuaDRiGa 
 

 

 
 

 

 
WINNER II 

 

 

Indoor B1 LOS single link 

Indoor B2 LOS single link 
Semi-Urban B1 LOS single link 

Semi-Urban B2 LOS single link 

Semi-Urban B1 NLOS single link 
Semi-Urban B2 NLOS single link 

Semi-Urban B1 LOS multiple links 

Semi-Urban B2 LOS multiple links 
InH A LOS 

InH A NLOS 

RMa A LOS 
RMA A NLOS 

RMa A O2I 

UMa A LOS 
UMa A NLOS 

UMa A O2I 

UMi A LOS 
UMi A NLOS 

UMi A O2I 

BERLIN UMa LOS 
BERLIN UMa NLOS 

BERLIN UMi Campus LOS 

BERLIN UMi Campus NLOS 
BERLIN UMi Square LOS 

BERLIN UMi Square NLOS 

Industrial LOS 
Industrial NLOS 

Indoor A1 LOS 

Indoor A1 NLOS 
UMa C2 LOS 

UMa C2 NLOS 

UMi B1 LOS 

UMi B1 NLOS 

63 

60 
1,072 

1,167 

1,978 
1,961 

2,217 

2,200 
410 

923 

34,395 
42,935 

92,906 

1,284 
12,436 

16,973 

4,101 
21,847 

806 

28,911 
44,374 

9,960 

19,097 
11,800 

20,256 

10,738 
11,199 

4,120 

6,643 
15,299 

35,538 

8,464 

11,479 

43 

45 
571 

640 

1,104 
1,077 

1,378 

1,320 
14 

36 

8,173 
23,006 

10,480 

523 
4,192 

8,669 

1,205 
5,033 

291 

16,307 
25,262 

3,394 

7,927 
6,517 

11,892 

6,666 
6,920 

1,279 

3,715 
6,792 

20,908 

5,352 

6,773 

31 

37 
319 

334 

597 
604 

852 

793 
0 

0 

1,742 
9,458 

0 

267 
2,530 

3,971 

535 
24 

100 

7,719 
14,077 

1,102 

2,847 
2,897 

6,195 

4,188 
4,232 

129 

2,052 
1,924 

12,148 

3,188 

4,268 

0
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Considering the 2×SD threshold, in general, the indoor scenarios (indoor B1/B2 LOS single link of 

COST 2100, InH A LOS/NLOS of IMT-2020, Industrial LOS/NLOS of QuaDRiGa, and indoor A1 

LOS/NLOS of WINNER II) of the four channel models generate the least number of outliers relative to their 

non-indoor counterparts in the same channel model. Indoor scenarios have a smaller area for the propagation 

of signals, lesser IO, and a lesser number of MPCs and MCs. InH A LOS, InH A NLOS, and RMa A O2I 

have zero outliers using the 3×SD threshold because all the multipaths are within the radius for normal 

datapoints. 

A new dataset without outliers was generated when the outliers were replaced by the means of their 

knn. The new dataset still consists of 30 Excel sheets of data per channel scenario, the same number of 

MPCs, and the same number of MCs. The outliers were highlighted in red and replaced by the mean of the 

knn. The new dataset is uploaded to the IEEE Dataport [26]. 

 

3.3.  Clustering of datasets without outliers 

The datasets without outliers were again clustered using the MATLAB implementation of the five 

clustering approaches. Table 4 shows the clustering accuracies using the 2×SD outlier threshold, Table 5 for 

the 2.5×SD threshold, and Table 6 for the 3×SD threshold. No general trend exists that outlier detection and 

removal increases clustering accuracy, nor does a smaller outlier threshold improve clustering performance. 

It shows that the outlier detection method is not accurate in detecting and removing the outliers of the 

clusters. 

For K-means, the most significant increase in clustering accuracy is in the Semi-Urban B1 LOS 

multiple links 2×SD threshold with a value of 78.85%, while the highest decrease is in indoor B1 LOS single 

link 3×SD threshold with a value of 19.53%. For K-medoids, the most significant gain of 50.86% is in the 

Semi-Urban B1 LOS multiple links 3×SD threshold, while the most substantial drop of 11.28% is in the 

Industrial LOS 2×SD threshold. For DBSCAN, Semi-Urban B2 LOS multiple links 2×SD registers the 

highest increase of 57.14%, while indoor A1 LOS 3×SD gives the most significant decrease of 43.86%. 

 

 

Table 4. Mean Jaccard indices of datasets without outliers with outlier score threshold 2×SD 
Channel model Channel scenario K-means K-medoids DBSCAN AC-Single SC 

 

 
 

COST 2100 

 
 

 

 
 

 

 
 

 
IMT-2020 

 

 
 

 

 
 

 

 
QuaDRiGa 

 

 
 

 

 
 

WINNER II 

 

Indoor B1 LOS single link 

Indoor B2 LOS single link 
Semi-Urban B1 LOS single link 

Semi-Urban B2 LOS single link 

Semi-Urban B1 NLOS single link 
Semi-Urban B2 NLOS single link 

Semi-Urban B1 LOS multiple links 

Semi-Urban B2 LOS multiple links 
InH A LOS 

InH A NLOS 

RMa A LOS 
RMA A NLOS 

RMa A O2I 
UMa A LOS 

UMa A NLOS 

UMa A O2I 
UMi A LOS 

UMi A NLOS 

UMi A O2I 
BERLIN UMa LOS 

BERLIN UMa NLOS 

BERLIN UMi Campus LOS 
BERLIN UMi Campus NLOS 

BERLIN UMi Square LOS 

BERLIN UMi Square NLOS 
Industrial LOS 

Industrial NLOS 

Indoor A1 LOS 
Indoor A1 NLOS 

UMa C2 LOS 

UMa C2 NLOS 
UMi B1 LOS 

UMi B1 NLOS 

0.4644 

0.4275 
0.0224 

0.0238 

0.0231 
0.0227 

0.0186 

0.0167 
0.0472 

0.0337 

0.0566 
0.0528 

0.0527 
0.0531 

0.0319 

0.0470 
0.0498 

0.0292 

0.0478 
0.0631 

0.0353 

0.0823 
0.0484 

0.0774 

0.0476 
0.0254 

0.0234 

0.0741 
0.0606 

0.1118 

0.0443 
0.0969 

0.0412 

0.6461 

0.5672 
0.0239 

0.0231 

0.0217 
0.0240 

0.0162 

0.0183 
0.0486 

0.0329 

0.0565 
0.0527 

0.0529 
0.0536 

0.0318 

0.0472 
0.0500 

0.0291 

0.0477 
0.0628 

0.0357 

0.0817 
0.0488 

0.0764 

0.0470 
0.0236 

0.0230 

0.0743 
0.0606 

0.1114 

0.0444 
0.0955 

0.0409 

0.3491 

0.2042 
0.0210 

0.0216 

0.0237 
0.0228 

0.0156 

0.0176 
0.0345 

0.0270 

0.0476 
0.0526 

0.0526 
0.0435 

0.0256 

0.0435 
0.0435 

0.0270 

0.0435 
0.0422 

0.0306 

0.0809 
0.0440 

0.0728 

0.0380 
0.0280 

0.0278 

0.0777 
0.0531 

0.0982 

0.0354 
0.0903 

0.0363 

0.5499 

0.4424 
0.0267 

0.0249 

0.0228 
0.0232 

0.0186 

0.0179 
0.0360 

0.0275 

0.0481 
0.0527 

0.0528 
0.0436 

- 

- 
0.0437 

0.0271 

- 
0.0346 

0.0205 

0.0437 
0.0258 

0.0437 

0.0258 
0.0206 

0.0198 

0.0441 
0.0327 

0.0668 

0.0257 
0.0669 

0.0324 

0.2731 

0.2186 
0.0264 

0.0223 

0.0249 
0.0236 

0.0200 

0.0225 
0.0456 

0.0322 

0.0607 
0.0550 

- 
0.0502 

- 

- 
0.0516 

0.0312 

- 
0.0463 

0.0282 

0.0615 
0.0364 

0.0554 

0.0332 
0.0244 

0.0241 

0.0575 
0.0452 

0.0859 

0.0326 
0.0780 

0.0387 
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Table 5. Mean Jaccard indices of datasets without outliers with outlier score threshold 2.5×SD 
Channel model Channel scenario K-means K-medoids DBSCAN AC-Single SC 

 
 

 

COST 2100 
 

 

 
 

 

 
 

 

 
IMT-2020 

 

 
 

 

 
 

 

QuaDRiGa 
 

 

 
 

 

 
 

WINNER II 

 
 

Indoor B1 LOS single link 
Indoor B2 LOS single link 

Semi-Urban B1 LOS single link 

Semi-Urban B2 LOS single link 
Semi-Urban B1 NLOS single link 

Semi-Urban B2 NLOS single link 

Semi-Urban B1 LOS multiple links 
Semi-Urban B2 LOS multiple links 

InH A LOS 

InH A NLOS 
RMa A LOS 

RMA A NLOS 

RMa A O2I 
UMa A LOS 

UMa A NLOS 

UMa A O2I 
UMi A LOS 

UMi A NLOS 

UMi A O2I 
BERLIN UMa LOS 

BERLIN UMa NLOS 

BERLIN UMi Campus LOS 
BERLIN UMi Campus NLOS 

BERLIN UMi Square LOS 

BERLIN UMi Square NLOS 
Industrial LOS 

Industrial NLOS 

Indoor A1 LOS 
Indoor A1 NLOS 

UMa C2 LOS 

UMa C2 NLOS 
UMi B1 LOS 

UMi B1 NLOS 

0.5317 
0.4673 

0.0271 

0.0206 
0.0237 

0.0210 

0.0153 
0.0210 

0.0465 

0.0335 
0.0563 

0.0527 

0.0525 
0.0537 

0.0320 

0.0469 
0.0498 

0.0296 

0.0479 
0.0626 

0.0356 

0.0821 
0.0482 

0.0772 

0.0472 
0.0253 

0.0227 

0.0728 
0.0611 

0.1119 

0.0443 
0.0976 

0.0428 

0.6559 
0.5530 

0.0249 

0.0223 
0.0195 

0.0231 

0.0169 
0.0176 

0.0476 

0.0338 
0.0560 

0.0529 

0.0527 
0.0534 

0.0321 

0.0476 
0.0505 

0.0294 

0.0483 
0.0633 

0.0358 

0.0809 
0.0484 

0.0771 

0.0479 
0.0255 

0.0227 

0.0737 
0.0611 

0.1112 

0.0426 
0.0958 

0.0421 

0.3556 
0.2042 

0.0218 

0.0217 
0.0235 

0.0226 

0.0153 
0.0173 

0.0345 

0.0270 
0.0476 

0.0526 

0.0526 
0.0435 

0.0256 

0.0435 
0.0435 

0.0270 

0.0435 
0.0393 

0.0308 

0.0813 
0.0441 

0.0734 

0.0381 
0.0282 

0.0281 

0.0780 
0.0535 

0.0667 

0.0356 
0.0914 

0.0365 

0.5314 
0.4550 

0.0250 

0.0251 
0.0225 

0.0225 

0.0173 
0.0176 

0.0362 

0.0273 
0.0477 

0.0527 

0.0526 
0.0436 

- 

- 
0.0437 

0.0271 

- 
0.0346 

0.0205 

0.0437 
0.0258 

0.0437 

0.0258 
0.0207 

0.0199 

0.0440 
0.0326 

0.0668 

0.0257 
0.0670 

0.0324 

0.2409 
0.2587 

0.0287 

0.0255 
0.0230 

0.0249 

0.0211 
0.0228 

0.0452 

0.0315 
0.0586 

0.0542 

- 
0.0493 

- 

- 
0.0511 

0.0299 

- 
0.0485 

0.0262 

0.0569 
0.0335 

0.0558 

0.0327 
0.0240 

0.0233 

0.0590 
0.0447 

0.0777 

0.0312 
0.0777 

0.0383 

 

 

Table 6. Mean Jaccard indices of datasets without outliers with outlier score threshold 3×SD 
Channel model Channel scenario K-means K-medoids DBSCAN AC-Single SC 

 

 

 
COST 2100 

 

 
 

 

 
 

 
 

 

IMT-2020 

 

 

 
 

 

 
 

QuaDRiGa 

 
 

 

 
 

 

 
WINNER II 

 

 

 

Indoor B1 LOS single link 

Indoor B2 LOS single link 

Semi-Urban B1 LOS single link 
Semi-Urban B2 LOS single link 

Semi-Urban B1 NLOS single link 

Semi-Urban B2 NLOS single link 
Semi-Urban B1 LOS multiple links 

Semi-Urban B2 LOS multiple links 

InH A LOS 
InH A NLOS 

RMa A LOS 
RMA A NLOS 

RMa A O2I 

UMa A LOS 

UMa A NLOS 

UMa A O2I 

UMi A LOS 
UMi A NLOS 

UMi A O2I 

BERLIN UMa LOS 
BERLIN UMa NLOS 

BERLIN UMi Campus LOS 

BERLIN UMi Campus NLOS 
BERLIN UMi Square LOS 

BERLIN UMi Square NLOS 

Industrial LOS 
Industrial NLOS 

Indoor A1 LOS 

Indoor A1 NLOS 
UMa C2 LOS 

UMa C2 NLOS 

UMi B1 LOS 

UMi B1 NLOS 

0.4338 

0.4154 

0.0225 
0.0199 

0.0229 

0.0221 
0.0161 

0.0196 

0.0464 
0.0332 

0.0566 
0.0528 

0.0524 

0.0531 

0.0317 

0.0469 

0.0497 
0.0297 

0.0468 

0.0638 
0.0355 

0.0817 

0.0482 
0.0766 

0.0467 

0.0263 
0.0245 

0.0737 

0.0612 
0.1129 

0.0446 

0.0937 

0.0438 

0.6347 

0.5611 

0.0253 
0.0201 

0.0227 

0.0240 
0.0175 

0.0189 

0.0487 
0.0333 

0.0558 
0.0528 

0.0526 

0.0530 

0.0319 

0.0479 

0.0502 
0.0295 

0.0477 

0.0628 
0.0350 

0.0816 

0.0491 
0.0763 

0.0467 

0.0256 
0.0225 

0.0730 

0.0609 
0.1132 

0.0437 

0.0933 

0.0433 

0.3413 

0.1720 

0.0217 
0.0217 

0.0236 

0.0226 
0.0153 

0.0170 

0.0345 
0.0270 

0.0476 
0.0526 

0.0526 

0.0435 

0.0256 

0.0435 

0.0435 
0.0270 

0.0435 

0.0361 
0.0308 

0.0815 

0.0441 
0.0739 

0.0382 

0.0282 
0.0284 

0.0439 

0.0538 
0.0667 

0.0356 

0.0897 

0.0366 

0.4866 

0.4483 

0.0252 
0.0240 

0.0230 

0.0228 
0.0170 

0.0173 

0.0361 
0.0274 

0.0477 
0.0527 

0.0526 

0.0437 

- 

- 

0.0436 
0.0271 

- 

0.0346 
0.0205 

0.0436 

0.0258 
0.0437 

0.0258 

0.0207 
0.0199 

0.0439 

0.0325 
0.0668 

0.0257 

0.0669 

0.0324 

0.2780 

0.2141 

0.0261 
0.0234 

0.0244 

0.0253 
0.0191 

0.0215 

0.0460 
0.0318 

0.0576 
0.0538 

- 

0.0497 

- 

- 

0.0504 
0.0288 

- 

0.0457 
0.0255 

0.0556 

0.0322 
0.0575 

0.0325 

0.0243 
0.0235 

0.0577 

0.0445 
0.0808 

0.0303 

0.0755 

0.0380 
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For AC-Single, the most significant gain in clustering accuracy is registered by the Semi-Urban B1 

LOS multiple links 2×SD threshold with a value of 55%. The Industrial LOS 2×SD threshold gives the most 

remarkable drop of 0.48%. For SC, the most significant increase of 67.65% is posted by the Semi-Urban B2 

LOS multiple links 2.5×SD threshold, while the highest decrease is recorded by the Semi-Urban B2 LOS 

single link 2×SD threshold with a value of 11.86%. Since InH A LOS, InH A NLOS, and RMa A O2I have 

zero outliers in the 3×SD threshold, their clustering accuracies remain the same. Among the clustering 

approaches used, K-medoids is the most robust, registering the highest mean Jaccard indices for all channel 

scenarios with or without outliers and for all outlier thresholds. 

The means of standard deviations of the clustering approaches using different outlier thresholds are 

shown in Table 7. The outlier threshold 2×SD has the least means for all clustering approaches. This 

indicates that the clusters are more compact due to the removal of the outliers. However, the other outlier 

thresholds have higher means for all clustering approaches. It shows that outliers were not removed correctly 

in these thresholds. 
 
 

Table 7. Means of standard deviations 
Outlier threshold K-means K-medoids DBSCAN AC-Single SC 

No Outlier 0.0241 0.0260 0.0171 0.0224 0.0172 

2×SD 0.0209 0.0235 0.0166 0.0215 0.0155 

2.5×SD 

3×SD 

0.0306 

0.0335 

0.0353 

0.0382 

0.0239 

0.0220 

0.0353 

0.0350 

0.0242 

0.0205 

 

 

The box plots of the mean Jaccard indices of the five clustering approaches are shown in Figure 5. 

For the Jaccard indices in clustering the datasets with no outliers, it is shown in Figure 5(a). The p-value is 

0.9810. For the 2×SD outlier threshold, it is presented in Figure 5(b). The p-value is 0.9824. Figure 5(c) 

shows the boxplot of the 2.5×SD with a p-value of 0.9006. The box plot of the 3×SD outlier threshold is 

shown in Figure 5(d). The p-value is 0.7606. Since the p-values are all greater than 0.05, there is no 

significant difference in the mean Jaccard indices of the clustering approaches. 
 

 

  
(a) 

 

(b) 

  
(c) (d) 

 

Figure 5. Box plots: (a) no outlier, (b) 2×SD, (c) 2.5×SD, and (d) 3×SD 
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4. CONCLUSION 

Wireless multipath datasets generated by 5G channel models were clustered. The outliers were 

removed, and the datasets without outliers were again clustered. Results show that most outliers were 

identified using the 2×SD outlier threshold. Also, the threshold gave the highest clustering accuracy 

improvement. The clustering accuracy of K-means and AC-Single in Semi-Urban B1 LOS multiple links is 

increased by 78.85% and 55%, respectively, and DBSCAN in Semi-Urban B2 LOS multiple links by 

57.14%. Furthermore, the study shows that outlier detection and removal work well with channel model 

datasets. The characterization of the multipath datasets was achieved by detecting their outliers. Finally, the 

results can be used to analyze the propagation characteristics of 5G further. 

The implications of the study show that datasets generated by 5G channel models contain outliers 

and removing them greatly improves clustering accuracy. The study is limited to the channel models 

examined and cannot be used to generalize 5G systems. As for future work, the use of other outlier detection 

techniques can be considered to check the outliers of the 5G channel model datasets. 
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