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ABSTRACT

Visually impaired individuals continue to face barriers in accessing reading and
listening resources. To address these challenges, we present a comparative anal-
ysis of cutting-edge technological solutions designed to assist people with vi-
sual impairments by providing relevant feedback and effective support. Our
study examines various models leveraging InceptionV3 and V4 architectures,
long short-term memory (LSTM) and gated recurrent unit (GRU) decoders, and
datasets such as Microsoft Common Objects in Context (MSCOCO) 2017. Ad-
ditionally, we explore the integration of optical character recognition (OCR),
translation tools, and image detection techniques, including scale-invariant fea-
ture transform (SIFT), speeded-up robust features (SURF), oriented FAST and
rotated BRIEF (ORB), and binary robust invariant scalable keypoints (BRISK).
Through this analysis, we highlight the advancements and potential of assistive
technologies. To assess these solutions, we have implemented a rigorous bench-
marking framework evaluating accuracy, usability, response time, robustness,
and generalizability. Furthermore, we investigate mobile integration strategies
for real-time practical applications. As part of this effort, we have developed a
mobile application incorporating features such as automatic captioning, OCR-
based text recognition, translation, and text-to-audio conversion, enhancing the
daily experiences of visually impaired users. Our research focuses on system
efficiency, user accessibility, and potential improvements, paving the way for
future innovations in assistive technology.
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1. INTRODUCTION
Visually impaired people [1] face many difficulties in their daily activities, including navigating unfa-

miliar environments, reading text, and interpreting visual information [2]. Although assistive technologies such
as Microsoft Seeing AI and Google Lookout have been developed to analyze images in real-time and provide
descriptions, these solutions still have significant limitations, including high costs, restricted functionality, and
dependence on a stable internet connection. These constraints considerably reduce their effectiveness, particu-
larly in critical situations such as crossing streets or reading important documents in real-time. Despite techno-
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logical advancements, assistive technologies for the visually impaired struggle to deliver real-time performance
because of computational demands and limited adaptability to real-world environments. Their dependence on
the internet reduces their offline effectiveness, compromising the immediate and reliable assistance users need
for essential tasks such as crossing streets or reading important documents.

To address these limitations, our study proposes a comprehensive benchmarking system designed
to evaluate and optimize the performance of assistive technologies for visually impaired users. This system
measures the effectiveness of various components, including image captioning, optical character recognition
(OCR), real-time translation, and key image element detection [3]. Our goal is to encourage the development of
mobile applications [4] that combine both accuracy and speed, ensuring optimal performance in real-time use
cases. The mobile application we developed, ”SeeAround,” integrates these functionalities to provide reliable
visual assistance [5]. The general diagram of our system, presented in Figure 1, outlines the various modules
and their interactions, illustrating how they work together to offer real-time assistance.

Figure 1. General diagram of the real-time visual assistance system for the visually impaired

For image captioning, we use an encoder-decoder architecture combining convolutional neural net-
works (CNN) and recurrent neural networks (RNN). Specifically, we employ InceptionV3 [6] and InceptionV4
[7] models, adapted to process images efficiently in real-world contexts for visually impaired people. Addi-
tionally, we use the Microsoft Common Objects in Context (MSCOCO) 2017 dataset to train the models with
enhanced parameters, optimizing them for mobile environments. Our system also integrates long short-term
memory (LSTM) and gated recurrent unit (GRU) decoders to capture temporal sequences more effectively,
improving the generation of image captions by modeling long-term relationships between visual and textual
elements [8].

The OCR component processes images containing mainly text, even in visually complex environ-
ments. Using advanced algorithms, it accurately detects and extracts text, providing contextual information
essential for visually impaired users. Furthermore, the real-time translation functionality of our mobile appli-
cation removes language barriers by supporting a wide range of languages [9]. Recognized text is translated
into the chosen language and then converted into speech via our text-to-speech module [10], making it easier
to understand image descriptions and textual content extracted by OCR.

An essential aspect of providing relevant visual information is precisely extracting key image ele-
ments during camera analysis [11]. Each image has different characteristics such as saturation, brightness,
contrast, and camera angle, meaning that uniform processing approaches can prove ineffective. To address
this, we have incorporated advanced image detection algorithms, including scale-invariant feature transform
(SIFT) [1], speeded-up robust features (SURF) [1], oriented features from accelerated segment test (FAST) and
rotated BRIEF (ORB) [12], and binary robust invariant scalable keypoints (BRISK) [12]. These algorithms
are renowned for their robustness and accuracy under difficult conditions. Our system detects the limitations
of current methods and proposes improvements to ensure optimum performance, particularly in the real-life
situations of visually impaired people.
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This paper is structured into five main sections, each addressing a key aspect of the study. Section 2
provides a detailed overview of previous research and current technologies designed for visually impaired users.
Section 3 focuses on our benchmarking system and the key components used in our application. Section 4
presents the experimental results and their analysis, demonstrating the impact of our technical choices. Finally,
section 5 concludes by summarizing our findings, discussing the implications of this work, and suggesting
avenues for future research and development in assistive technology.

2. RELATED WORK
Visual impairment, a common disability, presents different levels of severity. Assistive technologies

are crucial in providing visual alternatives via various products, devices, software, and systems [4], [6]. Sand-
hya et al. [13] present an application that helps visually impaired people understand their environment using
neural networks and natural language processing. The application generates textual descriptions of images
captured by a camera and integrates an OCR module to read the text on signs and documents. The descriptions
are then converted into audio, providing information in several languages such as Telugu, Hindi, and English.
This application requires a system with an integrated GPU. Ganesan et al. [14] propose an innovative approach
to facilitating access to printed content for the visually impaired, using CNNs and LSTMs to encode and de-
code information. The system integrates OCR to convert printed text into digital format and then into speech
via a text-to-speech application programming interface (API), making the content accessible via voice reading.
Bagrecha et al. [15] present ”VirtualEye,” an innovative application in assistive technologies for the visually
impaired, offering functions such as object and distance detection, recognition of Indian banknotes, and OCR.
The system provides voice instructions in English and Hindi, enhancing users’ independence and improving
their quality of life. Uslu et al. [16] aim to generate grammatically correct and semantically relevant captions
for visual content via a personalized mobile app, improving accessibility, particularly for the visually impaired.
Integrated with the “CaptionEye” Android app, the system enables captions to be generated offline and con-
trolled by voice, offering a user-friendly interface. Çaylı et al. [17] present a captioning system designed to
provide natural language descriptions of visual scenes, improving accessibility and reducing social isolation for
visually impaired people. This research demonstrates the practical application of computer vision and natural
language processing to create assistive tools. Despite significant advances, it is crucial to continue developing
reliable mobile systems adapted to everyday life to improve users’ autonomy and quality of life.

3. METHOD
In this section, we present our solution based on a benchmarking analysis. Subsection 3.1 presents

the initial module, detailing the process of benchmarking the modules illustrated in Figure 1 of our system.
Subsection 3.2 explores the generation of image captions using encoder-decoder architectures optimized with
TensorFlow Lite, integrating multi-GRU and LSTM models for accurate descriptions. Finally, subsection 3.3
compares the performance of four separate systems using various models for image captioning, OCR, transla-
tion, and key point extraction.

3.1. Description of the benchmarking process for the evaluation of visual assistance systems
Benchmarking measures a company’s performance against market leaders [18], [19] to identify gaps

and drive continuous improvement. In this study, realistic tasks adapted to the needs of visually impaired peo-
ple, such as image caption generation, text recognition, and key point extraction, were designed. By comparing
our solutions with industry standards, the aim is to close performance gaps and improve assistive technologies.

3.1.1. Benchmarking criteria and methodology
To improve accessibility and comprehension of multimedia content for visually impaired users, we

have integrated automatic subtitling, OCR, text translation, and image recognition modules. These compo-
nents use advanced machine-learning algorithms to optimize processing accuracy and speed, ensuring fluid,
instantaneous interaction. Every component has been designed for a smooth, optimized experience.

3.1.2. Performance evaluation of visual assistance systems
We evaluated each visual assistance system according to four key criteria: accuracy, response time,

robustness, and generalizability. Accuracy was measured by comparing the results obtained with expectations
for tasks such as image description, OCR, and translation. Response time, expressed in milliseconds, was used
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to assess system efficiency. Robustness was analyzed under difficult conditions, including low lighting, high
noise, and complex backgrounds, to ensure reliability. Finally, generalizability was examined using unpub-
lished images, videos, and documents to judge its suitability for new contexts.

3.1.3. Comparative analysis of benchmark results
We analyzed the results to determine the best-performing systems for each task and usage scenario,

emphasizing their strengths and weaknesses. This rigorous comparative analysis identified the most effective
real-time visual assistance solutions, providing valuable insights into their capabilities. These findings will help
guide the future development of more advanced, efficient, and user-friendly technologies tailored to the needs
of visually impaired individuals.

3.2. Optimization of automatic image caption generation
This subsection presents a system for automatically generating image captions, based on an encoder-

decoder model. The CNNs InceptionV3 and InceptionV4 are used to extract visual features as encoders. The
multilayer decoder, composed of GRU and LSTM, generates the semantic captions, as illustrated in Figure
2. The work mentioned in [6], [7] combines CNN and recurrent networks, but the excessive increase in the
number of time steps, due to the length of the legends, led to inferior performance. By reducing this number,
we optimized the use of GRU and LSTM, leading to better results.

Figure 2. Model architecture for multi-RNN-based automated image captioning

3.2.1. InceptionV3-gated recurrent unit-based multi-layer image caption generator model
The image captioning system consists of two main elements: the encoder and the decoder, each based

on a distinct neural architecture. The encoder, based on InceptionV3 [6], extracts key information from the
image. This is then passed on to the decoder, which uses a GRU to generate the caption word by word. The
proposed general model is illustrated in Figure 3.

Figure 3. Flowchart of the InceptionV3 multi-layer GRU image caption generator
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Encoder-InceptionV3 architecture: the encoder, based on a CNN, is composed of convolution, pool-
ing, and connection layers. Sparse interactions identify key visual elements, while parameter sharing enables
the same kernel to be applied for optimized learning. Before training, a 2048-dimensional vector is generated
from the images via the mean pooling layer of the Inception-v3 model [6]. During training, a dense layer
[20] refines this vector, progressively compressing it into a more compact and discriminative representation for
image captioning.

Decoder-GRU implementation: the decoder exploits the extracted features to generate descriptive sen-
tences, relying on RNNs to store part of the input data. However, RNNs face limitations due to gradient fading
and explosion problems, compromising their ability to handle long-term dependencies. To overcome these
difficulties, we use GRUs, an enhanced version of RNNs with control mechanisms [20] facilitating dependency
management. Figure 4 shows a typical GRU architecture with its update, reset, and hidden state gates. The de-
coder comprises an integration level, a multilayer GRU, and a linear layer. The integration level converts words
into vectors suitable for language modeling, while the GRU adjusts the hidden state using its gate mechanisms.

Figure 4. Architecture of GRU

In these (1)-(4) [21], xt represents the input, and ht is the hidden state at time t. The weights associated
with the reset, update, and new information creation gates are denoted as Wr, Wz , and Wu, respectively. The
hyperbolic tangent and sigmoid activation functions are symbolized by tanh and σ, respectively.

rt = σ(Wxrxt + Uhrht−1) (1)

zt = σ(Wxzxt + Uhzht−1) (2)

ut = tanh(Wxuxt + Uhu(rt ⊙ ht−1)) (3)

ht = (1− zt)ht−1 + ztut (4)

3.2.2. InceptionV4-long short-term memory-based multi-layer image caption generator model
The model follows an encoder-decoder approach, where the InceptionV4 [7] acts as an encoder to

extract visual features from images. These features are then transmitted to a recurrent neural network equipped
with LSTM cells that act as decoders. The latter uses this information to generate sequences of words, thus
producing descriptive captions for the images. The general scheme of the model is illustrated in Figure 5.

Encoder-InceptionV4 architecture: we use InceptionV4, a CNN pre-trained by Google, as the encoder
in our framework. This model extracts high-level visual features through deep convolutional layers. The
InceptionV4-based encoder [7], [22], [23] converts raw images into fixed-length vectors by capturing relevant
information from the intermediate pooling layer, just before the final output. This process provides a concise
and relevant image representation for subsequent processing.

Decoder-LSTM implementation: the decoder is a deep recurrent neural network with LSTM cells , as
shown in Figure 6. In our model, the decoder operates in two phases: learning and inference. During learning,
the RNN decoder with LSTM cells aims to maximize the probability of each word in a caption based on the
convoluted features of the image and previously generated words [7].
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Figure 5. Flowchart of the InceptionV4 multi-layer LSTM image caption generator

Figure 6. Architecture of LSTM

To learn a sentence of length N , the decoder loops back on itself for N time steps, storing previous
information in its cell memory. The Ct memory is modified at each time step by the LSTM gates: the forget
gate ft, the input gate it, and the output gate ot. The LSTM decoder learns the word sequences from the
convolved features and the original caption. At step t = 0, the hidden state ht of the decoder is initialized using
these image features F . The main idea of the encoder-decoder model is illustrated by (5)-(11):

ft = σ (Wf · [ht−1, xt] + bf ) (5)

it = σ (Wi · [ht−1, xt] + bi) (6)

C̃t = σ (WC · [ht−1, xt] + bC) (7)

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

ot = σ(Wo · [ht−1, xt] + bo) (9)

ht = ot ∗ tanh(Ct) (10)

Ot = argmax(softmax(ht)) (11)
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3.2.3. Training process and techniques for model optimization
The transformation of input xt at time t into output word Ot is guided by equations using learnable

weight and bias vectors (Wf , bf ), (Wi, bi), (Wo, bo), activated by sigmoid σ and hyperbolic tangent tanh
functions [6], [7]. Each word Xt is converted into fixed-length vectors using a word representation We of
dimension V ×W , where V is the number of words in the vocabulary and W is the length of the embedding
learned during training. The decoder’s objective is to maximize the probability p of a word’s appearance at
time t given the cell and hidden states, features F , and previous words Xt:0→t. This is achieved by minimizing
the loss function L, which is the cross-entropy of the sampled word probabilities [6], [7].

Z = argmax
β

(
N∑
t=0

log(p(Ot|Xt:0→t−1, ϕt;β))

)
(12)

L = H(u, v) = min

(
N∑
t=0

−u(Xt) log(v(Ot))

)
(13)

where H(u, v) is the cross entropy, u and v represent the softmax probability distributions of the ground truth
word Xt and the generated word Ot at time t. During inference, the input image is passed through the encoder
to obtain the convolved features, which are then sent to the decoder. At time t = 0, the decoder samples the
start token Ot=0 = ⟨S⟩ from the input features F . For subsequent instants, the decoder samples a new word
based on the input features and previously sampled words Ot:0→t until it encounters an end token ⟨/S⟩ at
instant t = N [6], [7]. Figure 7 illustrates the backup architecture of the TensorFlow model for the LSTM and
GRU encoder-decoders. Figure 7(a) shows our InceptionV3-GRU model, which uses a CNN to extract visual
features and GRU units to generate captions. Figure 7(b) shows the architecture of the InceptionV4-LSTM
model, where InceptionV4 extracts visual features and an LSTM generates captions.

(a)

(b)

Figure 7. The architecture for training phases of: (a) the InceptionV3-GRU model and (b) the
InceptionV4-LSTM model

These diagrams show the architectures of models using InceptionV3 [6] and InceptionV4 [7] as en-
coders, with decoders based on GRU or LSTM units. The input image is resized and processed by convolutional
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layers, then features are extracted via global pooling to initialize the hidden state of the decoders. Each word
in the legend is then converted to vectors and processed to generate the probability of the next word.

Table 1 summarizes the main parameters used to train the different image caption generation models,
such as batch size, number of epochs, and time steps, which influence performance and quality. My new image
caption generation model optimizes previous versions [6], [7]. Reducing time steps from 22 to 18 improves
performance by reducing computational complexity. Increasing batch size to 148 stabilizes training while
limiting captions to 16 words enhances efficiency.

Table 1. Pre-trained model settings for image caption generation
Embedding size Caption preprocessing Error rate Batch size Num timesteps Epochs

InceptionV4-LSTM [7] 256 20 words 2× 10−3 100 22 120
InceptionV4-LSTM
(our model) 256 16 words 2× 10−3 148 18 120
InceptionV3-GRU [6] 256 20 words 2× 10−3 128 22 120
InceptionV3-GRU
(our model) 256 16 words 2× 10−3 148 18 120

3.2.4. Common dataset utilization for enhanced performance
High-quality data is crucial for an effective model. Using diverse datasets helps avoid overfitting

and improve performance. We used MSCOCO 2017 [20], which contains annotated images with five human
captions. Table 2 compares MSCOCO 2017, Flickr 30k [24] and MSCOCO 2014 [25], highlighting the distri-
bution of training, validation, and test sets, with MSCOCO 2017 offering the largest number of examples for
image captioning.

Table 2. Characteristics of datasets used to train image caption generation models
Dataset Training split (k) Validation split (k) Testing split (k) Total images (k)
Flickr30k (imeca[6]) 28 1 1 8
MSCOCO 2014 (cam2caption[7]) 83 41 41 144
MSCOCO 2017 (Our model) 118 41 5 164

3.2.5. Integration of our pre-trained model in the mobile application
We are optimizing our encoding-decoding model for real-time use in the “SeeAround” mobile ap-

plication via TensorFlow, exploiting its dataflow graph architecture [7] and processor parallelism to improve
efficiency. Graph-based image preprocessing accelerates speed by a factor of six. During training, checkpoints
and metadata files are generated regularly. Checkpoints store learned weights, while graph definitions link
them, enabling the model to be reconstructed and reused for inference and training. Figure 8 shows the backup
architecture for the LSTM and GRU models, with Figure 8(a) illustrating the LSTM model and Figure 8(b) the
GRU model.

(a) (b)

Figure 8. TensorFlow model backup architecture for: (a) the LSTM encoder-decoder and (b) the GRU
encoder-decoder
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We have combined the pre-processing, encoding, and decoding files into three ProtoBuf files to create
an end-to-end model suited to static and real-time requirements. A final ProtoBuf file serves as a black box
for subtitle generation. My model uses 18 words instead of 22 [6], [7], improving reliability and speeding up
real-time subtitle generation for image streams from the camera. Figure 9 shows the captions generated by the
LSTM and GRU decoding models. Figure 9(a) illustrates the captions generated by the LSTM model, while
Figure 9(b) shows those generated by the GRU model.

(a) (b)

Figure 9. captions generated by the model: (a) LSTM decoder outputs and (b) GRU decoder outputs

3.3. Detailed descriptions of our visual assistance systems
In this subsection, we present the four systems designed for image caption generation, OCR, machine

translation, and key point extraction. Each system is built on specialized templates carefully selected for their
efficiency and relevance. As illustrated in Table 3, these choices are guided by performance metrics and task-
specific adaptability, ensuring optimal accuracy and reliability.

Table 3. Systems description for benchmarking evaluation
Image captioning OCR Translation Keyframe extraction

System
1

InceptionV4-LSTM with
22 words [7]

Google Mobile Vision API Google Cloud Translation
API

SIFT

System
2

InceptionV4-LSTM with
18 words (our model)

Firebase Vision Text Detector Google ML kit SURF

System
3

InceptionV3-GRU with 22
words [6]

Google Firebase Machine
Learning kit

Firebase ML Kit BRISK

System
4

InceptionV3-GRU with 18
words (our model)

TessTwo-Android Google Translate API ORB

3.3.1. Inception-V4 with LSTM and the harmony of advanced vision and language processing
Using the Google Mobile Vision API to recognize text in images: technological advances in informa-

tion capture and text recognition have led to innovative services such as document analysis and secure access
to devices. OCR [26], a technology for detecting and extracting text from scanned images or directly from the
camera, can work with or without an internet connection. Google offers Mobile Vision, an open-source tool
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for creating text recognition and instant translation applications on Android. In this research, OCR is used to
assist the visually impaired. Although this technology is effective for document scanning and text analysis, it
encounters limitations in applications dependent on a stable Internet connection, particularly in areas with low
connectivity. The extracted text data is then processed by a REST API [27], which interacts with a database
and displays the information live on the device, as illustrated in Figure 10.

Figure 10. Using the Google Mobile Vision API for the OCR process

Google Cloud Translation to convert recognized text into multiple languages: The Google Cloud Plat-
form offers pre-trained machine learning models for creating applications that interact with their environment
[28]. Among these models, the Google Cloud Translation API offers the possibility of converting content
between dozens of languages. We used this API to translate information, captioning, and OCR. Google Trans-
late then renders this data in the language chosen by the visually impaired person. Figure 11 illustrates this
workflow, from text recognition to captioning and OCR to automated translation, based on cloud technologies.

Figure 11. Multilingual translation process with the Google Cloud Translation API

Detection keyframe with SIFT: the SIFT descriptor, designed by Lowe [29], is widely used for its
efficiency in image processing, particularly for identifying and characterizing points of interest using local gra-
dients. The SIFT process is divided into four main phases, including the application of the Gaussian difference
(DoG) method. This involves subtracting images filtered by Gaussian filters applied at different scales. The
extrema detected between two adjacent levels are then exploited for further analysis [30], [31]. As (14):

D(X,σ) = (G(X, kσ)−G(X,σ)) ∗ I(X) (14)

where I is the input image and X is a specific point X(x, y). The variable σ represents the scale, while G(X,σ)
denotes the Gaussian applied to the point X . Regions of interest based on Gaussian differences (DoG) [31]
are identified as extrema in the image plane and along the scale axis of the function D(x, σ). To locate these
points, the D(x, σ) value of each point is compared with its neighbors at the same and different scales. The
SIFT algorithm extracts and describes these points of interest for obstacle detection and recognition.

3.3.2. Inception-V4 with LSTM and firebase: text detection optimization
Firebase vision text detector for efficient text detection: Google’s Firebase Cloud Storage service

enables developers to store and share user content, such as photos, videos, and audio files, in the cloud [32].
Based on Google Cloud Storage, it offers a scalable object storage solution, perfectly integrated with web
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and mobile applications. In our Android application architecture, we use firebase vision for text detection,
integrating all modules [33]. Only recognized documents undergo content extraction via Google Cloud’s text
recognition API. The application displays the extracted information in the user interface and stores it to avoid
redundant processing, thus improving efficiency. The images are sent to the text recognition engine in the
cloud, as illustrated in Figure 12.

Figure 12. Mobile application architecture for text extraction and storage with firebase OCR

Google ML kit translates detected text: Google offers Firebase, which integrates ML-Kit, an SDK for
mobile application development on Android and iOS. ML-Kit provides tools to simplify development, includ-
ing functionality for translating text into English. The proposed algorithm integrates essential functions such as
text detection, text-to-speech, and captioning in languages selected by visually impaired users. The application
supports the main international languages [34] and can operate offline. Figure 13 shows the architecture of the
algorithm, illustrating the process using Google ML Kit.

Figure 13. The architecture of the text translation system for the visually impaired using Google ML Kit

Detection keyframe with SURF: SURF performs very well in noisy environments with large variations
between groups, remaining reliable even when matching distances are high and variable, especially for the best
matches between key points [35]. Considered an improvement on SIFT, this algorithm detects and describes
points of interest in images. It is optimized for speed while maintaining robustness to scale and rotation
transformations. Bay et al. [30] developed the SURF (accelerated robust features) system in 2008 for rapid
extraction of visual features. The SURF detector uses the Hessian matrix determinant and integral images to
increase its efficiency. The standard descriptor is based on Haar wavelet responses and can be extended from
64 to 128 bins to better handle large perspective changes [35]. SURF consumes fewer computing resources
than SIFT while maintaining high performance in noisy environments. In (15) describes the Hessian matrix at
points x = (x, y) and scale σ:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
(15)

where Lxx(x, σ) is the convolution of the second-order Gaussian derivative with the image I at point x, and
similarly for Lxy(x, σ) and Lyy(x, σ).

3.3.3. Inception-V3 with gated recurrent unit and prioritization for data optimization
Combined use of Google Firebase ML for recognition: the Firebase ML Kit is a versatile tool for

developers, making it easy to integrate AI functions such as text recognition, face detection, and barcode read-
ing into Android and iOS applications without requiring in-depth knowledge of machine learning. Our system

Improving visual perception through technology: a comparative analysis of real-time ... (Othmane Sebban)



360 ❒ ISSN: 1693-6930

will leverage this technology to perform real-time text recognition, seamlessly integrated into our application.
Figure 14 illustrates these capabilities, showing how the ML Kit can perform these tasks both locally and in the
cloud [36].

Figure 14. The architecture of the Google Firebase ML Kit integrates various machine learning technologies

Combined use of Google Firebase ML for text translation: Google’s translation service, which sup-
ports around 108 languages, has simplified translation tasks. We’re integrating this service with Firebase ML
Kit [37], a powerful API for extracting text from images. Automatic language detection identifies the language
of a speech sample. For real-time processing, a stand-alone translator quickly converts text detected in im-
ages [38]. The Firebase ML Kit automates this process, making information accessible to visually impaired
people in their native language. This integration is particularly beneficial for tourists and people working in
multilingual environments, as it overcomes language barriers, enabling personalized access to information, as
illustrated in Figure 15.

Figure 15. Integration of the Firebase ML Kit for machine translation of text from images

Detection keyframe with BRISK: in 2011, S. Leutenegger and his team developed the BRISK [39]
algorithm, which relies on AGAST to detect the best corners using the FAST score. The BRISK descriptor,
represented as a binary string, enables rapid comparisons and remains invariant to rotation and brightness while
being stable against scale changes and moderate affine transformations [37]. Just as powerful as SIFT, BRISK
requires fewer computing resources. This study [40] uses this algorithm to identify characteristic points, while
histogram of oriented gradients (HOG) descriptors [41] are used to describe them, facilitating the identification
of key images. HOG is particularly useful for object classification and detection, while the minutiae detected
by BRISK form the basis for calculating HOG descriptors.

After their detection, the HOGs of the local areas around these points are calculated, forming an initial
feature matrix. X = {x1,x2, . . . ,xn}, where each vector xi represents a BRISK key point extracted from the
sampled video images. The BRISK descriptor of a key point k is represented by a binary vector Dk, constructed
as (16):

Dk = [b1, b2, . . . , bn] (16)

where each bi is determined by comparing the intensity of the sampled points:

bi =

{
1 si I(pai

) > I(pbi)

0 sinon
(17)
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I(p) represents the intensity at point p, and pai and pbi are specific points in the pattern around the key point.
BRISK is appreciated for its speed and efficiency, particularly in environments where computing resources are
limited.

3.3.4. Inception-V3 with gated recurrent unit and towards enhanced robustness on Android
TessTwo a robust solution for Android is used for OCR: integrating OCR into Android applications

requires an external library, as this functionality is not included natively. One commonly used option is Tesser-
act, in particular its “tess-two” variant, which provides a Java interface for Android [42]. Tesseract’s OCR
process begins by sending an image via an API, followed by pre-processing using tools like OpenCV to im-
prove quality. In the OCR engine [42], the image is converted to black and white and then segmented to detect
individual words. Each word is then analyzed to correct malformed or merged characters before these are
recognized using specific linguistic data. With the help of pre-trained datasets and libraries such as Leptonica,
Tesseract extracts the textual content, which is then transformed into usable formats such as plain text, making
this information usable in various systems, as illustrated in Figure 16.

Figure 16. Tesseract ”TessTwo-Android” OCR system workflow

The Translate API is used to translate the recognized text: the Google Translate API supports over 100
languages and various media types. Accessible to websites and mobile applications, it facilitates the conversion
of texts, sites, documents, and speech from one language to another. Translation can be literal, preserving the
structure of the source language, or semantic, favoring a more natural transmission of meaning in the target
language [43]. We have integrated this API into our OCR and image captioning system to adapt English texts
into native languages such as Arabic, Italian, Spanish, French, and Hindi, making information more accessible
to the visually impaired. Using the Google Translate online service simplifies and enhances this process, as
illustrated in Figure 17.

Figure 17. Automatic API translation from recognized text

Detection keyframe with ORB: this algorithm, developed by OpenCV, combines the FAST feature
detector with the BRIEF descriptor [44], adding orientation management to ensure rotation invariance. ORB
thus improves the quality of keypoint detection and description by using FAST to locate points of interest and
then selecting the most relevant using the Harris index. The orientation of each point is calculated relative to
the center of the patch to correct for rotation-related problems. Three main equations describe how the ORB
method works: [45], [46].
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mpq =
∑
x,y

xpyqI(x, y) (18)

This equation is used to calculate the spatial order moments of the image, where I(x, y) is the intensity
at the point (x, y), and p and q are the orders of the moments along the x and y axes, respectively.

3.3.5. Performance of SeeAround visual assistance systems with key point detection and optical character
recognition

We present the performance of our “SeeAround” mobile application, which integrates key point detec-
tion and OCR algorithms. Figure 18 compares the performance of four point-of-interest detection algorithms,
essential for real-time image analysis in visual assistance systems. Figure 18(a) shows results obtained with the
SIFT algorithm, while Figure 18(b) uses SURF. Detection by BRISK is illustrated in Figure 18(c), and finally,
the ORB algorithm is shown in Figure 18(d).

(a) (b) (c) (d)

Figure 18. Keyframe extraction process with keypoint detection: (a) SIFT, (b) SURF, (c) BRISK, and (d) ORB

Figure 19 shows OCR results using different methods. Figure 19(a) illustrates the performance of the
Google Mobile Vision API, while Figure 19(b) displays that of the Firebase Vision text detector. The results
of the Google Firebase Machine Learning Kit are shown in Figure 19(c), and finally, Figure 19(d) shows the
performance of TessTwo-Android.

(a) (b) (c) (d)

Figure 19. OCR results demonstrating different methods: (a) Google Mobile Vision API, (b) Firebase Vision
Text Detector, (c) Google Firebase machine learning Kit, and (d) TessTwo-Android
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4. RESULT AND DISCUSSION
The results and discussion section presents the overall results of our system, generated by its various

modules. The evaluation criteria are detailed in subsection 4.1, which describes the main modules of our
system. Subsection 4.2 presents the results obtained with different pre-trained subtitle generation models,
as well as the OCR, translation, and image detection modules, in a summary table. Finally, subsection 4.3
discusses the performance, speed, and robustness of our system.

4.1. The evaluation metrics
To assess the quality of the pre-trained model and modules such as OCR, translation, and image

detection, we use several evaluation measures, including the bilingual evaluation understudy (BLEU) score.
This widely used measure analyzes the quality of generated sentences by comparing n-gram co-occurrences
between generated (candidate) and reference sentences [47]. BLEU-N, a precise indicator for short sentences,
evaluates the proportion of n-grams (up to 4-word sequences) shared between a candidate sentence and one or
more reference sentences.

BLUE −N(ci, Si) = b(ci, Si) exp

(
N∑

n=1

ωn logPn(ci, Si)

)
(19)

where

b(ci, Si) =

{
1 if lc > ls

e1−
ls
lc if lc ≤ ls

is a brief penalty; lc is

The total length of candidate sentences ci, lS , is the effective reference length at the corpus level.
When multiple references are available for a candidate phrase, the closest reference length is chosen. The value
of ωn is generally kept constant, as mentioned in [47].

For all n;N = 1, 2, 3, 4 : Pn(ci, Si) =

∑
k min(hk(ci),max(hk(Sij)))j∈M∑

k hk(ci)

The ROUGE-L metric is based on the longest common sequence (LCS). Taking the length l(ci, sij)
of the LCS between a pair of sentences, this metric is defined as (20) [48]:

ROUGEL(ci, Si) =
(1 + β2)RlP l

Rl + β2Pl
(20)

where

Rl = max
j

(
l(ci;Sij)

|Sij |

)
stands for the recall of LCSPl = max

j

(
l(ci;Sij)

|Ci|

)
It represents the precision of the LCS, while E is a constant generally adjusted to favor recall. In addition to
ROUGE-L, there are other measures such as ROUGE-N and ROUGE-S, as mentioned in [48].

SPICE, developed by Anderson and colleagues [49], uses a semantic representation to encode objects,
attributes, and relationships in a description, allowing evaluation at the semantic level. SPICE converts can-
didate and reference legends into syntactic dependency trees using a dependency parser [50]. Let’s assume
that c is a candidate and that S designates a set of reference captions. The candidate’s scene graph is denoted
G(c) = ⟨O(c), E(c),K(c)⟩, while that of the reference captions is denoted G(S). The operation T (·) converts
a scene graph into a collection of tuples in the form T (G(c))) ⇔ O(c)∪E(c)∪K(c). Consequently, precision
and recall can be expressed as (21) and (22):

P (c, S) =
|T (G(c))⊗ T (G(S))|

|T (G(c))|
(21)

R(c, S) =
|T (G(c))⊗ T (G(S))|

|T (G(S))|
(22)
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Consequently, the calculation of the SPICE metric can be expressed as (23):

SPICE(c, S) = F1(c, S) =
2 · P (c, S) ·R(c, S)

P (c, S) +R(c, S)
(23)

The symbol ⊗ is the binary matching operator, which returns matching tuples. Although SPICE
provides a better evaluation of semantic information, it neglects grammatical requirements and cannot judge
the natural fluency of sentences. Additionally, since the evaluation focuses mainly on noun similarity, it is not
suitable for tasks such as machine translation [50].

The performance of the module’s OCR and translation processes is evaluated according to their accu-
racy. For OCR, this corresponds to the ability to correctly recognize characters in digitized text. For translation,
the evaluation focuses on the faithfulness of the conversion of words from one language to another while pre-
serving meaning and context. The evaluation criteria for each feature are as (24) and (25):

Accuracy for OCR =
Number. of correctly identified characters

Total number. of characters
× 100(%) (24)

Accuracy for translation =
Number. of correctly translated words

Total number. of words
× 100(%) (25)

To evaluate the performance of the BRISK, SIFT, ORB, and SURF algorithms, we use variable values
and weights. However, for the sake of simplicity, we focus on two main criteria: processing speed and number
of features detected. A simplified version of the equation is thus proposed:

Scorealg = Vspeed +Nfeatures +Aaccuracy (26)

where Vspeed represents the processing speed of the algorithm, Nfeatures indicates the number of features
detected by the algorithm, and Aaccuracy designates the accuracy of feature matching. Match accuracy is
calculated as the ratio between the number of correct matches and the total number of matches, as (27):

Precision =
Number of correct matches

Total number of correspondences
(27)

4.2. Results
To present the results of our study, we analyzed the evolution of learning rates and losses during train-

ing for two distinct models: InceptionV3-GRU and InceptionV4-LSTM. We proposed to reduce the number
of trained words from 22 to 18, as previously suggested [6], [7], through the use of more advanced datasets,
such as MSCOCO 2017. Figure 20 illustrates this evolution over 120 epochs. Figure 20(a) shows that the
learning rate of the InceptionV3-GRU model gradually decreases from 0.002 to 0.0017 over 396,600 itera-
tions, indicating a stabilization of the model. Similarly, Figure 20(b) shows a reduction in the rate for the
InceptionV4-LSTM model, from 0.002 to 0.0016 over 479,400 iterations.

(a) (b)

Figure 20. Evolution of learning rates over 120 epochs for: (a) the InceptionV3-GRU model and (b) the
InceptionV4-LSTM model
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Figure 21 illustrates the evolution of the loss function during model learning. Figure 21(a) shows
a steady decrease in the loss for the InceptionV3-GRU model over around 396,600 iterations, indicating a
continuous improvement in model performance. Similarly, Figure 21(b) shows a similar reduction in loss for
the InceptionV4-LSTM model over around 479,400 iterations, confirming the latter’s effectiveness.

(a) (b)

Figure 21. Evolution of learning loss over 120 epochs for: (a) the InceptionV3-GRU model and (b) the
InceptionV4-LSTM model

A stable loss can indicate good generalization if it is low enough, but a value of 0.1 might be too
high for our application, requiring adjustments. Loss stability was achieved using advanced parameters and
the MSCOCO 2017 dataset. The effectiveness of our method was measured with the BLUE, ROUGE-L, and
SPICE indicators. The tests carried out with three GRU-LSTM multilayer models using the Inception-V3 and
Inception-V4 architectures are presented in Table 4, with the best scores in bold.

Table 4. Comparison of model performance with evaluation metrics
Model B-1 B-2 B-3 B-4 ROUGE-L SPICE
InceptionV3-LSTM with 22 words [6] 0.3884 0.1818 0.0769 0.03738 0.2971 0.0228
InceptionV3-GRU with 18 words (our model) 0.558 0.220 0.084 0.0645 0.465 0.0396
InceptionV4-LSTM with 22 words [7] 0.650 0.469 0.362 0.227 0.480
InceptionV4-GRU with 18 words (our model) 0.701 0.589 0.4851 0.3518 0.576 0.0404

Table 5 compares the algorithms’ scores for speed, number of features detected, and matching ac-
curacy with specific weightings. Two main measures are used to evaluate their performance: the number of
features detected (Nfeatures) and accuracy (Aaccuracy), both normalized to maximum values. For example,
for BRISK, (Nfeatures) is 47, giving a normalized value of 0.198, and its precision of 0.72 is adjusted to 0.96
from the maximum of 0.75.

Table 5. Scores calculated for each image detection algorithm
Algorithm Vspeed (seconds) Nfeatures Aaccuracy (%) Score (%)
BRISK 0.35 47 72 57.9
ORB 0.49 51 75 60.8
SIFT 2.13 237 56.2 87.5
SURF 0.99 91 68 64.5

Table 6 shows the final results for each system, including the performance of the various modules:
image captioning (see Table 4), OCR, translation, and keyframe extraction (see Table 5). These results are
based on the analysis of some 230 images. Using the equation applied in Table 6, the overall accuracy of each
system can be calculated as (28):

Overall accuracy =
1

n

n∑
i=1

Pi (28)
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where n is the total number of modules evaluated and Pi is the percentage accuracy of the ith module.

Table 6. System evaluation for captioning, OCR, translation, and keyframe extraction modules
Image captioning (%) OCR (%) Translation (%) Keyframe extraction (%) Overall accuracy (%)

System 1 65.5 92.9 96.7 87.5 85.65
System 2 70.1 98.7 97.1 64.5 82.6
System 3 38.84 95.6 92 57.9 71.085
System 4 55.8 94.3 95.8 60.8 76.675

4.3. Discussion
The results in subsection 4.1 show that systems based on the InceptionV4-LSTM architecture offer

improved performance, particularly in terms of accuracy and speed, for image caption generation. The opti-
mization of recurrent neural networks and the reduction of time steps play a crucial role in these improvements,
confirming the importance of adapting these models to real-time environments, particularly for visually im-
paired users. Of the four systems evaluated, system 1 (InceptionV4-LSTM with 22 words) uses SIFT, offering
high accuracy (87.5%) but slower processing (2.13 s) with a BLEU-1 score of 65.5%. System 2 (InceptionV4-
LSTM with 18 words) provides a good speed-accuracy balance, ideal for real-time applications, with 64.5%
accuracy and a BLEU-1 score of 70.1%. System 3 (InceptionV3-GRU with 22 words) is fast at keyframe ex-
traction (0.35s) but less accurate in captioning, with a BLEU-1 score of 38.84%. System 4 (InceptionV4-LSTM
optimized with 18 words) is robust, offering strong performance in captioning (BLEU-1 of 55.8%) and decent
keyframe accuracy (60.8%).

The results obtained show that the choice of system depends on specific needs in terms of speed or
accuracy in different visual environments. For example, BLEU scores for system 4 reached 0.701 for BLEU-1
and 0.351 for BLEU-4, demonstrating a notable superiority in caption accuracy over other systems. These
performances are in line with the need for a system capable of delivering reliable results in contexts where
accuracy is paramount, such as in complex environments.

Unlike previous studies [13]-[17], which focus primarily on text recognition or image captioning, our
approach integrates image caption generation, OCR, translation, as well as real-time image detection algorithms
into a single mobile application. This combination of technologies offers more comprehensive and immediate
assistance, surpassing existing systems in terms of versatility and accuracy, particularly in environments where
Internet connectivity is limited. For example, system 1, with a score of 85.65% for all modules, demonstrated
its ability to operate effectively in these conditions.

Although SIFT detected the greatest number of features, its slowness limits its use in real-time ap-
plications, where immediate feedback is critical for visually impaired users. This demonstrates the inherent
trade-off between feature detection robustness and speed, which is a crucial factor in selecting the appropriate
algorithm for assistive technologies. ORB offers a good compromise between speed and accuracy, making it
more suitable for scenarios where quick responses are paramount, such as in outdoor environments or crowded
urban spaces. However, the slight drop in accuracy observed with ORB may affect the reliability of the assis-
tance in recognizing smaller or more detailed objects.

This study makes a significant contribution to the improvement of real-time visual assistance technolo-
gies. By combining several advanced modules into a single mobile application, we have not only improved the
accuracy of visual descriptions and translations but also provided a more robust and versatile solution for visu-
ally impaired people. With an overall accuracy rate of 85.65% for system 1, these results pave the way for new
assistive applications with great potential for adoption in everyday environments.

To improve accessibility for the visually impaired, the ”SeeAround” solution integrates optical char-
acter recognition and real-time image captioning, as illustrated in Figure 22. In Figures 22(a)-(g), the pro-
cess starts with image capture, followed by text detection and captioning. In Figures 22(b)-(h), the extracted
text is translated to help visually impaired users understand the content in their native language. Finally, in
Figures 22(c)-(i), translations are presented to the user in spoken form. Translations are presented to the user
in audio form. This feature not only enhances user autonomy but also provides real-time assistance in a variety
of environments.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 22. The SeeAround process; (a)-(g) first column: OCR and generate caption, (b)-(h) second column:
select language for translation, and (c)-(i) third column: OCR and generate caption with audio speech after

translation
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5. CONCLUSION
In this study, we evaluated real-time visual assistance systems for the visually impaired using high-

performance architectures such as InceptionV3 and InceptionV4, as well as text recognition modules and image
detection algorithms. The integration of these technologies into mobile applications has significantly improved
users’ autonomy and quality of life. Our tests revealed remarkable performance in terms of accuracy, speed,
and adaptability to various environments. Our “SeeAround” mobile application integrates automatic caption-
ing, OCR, and translation, drawing on services such as Firebase, Google ML Kit, and Google Cloud. The ap-
plication also uses advanced algorithms such as BRISK, ORB, SIFT, and SURF to accurately identify points of
interest and process images quickly, even in complex environments. In conclusion, this study shows that these
assistance systems can become more powerful while remaining affordable and easy to access, thus meeting
the growing needs of visually impaired people. Our tests on four separate systems demonstrated a significant
improvement in subtitle accuracy and a marked reduction in image processing time, making image recognition
and analysis faster and more efficient. In the future, improvements will be made to the application to further
optimize processing times by integrating hardware acceleration and parallel processing techniques. In addi-
tion, further research will be carried out to adapt these systems to other contexts and explore their potential in
areas such as inclusive education and workplace assistance. This work paves the way for future innovations in
assistive technologies aimed at improving the quality of life of visually impaired people.
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