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 Accurate fuel consumption prediction is critical for minimizing the adverse 

impact of fuel emissions on the environment, conserving fuel, and reducing 

flight costs. Additionally, precise fuel forecasting enhances trajectory 

prediction and supports effective air traffic management. This study 

evaluates the predictive performance of two deep learning techniques in 

predicting the fuel consumption of a civil aircraft belonging to Airbus 

A320NEO. Based on the analysis, the findings show that the deep neural 

network (DNN) model has better score of indicators and than the recurrent 

neural network (RNN) including mean absolute error (MAE), mean squared 

error (MSE), root mean squared error (RMSE) and R-squared (R2). By 

integrating an automated feature selection approach with an optimized deep 

learning framework, this research contributes to the development of a robust 

and efficient predictive system for fuel consumption. The findings have 

practical implications for improving fuel management strategies in aviation, 

leading to cost savings and reduced emissions. One limitation of this study is 

its reliance on specific environmental variables, which may limit the model’s 

generalizability across different flight conditions, aircraft types, and 

operational scenarios. 
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1. INTRODUCTION 

The aviation industry is a major contributor to global greenhouse gas emissions, primarily through its 

production of 𝐶𝑂2. In 2010, the international aviation industry consumed approximately 142 million tons of 

fuel, resulting in 448 million metric tons (Mt, 1 kg ×109) of emissions 𝐶𝑂2, and fuel consumption is expected to 

2.8–2.9 times by 2040 [1]. However, by 2013, the total gas 𝐶𝑂2 generated from commercial flights had reached 

707 million tons and futher increase to 920 million tons by 2019 (about 30% in 6 years) [2], [3]. Aircraft 

engines produce 𝐶𝑂2 as a fixed ratio of 3.16 kg 𝐶𝑂2 per 1 kg of burned fuel, making it a persistent green house 

gas [4]. Its long lifetime in the atmosphere makes 𝐶𝑂2 a potent greenhouse gas. Once emitted, 𝐶𝑂2 remains in 

the atmosphere for centuries, with 20 percent remain for thousands of years [5]. Therefore, all the emissions 

generated from aircraft will take many time to be converted. The COVID-19 pandemic temporarily reduced 

global flight activity in 2020 by nearly 50%, significantly decreasing greenhouse gas emissions [6], [7]. This 

sharp decline underscores the aviation sector’s profound environmental impact and highlights the urgent need 

for sustainable solutions. Furthermore, the continued growth in passenger numbers exacerbates the problem. In 
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2010, the industry transported 2.4 billion passengers, a figure projected to reach 8.2 billion by 2040 [8]–[10]. 

Thus, aviation-related emissions could triple by 2050 compared to 2015 levels [11], [12]. 

To mitigate these impacts, the European Union Commission has been applying solutions such 

sustainable aviation fuels (SAF) and flight routes optimizations [13]. However, to apply solutions, current 

forecasting models for fuel consumption have many variation, leading to 𝐶𝑂2 large deviations in the 

calculation of impacts and other emissions. Besides, poor predictions can result in financial losses for airlines 

by failing to detect aircraft malfunctions in time.  

The contribution of paper is using deep learning model including deep neural network (DNN) and 

recurrent neural network (RNN) to predict accurately aircraft fuel consumption of a long distance. Flight 

monitors data is used for fueling consumption assessment. An underscored point in the paper is an optimized 

process using opened and efficient models, features selection method to easily put the model into practices. 

As a result, two main focused points in the paper are features selection method (mutual information (MI)) 

and the good deep learning model (the result of comparison between DNN and RNN). The involvement of 

big data, powerful tools are required to transform those data before running the process. 

 

 

2. METHOD 

2.1.  Definition of quick access recorder data 

A quick access recorder (QAR) [14] is a system that can easily and quickly collect aircraft data. It 

consists of an airborne device for data recording and a ground software station for data storage and analysis. 

QAR can captures approximately 2000 parameters per aircraft, including position, motion, operations, and 

warnings, but its data remains confidential and is rarely used in research [15]. Unlike flight data recorders 

(FDR) and cockpit voice recorders (CVR), QARs are not mandatory and are typically installed in easily 

accessible locations, such as airline cabins, for routine monitoring of aircraft systems and crew performance 

[16], [17]. QAR data is translated through a data decoding frame (also known as a dataframe). It receives 

input from the flight data acquisition unit and has evolved from using magnetic tapes to solid-state memory. 

Previously, data had to be manually retrieved, processed, and stored, leading to significant operational costs. 

However, modern wireless technology now allows secure, real-time transmission of compressed and 

encrypted QAR data via mobile networks, improving efficiency, reducing costs, and enhancing data 

availability [18]. 

 

2.2.  Mutual information 

Mutual information (MI) [19] quantifies the dependence between two random variables. A high MI 

[20] score indicates a strong relationship with the target variable, making it useful for prediction. A low MI 

score indicates suggests minimal influence, while an MI score of zero signifies complete independence [21]. 

For two discrete variables 𝑋 and 𝑌 with a joint probability distribution of 𝑃𝑋𝑌(𝑥, 𝑦), the value of MI of this 

distribution is denoted 𝐼(𝑋; 𝑌) with the following formula: 

 

𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑃𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
𝑌
𝑦𝑌

𝑋
𝑥𝑋 = 𝐸𝑃𝑋𝑌

𝑙𝑜𝑔
𝑃𝑋𝑌

𝑃𝑋𝑃𝑌
 (1) 

 

where 𝑃𝑋(𝑥) and 𝑃𝑌(𝑦) present the marginal probability function of 𝑋 and 𝑌 and 𝑃𝑋𝑌 presents the joint 

distribution function of 𝑋 and 𝑌, respectively. 𝐸𝑃 is the expected value on the 𝑃 distribution. For two 

continuous variables 𝑋 and 𝑌 with a joint probability distribution of 𝑃𝑋𝑌(𝑥, 𝑦), the value of MI of this 

distribution is denoted as 𝐼(𝑋; 𝑌) with the following formula: 

 

𝐼(𝑋; 𝑌) =  ∬
𝑦

𝑦
𝑃𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔

𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
𝑑𝑥𝑑𝑦 = 𝐸𝑃𝑋𝑌

𝑙𝑜𝑔
𝑃𝑋𝑌

𝑃𝑋𝑃𝑌
 (2) 

 

the formula for MI can be equivalent to the following: 

 

𝐼(𝑋; 𝑌) =    𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (3) 

              =    𝐻(𝑋, 𝑌) − 𝐻(𝑌) − 𝐻(𝑌|𝑋)  

 

where 𝐻(𝑋) and 𝐻(𝑌) are the boundary entropies. 𝐻(𝑋|𝑌) and 𝐻(𝑌|𝑋) are conditional entropies. 𝐻(𝑋, 𝑌) is 

the set of entropies of X and Y. 

To fully grasp MI [22], we need to understand entropy and conditional entropy. According to 

Shannon, entropy quantifies uncertainty in a probability distribution. Uncertainty here means the “surprise” 

of the variable, which means the probability of a value in the variable is very low but it happens. Therefore, 

“surprise” will be inversely proportional to probability. Then, use the logarithm on the inverse of the 
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probability to return the values 0 and 1 to answer the question whether there is surprise in the event or not. If 
1

𝑝(𝑥)
 equals 1 leads to 𝑙𝑜𝑔 𝑙𝑜𝑔 (

1

𝑝(𝑥)
) equals 0, this means there is no element of surprise in the event and is 

completely predictable. On the contrary, 
1

𝑝(𝑥)
 moving towards 0 leads to 𝑙𝑜𝑔 𝑙𝑜𝑔 (

1

𝑝(𝑥)
), then the result is 

indeterminate and “surprise” can occur because “surprise” is something that cannot be determined. Typically, 

in information systems, uncertainty is created in the information source (input) and transmission channel 

because we really do not know for sure which information source we receive and which signal is received 

[23]. In short, entropy (symbol: H(X)) is a measure of the uncertainty of a random variable. The higher the 

entropy, the higher the uncertainty of a variable. Given a discrete and distributed random variable distributed 

according to P: X -> [0,1], the formula for entropy is: 

 

𝐻(𝑋) ∶= ∑ 𝑃𝑋(𝑥) log (
1

𝑃𝑋(𝑥)
)𝑥𝑋  = 𝐸[1 −𝑙𝑜𝑔 log(𝑃𝑋(𝑥))] (4) 

 

the formula for entropy with continuous variables is: 

 

𝐻(𝑋) ∶= − ∫ 𝑃𝑋(𝑥)𝑙𝑜𝑔 (𝑃𝑋(𝑥)) 𝑑𝑥 (5) 

 

from there, conditional entropy (symbol: H(Y|X)) talks about the probability of variable X occurring without 

Y. Conditional entropy with discrete and continuous variables has the formula: 

 

𝐻(𝑌|𝑋) =  ∑ 𝑃𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)𝑥𝑋,𝑦𝑌  (6) 

 

𝐻(𝑌|𝑋) =  ∫ 𝑃𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)
 (7) 

 

Thus, we can rely on entropy to explain the MI algorithm as follows. If the probability of PXY(x,y) 

approaching zero leads to a value 
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)
 of 0, (𝑃𝑋𝑌(𝑥, 𝑦)𝑙𝑜𝑔

𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)
 ) will approach 0, which means that 

variable Y does not have much information related to X, then the value of MI is 0 and the two variables are 

completely independent. In case 𝑃𝑋𝑌(𝑥, 𝑦) it approaches one, 𝑙𝑜𝑔
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)
 it will gradually approach zero. 

This means that variable Y contains more information related to variable X and the less "surprise" happens 

between the two variables. Therefore, it can be concluded that the two variables are related or overlap (with 

𝑙𝑜𝑔
𝑃𝑋𝑌(𝑥,𝑦)

𝑃𝑋(𝑥)
 = 0 and 𝑃𝑋𝑌(𝑥, 𝑦)= 1). 

 

 

3. THE PROPOSED MODEL 

The 3-stage architecture of the proposed model is shown in Figure 1. The showns as Figure 1 the 

process begins with data collection from flight data interface management unit and QAR systems, followed 

by decoding binary data and storing it in a structured data warehouse containing parametric data, technical 

documents, and knowledge models. Through preprocessing steps such as handling anomalies, reshaping data, 

and feature selection using mutual information, the study ensures that only relevant variables are used for 

model training. Two deep learning architectures, RNN and DNN, are implemented and fine-tuned to achieve 

optimal performance. The evaluation reveals that DNN outperforms RNN in terms of accuracy. After 

evaluation, parameters modification is applied for accuracy improvement. 

This paper uses QAR data from an Airbus A320NEO [24]. Aircraft can record 600–3,000 

parameters in a dataframe file, but due to computational, security, and storage constraints, only key 

parameters were selected including fuel flow, calibrated airspeed, static air temperature, pressure altitude, 

wind speed at the top of the cockpit, side wind speed, left landing gear, right landing gear, nose landing gear, 

standard acceleration [25]. The output is the fuel consumption rate, re flecting the fuel consumption flow. 

There are 9 input factors, removing redundant variables to optimize performance. After that, the dataset is 

split into 80% for training and 20% for testing. Based on a review of existing research, RNN and DNN are 

selected for comparison in next step. After building the model, training data is fed into the model to conduct 

learning. Aftermath, moving to model validation is check the reliability of the model. The test set data is fed 

into the models for learning and the estimated fuel consumption is obtained. Performance is assessed using 

mean squared error (MSE), root mean squared error (RMSE), R-squared (𝑅2), and mean absolute error 

(MAE) to ensure reliability. The results are then compared with previous studies, and model weights are 

adjusted iteratively until optimal accuracy is achieved. 
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Figure 1. Architecture of proposed model 

 

 

3.1.  Data preprocessing 

QAR is a digital recording device [26] that stores data in a binary format as a stream of bits, i.e., a 

sequence of 0 s and 1 s [27]. Storing data in binary format improves storage efficiency by reducing file size 

by up to ten times compared to formats such as CSV [28]. However, decoding binary data into meaningful 

technical values requires structured logic. This process adheres to the aeronautical radio incorporated 

(ARINC) standards, with ARINC 717 applied to older aircraft models and ARINC 767 used for newer ones 

[29]. A dataframe, a comprehensive text document, defines the structure, parameter locations, and decoding 

rules necessary for data interpretation [18]. The QAR continuously records data in 4-second blocks, with 

each second containing between 64 and 1024 words. Each subframe begins with a 12-bit synchronization 

word (e.g., 0x247, 0x5B8). A frame consists of four subframes, and the largest unit, the superframe, is 

determined by the frame counter (ranging from 0 to 4095). A new superframe begins whenever the frame 

counter modulo 16 equals zero (i.e., when frame % 16=0). 

After decoding, the data is stored as a time series, including series ID, timestamp, and associated 

double and string values. The next step is to reshape the data to extract features by timestamp. In the cleaning 

step, the converted data is processed to handle outliers and missing values to ensure quality before splitting 

into training and testing sets. 

 

3.2.  Model training and validation 

The data used for model estimation is historical data divided into a training set and an evaluation set. 

The data splitting is performed using stratified sampling based on the target variable labels, with a ratio of 

80% for training and 20% for evaluation. The models are estimated using the Python libraries of TensorFlow. 

The model tuning parameters are described in the Table 1. This paper chooses four indicators to compare and 

evaluate, including MAE, MSE, RMSE, and 𝑅2 [30]: 

− MAE is to measure accuracy for continuous variables [31]. The average absolute error has the following 

formula: 
 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑒𝑖|

𝑛
𝑖=1  (8) 

 

− The MSE is the risk function [32], corresponding to the expected value of the squared error loss. 
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𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − Ῡ𝑖)

2𝑛
𝑖=1  (9) 

 

− RMSE provides insight into the overall error distribution [33]. If they are equal, all errors have the same 

magnitude. 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1   (10) 

 

− 𝑅2 provides information about the goodness of fit of a model [34]. The value of 𝑅2 will range from 0 to 

1, where 1 indicates perfect prediction accuracy, while 0 means no correlation. A higher R² signifies 

greater model reliability. The formula for this measure is as follows: 
 

𝑅2 = 1 −  
∑ (𝑌𝑖− Ẏ𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖− Ῡ𝑖)2𝑛
𝑖=1

  (11) 

 

 

Table 1. Model tuning parameters in TensorFlow 
Model Layer Decription in TensorFlow 

RNN 

[35] 

Embedding Turns positive integers (indexes) into dense vectors of fixed size. The configured arguments are 

input_dim = 1.000, output_dim = 64. 
Long short-

term memory 

(LSTM) [36] 

Based on available runtime hardware and constraints, this layer will choose different implementations 

(cuDNN-based or backend-native) to maximize the performance. Unit is 128. 

Dense Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the 

element-wise activation function passed as the activation argument with 10 units. 

Dense Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the 
element-wise activation function passed as the activation argument (unit = 1) 

DNN 

[37] 

Dense Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the 

element-wise activation function passed as the activation argument named relu (configured arguments: 
unit = 64; activation = relu) 

Dense Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the 

element-wise activation function passed as the activation argument named relu (configured arguments: 

unit = 64; activation = relu) 

Dense Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the 

element-wise activation function passed as the activation argument (unit = 1) 

 

 

3.3.  Model selection and deployment 

At this phase, a comprehensive evaluation of the model will be conducted, considering mention 

mesures: MAE, MSE, RMSE, and R squared (𝑅2). A comparative analysis ensures the best-performing 

model maintains stability across training and test sets while optimizing key metrics. The selected model is 

then integrated with the MI method to establish a comprehensive selection process. 

 

 

4. EXPERIMENTAL RESULTS 

4.1.  Model tuning and selection 

Models are ranked based on performance metrics in the training set with trends analyzed on the 

evaluation set. The Figure 2(a) indicates a dcrease the loss function in both training and testing. DNN 

outperforms RNN with lower MAE (346.64 vs. 958.17) and RMSE (2811.2 vs. 3108.24), achieving 90% 

reliability (R² = 0.90). However, due to overfitting tendencies, RNN is considered the more optimal model 

for fuel consumption prediction shown as Table 2.  

Besides, the model show no signs of underfitting or overfitting, with both training and evaluation 

loss functions decreasing. Convergence point at the 4th training time because no significant changes occur 

beyond this point (the 5th to 18th training times). Therefore, at the 4th training session the model is most 

effective. Similarly, Figure 2(b) show that the loss function in training and testing is decreasing. Besides, the 

model does not show signs of underfitting or overfitting. 
 

 

Table 2. Indicators of two models RNN and DNN 
Measuring indicators MAE MSE RMSE 𝑅2 
DNN 346.64 7902825.14 2811.2 0.90 

RNN 958.17 9661184.19 3108.24 0.87 
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(a) 

 

 
(b) 

 

Figure 2. Evaluate model through MSE: (a) loss function in training and testing of RNN model and (b) loss 

function in training and testing of DNN model  

 

 

At the same time, the model’s loss function on training and evaluation set both decreased, reaching 

convergence point at the 2nd training time, with no significant changes from the 5th to 50th iteration. Therefore, 

at the second training session the model is most effective. However, the chart indicates slight underfitting, 

suggesting the need for additional parameters or a more complex model to prevent further underfitting. 

The shown as Figures 3(a) and (b) compare the real value and predicted value, showing 87% 

accuracy for RNN and 90% for DNN, confirming DNN as the better model. Besides, the CNN model 

struggles with values in the 40,000–60,000 range, leading to errors. Meanwhile, the DNN model is 

forecasting with a lower error probability. Therefore, there are two directions to adjust this accuracy: (i) 

refining the model to better capture value fluctuations of aircraft and (ii) expanding the dataset, as the current 

study is based on a single flight. With the above accuracy, the models’ accuracy aligns with [38] whose 

achived each flight phase fluctuates around 90-99% accuracy; and 96% during takeoff. 
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(a) (b) 

  

Figure 3. Evaluate model through actual vs predicted values: (a) prediction results of the RNN model and (b) 

prediction results of the DNN model 

 

 

4.2.  Discussion 

This study provides evidence that various factors such as calibrated airspeed, static air temperature, 

pressure altitude, wind speed at the cockpit, and side wind speed significantly impact civil aircraft fuel 

consumption. By leveraging two deep learning models DNN and RNN, the study highlights the effectiveness 

of parameter tuning to enhance prediction accuracy. Notably, the DNN model, when combined with the MI 

method for feature selection, achieved superior performance (R²=90%, MAE=346.64, MSE=7,902,825.14), 

outperforming RNN. In comparison with [39]–[41], this research adopts a broader approach, considering 

multiple phases and integrating explicit feature selection. Additionally, the study emphasizes the advantage 

of deep learning over traditional statistical methods, showing that tuning model parameters significantly 

enhances prediction accuracy. Besides, earlier approaches often relied on traditional statistical methods or 

default configurations of machine learning algorithms, this study shows that parameter tuning can 

significantly improve predictive accuracy. 

However, limitations exist, including reliance on specific environmental variables that may affect 

generalizability and the absence of real-time validation. The RNN model’s lower performance suggests its 

temporal learning potential is not fully utilized. Future research should explore hybrid deep learning models 

(e.g., DNN with recurrent or transformer-based architectures) to capture both temporal and spatial 

dependencies. Transfer learning could further enhance adaptability across different aircraft types and flight 

conditions. To improve practical applicability, future work should focus on phase-specific modeling, real-

time validation, multi-source data integration, and lightweight deep learning architectures to develop scalable 

and interpretable fuel consumption prediction models, optimizing aviation operations and reducing CO₂ 

emissions. 

 

 

5. CONCLUSION 

The findings of this study confirm that DNN with optimized parameter tuning and feature selection, 

outperform RNN in predicting aircraft fuel consumption. The combination of MI evaluation enhances 

automation, enabling faster forecasting and early detection of fuel anomalies, improving maintenance 

efficiency and cost-effectiveness. Despite its effectiveness, the model has several limitations that require 

improvement. The study is based on data from a single Airbus A320NEO flight, lacking validation across 

other Airbus and Boeing models, which differ in seating capacity, flight speed, and weight. It is necessary to 

expand and build more models for use with other aircraft models. Secondly, the dataset is limited, covering 

only one flight without distinguishing between takeoff, cruising, and landing phases, affecting prediction 

accuracy. The model has not been adjusted to predict each phase but is currently using a fixed model to 

predict the entire flight. Thirdly, the usage models are the foundation models for forecasting fuel 

consumption. Another challenge is handling abnormal values in QAR data, particularly in corrected airspeed 

and fuel flow, which distort predictions. While LSTM in RNN helps mitigate this, high error rates persist, 

necessitating more advanced techniques. Finally, the model relies solely on aircraft-recorded parameters, 

without incorporating external factors like weather and air traffic, limiting its adaptability to real-world 

conditions. To solve this problem, the model needs to research more external factors to calculate an 

acceptable index or value range to measure these factors in the model.  
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Research on MI variable selection method and deep learning models has led to an automated process 

for fuel prediction, opening new avenues for improvement. Specifically, there are two directions of 

development: depth and breadth. Developing in a broad direction, real-time anomaly detection can be built to 

to alert airlines of potential risks and predict flight delays due to weather or operational factors. Aircraft to 

promptly take measures to prevent aviation accidents or potential and risky technical errors. In terms of 

depth, the model can be developed to incorporate additional variables beyond aircraft tracking data to 

enhance accuracy, minimize errors, and optimize fuel efficiency. 
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