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ABSTRACT

The energy analysis of the newly introduced n-wheel graph, employs diverse
matrix representations such as the adjacency matrix, Laplacian matrix, and max-
imum degree matrix. This novel graph model resembles a hierarchical wireless
sensor network (WSN), with a central hub serving as the communication center.
The graph is organized into cycles, reflecting tiers of devices or sensors, with the
hub managing wireless communication across these tiers. Through comparative
analysis of energy variations, particularly focusing on ordinary energy, Lapla-
cian energy, and maximum degree energy, offers a deeper understanding on the
potential benefits of the n-wheel graph model, guiding future research and prac-
tical applications in the design of advanced hierarchical network structures.
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1. INTRODUCTION
This wireless sensor network (WSN) features a hierarchical architecture with a central hub as com-

munication nexus. The network is divided into concentric cycles, starting with a primary cycle of devices like
laptops and mobiles near the hub, and extending outward to include devices at increasing distances. The study
of WSNs appears in numerous papers [1]-[3]. The hub manages wireless communication across these cycles,
facilitating data aggregation and coordination, thus optimizing network operation as shown in Figure 1. This
model resembles a multilevel wheel graph or a n- wheel in graph theory. The analysis of the higher extremities
of hierarchical wheel networks is the primary finding of this paper. For basic terminologies and notation [4],
[5]. The concept of graph energy was introduced by Ivan Gutman and has its roots in chemistry, stemming
from the importance of the total π-electron energy in carbon-based compounds. This has led to various graph
energies. Recently, a survey on these graph energies was conducted by Kumar et al. [6]. This concept has been
widely discussed in the literature; see, for example, many research papers [7]-[9]. Ali et al. [10] investigated
the metric dimension of certain connected networks, In 2019, Jia-Bao Liu et al. [11] determined the generalized
wheel networks (Wn,m)’s distance and neighboring energies. Lazaro and Rosario [12] determined the precise
upper and lower limits for the connected partition dimension of truncated wheel graphs. In 2022, Vivik et al.
[13] constructed the Cartesian product of Pm and the double wheel graph DWn, exploring their associated
energy metrics in detail. Kandris et al. [14] in 2020 classified several types of WSN applications, focusing on
advancements in applications, internal platforms, communication protocols, and network services, also found
in many papers, see [15]-[18]. In 2022, Bose et al. [19] addressed the localization problem in WSNs, focusing
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on determining node positions in an arbitrarily graph network.
In this paper we analyze the various forms of graph energy ordinary, Laplacian, and maximum degree

energy. These energy metrics correspond to communication costs and network robustness, making them essen-
tial for optimizing sensor networks. Our findings show that the hierarchical n-wheel graph outperforms other
models in energy efficiency, offering a scalable and reproducible framework for improving WSN architectures.

Figure 1. WSN

2. METHOD
The graph is derived from the ordinary wheel network, where all its points are connected to a central

hub. This concept is extended hierarchically, iterating the wheel graph structure n times. Analyzing the energy
of such a graph presents a novel perspective in graph theory. The refinement of limits for graph energy across
diverse graphs is a contemporary approach gaining traction. In this work, we discuss and illustrate the upper
limits for the graph spectrum energy, energy of the Laplacian matrix, and energy of the degree matrix of the
n-wheel graph. To achieve this, we apply the Cauchy-Schwarz inequality alongside the maxima and minima of
higher-order derivatives. Furthermore, we compare the variations in these energies, providing a comprehensive
analysis of their energy limits.

Wheel graphs and energy of graphs:
a. Definition

1) Chai et al. [20] a central node v is connected to all m − 1 nodes of the cycle graph Cm−1 to form the
wheel graph Wm, which has m nodes for m ≥ 4.

2) Chai et al. [20] two cycles of size m (2Cm) connected to a single hub node (K1) make up a double-wheel
graph DWm. All of the cycle nodes link to the hub.

3) Liu et al. [11] an n-wheel graph nWm of order k+1 comprises n cycles of size m (nCm) integrated with
a central hub node (K1), where all cycle nodes are interconnected through the hub as shown in Figure 2.

4) (Energy) Ramane et al. [9] if a graph G has n nodes and m lines, then the connectivity matrix A(G) is
defined as a n× n matrix, where the entry aij is given a value of 1 if a line links nodes i and j, and null
otherwise. E(G) =

∑n
i=1 |λi|, where λi indicates the characteristic values of the matrix, is the formula

used to determine the graph’s energy, E(G), which is the sum of the absolute values of the characteristic
values of A(G).

5) (Laplacian energy) Barberler [7] with n nodes and m lines of a graph G. The Laplacian matrix L(G) is
a n× n matrix in which the degree of node i is lii = di, lij = −1 if nodes i and j are not adjacent, and
lij = null if they are not. L(G) =

∑n
i=1

∣∣characteristic valuei − 2m
n

∣∣ is the graph’s Laplacian energy.
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6) (Maximum degree energy) Adiga and Smitha [8] let G be a simple graph with n nodes, where the degree
of node i is indicated by di. With dij = max{di, dj} if nodes i and j are nearby, and dij = 0 otherwise,
the maximum degree matrix M(G) is a n× n matrix. EM(G) =

∑n
i=1 |µi| yields the graph’s maximum

degree energy.
7) (Color energy) Sarathy and Sankar [21] consider a graph G with n nodes and lines m. The color matrix

Ac(G) is an n × n matrix where aij = 1 is assigned if nodes i and j are adjacent and have distinct
colors, aij = −1 is assigned if they are not adjacent but share the same color, and aij = 0 is assigned
otherwise.

b. Theorem
8) Kumar et al. [6] the following inequality is true for a graph G with n nodes and m lines:

E(G) ≤ 2m
n +

√
(n− 1)

[
2m−

(
2m
n

)2]
, while for a k-regular graph G,E(G) ≤ k+

√
k(n− 1)(n− k).

9) Balakrishnan [22] a k-regular G of order n with k < n − 1 and E(G)

k+
√

k(n−1)(n−k)
< ϵ exists for every

ϵ > 0.
10) Nikivorov [23] if A is an m× n non-negative matrix with m ≤ n, and the largest entry in A is α, then:

ε(A) ≤ α · (m+
√
m)

√
n

2 .

c. Proposition
11) Varlıoğlu and Büyükköse [24] let’s G be a connected graph of order n and m lines, such that G ̸∼= Kn.

Then
LE(G) < 2m

n +

√
m(n2 − n− 2m) +

(
2m
n

)2
.

d. Theorem
12) Varlıoğlu and Büyükköse [24] let’s G be a connected graph of order n and m lines, such that G ̸∼= Kn.

Then
LE(G) < 2m

n +

√
m(n2 − n− 2m) +

(
2m
n

)2
.

13) Adiga and Smitha [8] if the characteristic values of the maximum degree of a G are µ1, µ2, . . . , µn, then:∑n
i=1 µ

2
i = −2c2.

14) Adiga and Smitha [8] any largest degree characteristic value µj for a graph G of order n is |µj | ≤
(n− 1)2.

15) Sridara et al. [25] let G be a graph with n ≥ 3 nodes and m lines. If n2 ≥ 4m, then ε(G) ≤
2m
n +

√
2m
n +

√
(n− 2)(2m− 2m

n − 4m2

n2 ). Equality holds if and only if G is n
2K2. In the following

section, the dissimilar graph energy and its limit of nWm are determined.

Figure 2. n-wheel graph
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3. UPPER LIMITS OF VARIOUS ENERGIES ON n-WHEEL GRAPH
3.1. Theorem 3.1.

Let nWm be a n-wheel graph of n cycles with m ≥ 4 nodes and m lines on each cycle then,

E(G) ≤

{
3K
2 + m

2 + 1, if m ≡ 1(mod2) and n ≤ m; Also if m ≡ 0(mod2) and n ≤ m+ 1
3K
2 + n

2 , if m ≡ 1(mod2) and n > m; Also if m ≡ 0(mod2) and n > m+ 1.

Proof. The matrix connection of the n-wheel graph is expressed as:

A(nWm) =

{
1, if i and j are connected,
0, if i and j are not connected.

The connection matrix of the n-wheel graph is represented with 1’s, where K = mn. i = 1, j and i vary from 2
to K+1, j = 1, i = (n−1)m+2, j = K+1, i = K+1, j = (n−1)m+2, (n−1)m+2 ≤ i ≤ K, j = i+1,
(n− 1)m+ 3 ≤ i ≤ K + 1, j = i− 1.

Non-connections are marked by 0’s at diagonal and other non-connection positions. Here, n is the
number of cycles, and m is the number of nodes per cycle. The n-wheel graph is represented by its connection
matrix as:



v1 v2 v3 · · · vm vm+1 vm+2 vm+3 · · · vK vK+1

v1 0 1 1 . . . 1 1 1 1 . . . 1 1
v2 1 0 1 . . . 0 1 0 0 . . . 0 0
v3 1 1 0 . . . 0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
vm 1 0 0 . . . 0 1 0 0 . . . 0 0
vm+1 1 1 0 . . . 1 0 0 0 . . . 0 0
vm+2 1 0 0 . . . 0 0 0 1 . . . 0 0
vm+3 1 0 0 . . . 0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
vK 1 0 0 . . . 0 0 0 0 . . . 0 1
vK+1 1 0 0 . . . 0 0 0 0 . . . 1 0


The characteristic equation of the connection matrix of order K+1 is formed by setting the determinant

of det(A(nWm) − λI) to 0. With exactly K + 1 roots, this equation has the form (−λ)K+1 + trace(−λ)K +
. . .+ determinant(A) = 0. As a result, K + 1 characteristic values exist. i.e, λ1, λ2, . . . , λK+1. Also λ1 ≤ λ2 ≤
. . . ≤ λK+1. The energy E =

∑K+1
i=1 |λi|. It is evident that for the n-wheel graph E1 < E2 < . . . < EK+1.

By Cauchy Schwarz inequality
(∑K+1

i=1 |λi|
)2

≤
∑K+1

i=1 |1|
∑K+1

i=1 |λi|2(
k∑

i=2

|λi| − |λ1| − |λK+1|

)2

≤

(
K∑

i=2

|1| − 2

)(
K∑

i=2

|λi|2 − |λ1|2 − |λK+1|2
)

K∑
i=2

|λi| ≤ |λ1|+ |λK+1|+

√√√√(K − 2)

(
k∑

i=2

|λi|2 − |λ1|2 − |λK+1|2
)

1√
K
E(G) ≤ 1√

K
(|λ1|+ |λK+1|) +

√√√√(K − 2)

(
K∑

i=2

|λi|2 − |λ1|2 − |λK+1|2
)

Now let |λ1| = x and |λK+1| = y. 1√
K [E(G)] ≤ 1√

K

[
x+ y +

√
(K − 2)

(∑K
i=2 |λi|2 − x2 − y2

)]
Case 1: m ≡ 1(mod2) and n ≤ m

Consider the function f(x, y) = 1√
K

[
x+ y +

√
(K − 2)

{(
3K
2 + m

2 + 1
)2 − x2 − y2

} ]
Differentiating f(x, y) partially up to the second order derivative with respect to x and y,
fx = 1√

K − x(K−2)
√
K
√

(K−2){( 3K
2 +m

2 +1)
2−x2−y2}

, fy = 1√
K − y(K−2)

√
K
√

(K−2){( 3K
2 +m

2 +1)
2−x2−y2}

,
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fxx = −
√
K−2

[
( 3K

2 +m
2 +1)

2−y2
]

√
K
[
( 3K

2 +m
2 +1)

2−x2−y2
] 3

2
, fyy = −

√
K−2

[
( 3K

2 +m
2 +1)

2−x2
]

√
K
[
( 3K

2 +m
2 +1)

2−x2−y2
] 3

2
and

fxy = − xy
√
K−2

√
K
[
( 3K

2 +m
2 +1)

2−x2−y2
] 3

2
.

set fx = 0 and fy = 0, which leads to the determine the maxima or minima of the function, x2(k − 1) + y2 =(
3K
2 + m

2 + 1
)2

and x2 + (K − 1)y2 =
(
3K
2 + m

2 + 1
)2

.

The stationary points obtained by solving the above equations are x = y = 1√
K

(
3K
2 + m

2 + 1
)
. At this point

the values are fxx = fyy = − K−1

(K−2)( 3K
2 +m

2 +1)
≤ 0, fxy = − 1

(mn−2)( 3mn
2 +m

2 +1)
≤ 0 and ∆ = fxx.fyy −

(fxy)
2 = K

(K−2)( 3K
2 +m

2 +1)
2 ≥ 0. As a result, f(x, y) reaches its largest value at x = y = 1√

K

(
3K
2 + m

2 + 1
)
.

By far the function’s largest metrics is f
(

1√
K

(
3K
2 + m

2 + 1
)
, 1√

K

(
3K
2 + m

2 + 1
))

=
1√
K

[
2√
K

(
3K
2

+
m

2
+ 1

)]
+

1√
K

√√√√(K − 2)

{(
3K
2

+
m

2
+ 1

)2

− 2

K

(
3K
2

+
m

2
+ 1

)2
}

= 1√
K

[
2√
K

(
3K
2 + m

2 + 1
)
+

√
(K−2)2( 3K

2 +m
2 +1)

2

K

]
= 1

K
(
3K
2 + m

2 + 1
)
[2 + (K − 2)]

Thus f
(

1√
K

(
3K
2 + m

2 + 1
)
, 1√

K

(
3K
2 + m

2 + 1
))

≤ 3K
2 + m

2 +1. Hence under this case the energy

limit is E(G) ≤ 3K
2 + m

2 + 1. The ordinary energy and upper limits of different n-wheel graphs are measured
using MATLAB programming and tabulated in Table 1 and plotted in Figure 3. This suggests that the energy
of the network escalates as the graph expands, depending on the quantity of cycles and the nodes located within
those cycles [25]. The proof of the remaining cases in this theorem is similar to Case 1. It follows the same
method of defining and differentiating the function to attain the maxima. The highest value of the energy limits
is found to be under.
Case 2: m ≡ 1(mod2) and n > m is E(G) ≤ 3K

2 + n
2 ,

Case 3: m ≡ 0(mod2) and n ≤ m+ 1: E(G) ≤ 3K
2 + m

2 + 1,
Case 4: m ≡ 0(mod2) and n > m+ 1 is E(G) ≤ 3K

2 + n
2 .

Illustration: Table 1 shows the ordinary energy and limits of the n-wheel graph as shown in Figure 3.

Table 1. n-wheel graph’s energy and limit metrics
Graphs Nodes Lines Cycles Energy Energy limit
nWm K+ 1 K n ε E

4W4 17 32 4 22.2462 28
7W5 36 70 7 55.3050 56
12W7 85 168 12 124.2941 132
10W10 101 200 10 147.5425 157
20W10 201 400 20 285.2403 310
15W15 226 450 15 315.0698 346
14W17 238 476 14 332.3819 366.5
20W20 401 800 20 543.1501 612
16W24 385 768 16 523.3711 590
25W25 626 1250 25 844.3385 951 Figure 3. The n-wheel graph’s energy metrics

3.2. Theorem 3.2.
Let nWm be a n-wheel graph of n ≥ 2 cycles and m ≥ 4 nodes, with m lines on each cycle then

LE(G) = K(K − 3).
Proof. The procedure for the n-wheel graph’s Laplacian matrix is:

L(nWm) =


−1, if i and j are connected
0, if i and j are non-connected
K, if i = j.

n indicates the number of cycles in this graph, while m indicates the number of nodes in each cycle. Thus,
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q = K+ 1 nodes and p = 2K lines make up the entire graph. here ”K = mn”. The connection structure of the
Laplacian matrix for the n-wheel graph with −1 as: for i = 1, let i, j vary independently from 2 to K+1, j =
1, i = (r−1)m+2, j = rm+1, r = 1, 2, . . . , n, i = rm+1, j = (r−1)m+2, r = 1, 2, . . . , n, (r−1)m+2 ≤
i ≤ rm, j = i+1, r = 1, 2, . . . , n, (r− 1)m+3 ≤ i ≤ rm+1, j = i− 1, r = 1, 2, . . . , n. With the exception
of the diagonal elements, which contain K, the non-connected entries are all zeros. The Laplacian matrix of
the n-wheel graph constructed as:



v1 v2 v3 · · · vm vm+1 vm+2 vm+3 · · · vK vK+1

v1 K −1 −1 . . . −1 −1 −1 −1 . . . −1 −1
v2 −1 K −1 . . . 0 −1 0 0 . . . 0 0
v3 −1 −1 K . . . 0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
vm −1 0 0 . . . K −1 0 0 . . . 0 0
vK+1 −1 −1 0 . . . −1 K 0 0 . . . 0 0
vm+2 −1 0 0 . . . 0 0 K −1 . . . 0 0
vm+3 −1 0 0 . . . 0 0 −1 K . . . 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
vK −1 0 0 . . . 0 0 0 0 . . . K −1
vK+1 −1 0 0 . . . 0 0 0 0 . . . −1 K


Establish that determinant(L(nWm) − µI) = 0 of order K + 1, the characteristic polynomial of this

connected matrix is (−µ)K+1 + trace(−µ)K + . . . + determinant(A) = 0. It has the roots K + 1. Hence,
the characteristic values are K + 1, i.e., µ1, µ2, . . . , µK+1. Also µ1 ≤ µ2 ≤ . . . ≤ µK+1. The energy
E =

∑K+1
i=1 |µi| For n-wheel graph, E1 < E2 < . . . < EK+1. The Laplacian energy and upper limits of

various n-wheel graphs are computed in MATLAB, shown in Table 2, and plotted in Figure 4. The energy of
the network increases with the graph’s size, driven by the number of cycles and the nodes associated with them.
[25]. Let the Laplacian limit be:

K+1∑
i=1

∣∣∣∣µi −
2p

q

∣∣∣∣ = K(K − 3);

K+1∑
i=1

∣∣∣∣µi −
2p

q

∣∣∣∣2 = [K(K − 3)]2

∣∣∣∣µ1 −
2p

q

∣∣∣∣2 + K+1∑
i=2

∣∣∣∣µi −
2p

q

∣∣∣∣2 = [K(K − 3)]2; |µ1|2 −
4p

q
|µ1|+

∣∣∣∣4pq
∣∣∣∣2 + K+1∑

i=2

∣∣∣∣µi −
2p

q

∣∣∣∣2 = [K(K − 3)]2

K+1∑
i=2

∣∣∣∣µi −
2p

q

∣∣∣∣2 =
4p

q
|µ1| − |µ1|2 −

(
4p

q

)2

+ [K(K − 3)]2

Hence LE(G) =
∑K+1

i=2

∣∣∣µi − 2p
q

∣∣∣ = √
4p
q |µ1| − |µ1|2 −

(
4p
q

)2

+ [K(K − 3)]2 now substituting |µ1| = x

in the energy function, it becomes LE(G) =

√
4p
q x− x2 −

(
4p
q

)2

+ [K(K − 3)]2. Considering the above as

an optimizing function, f(x) =

√
4p
q x− x2 −

(
4p
q

)2

+ [K(K − 3)]2. Differentiating successively up to sec-

ond order with respect to x, it implies

f
′
(x) =

2p
q −x√

4p
q x−x2−( 4p

q )
2
+[K(K−3)]2

f
′′
(x) = − {K(K−3)}2[

4p
q x−x2− 4p2

q2
+{K(K−3)}2

] 3
2
. Equating f

′
(x) = 0 and solv-

ing it the stationary point is obtained as x = 2p
q which helps to analyze the maxima or minima of the function.

At this point the value of f
′′
(x) = − 1

K(K−3) ≤ 0. Therefore, the function f(x) reaches its highest value at x =

2p
q . The peak value of the function is attained at this point. f

(
2p
q

)
=

√
4p
q

(
2p
q

)
−

(
2p
q

)2

− 4p2

q2 + [K(K − 3)]2

= K(K − 3). Hence the Laplacian energy limit is LE(G) = K(K − 3) (corrected to four decimals).
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Illustration: Table 2 displays the Laplacian energy and its limits for the n-wheel graph as shown in Figure 4.

Table 2. The n-wheel graph’s Laplacian energy metrics and
their limits

Graphs Nodes Lines Cycles Laplacian Energy
nWm K+ 1 K n energy L(ε) limits L(E)

3W5 16 30 3 180 180
14W7 99 196 14 9310 9310
11W8 89 176 11 7480 7480
18W10 181 360 18 31860 31860
14W11 155 308 14 23254 23254
17W15 256 510 17 64260 64260
12W18 217 432 12 46008 46008
15W21 316 630 15 98280 98280
22W22 485 968 22 232800 232800
25W25 626 1250 25 388750 388750

Figure 4. Measures of Laplacian energy on a
n-wheel graph

3.3. Theorem 3.3.
Let nWm be a n-wheel graph of n cycles with m ≥ 4 nodes and m lines on each cycle then EM (G) <

K(m+ n+ 4).

Proof. The maximum degree matrix of n - wheel graph is M(nWm) =

{
max {3,K}, if i, j are connected
0, otherwise.

where ”K = mn” entries at locations i = 1, j varies from 2 to K + 1 and i vary from 2 to K + 1, j = 1
are part of the connected relationships for the n-wheel graph. Furthermore, i = (n − 1)m + 2, j = K + 1
contains the value ’3’. i = K + 1, j = (n − 1)m + 2, along with (n − 1)m + 2 ≤ i ≤ K, j = i + 1, and
(n− 1)m+ 3 ≤ i ≤ K + 1, j = i− 1. Null elements are used to identify non-connected arrangements on the
diagonal and else. This is where n and m is the number of cycles & nodes in each cycle. This is the maximum
degree matrix of n-wheel graph.



v1 v2 v3 · · · vm vm+1 vm+2 vm+3 · · · vK vK+1

v1 0 K K . . . K K K K . . . K K
v2 K 0 3 . . . 0 3 0 0 . . . 0 0
v3 K 3 0 . . . 0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
vm K 0 0 . . . 0 3 0 0 . . . 0 0
vm+1 K 3 0 . . . 3 0 0 0 . . . 0 0
vm+2 K 0 0 . . . 0 0 0 3 . . . 0 0
vm+3 K 0 0 . . . 0 0 3 0 . . . 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
vK K 0 0 . . . 0 0 0 0 . . . 0 3
vK+1 K 0 0 . . . 0 0 0 0 . . . 3 0


It can be observed that if determinant(M(nWm)−µI) = 0, the characteristic polynomial of this con-

nected matrix, with a dimension of K+1, can be expressed as: (−µ)K+1+trace(−µ)K+. . .+determinant(A) =
0, which yields exactly K + 1 solutions. Consequently, the matrix has K + 1 characteristic values, denoted as
µ1, µ2, . . . , µK+1. Furthermore, these characteristic values are arranged in ascending order: µ1 ≤ µ2 ≤ . . . ≤
µK+1. The energy EM (G) =

∑K+1
i=1 |µi|. It is clear that EM1 < EM2 < . . . < EMK+1

. The maximum
degree energy and its upper limits of different n-wheel graphs are computed using MATLAB programming
and tabulated in Table 3 and plotted in Figure 5. This conveys that the energy of the network increases with
the size of the graph in relation to the number of cycles and vertices present on the cycles [25]. To acquire the
maximum limits theoretically, the proof is similar to Theorem 3.1.
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Illustration: The n-wheel graph’s maximum degree energy and energy boundaries are displayed in Table 3.
Refer to Figure 5.

Table 3. The n-wheel graph’s maximum degree energy metrics and their bounds
Graphs Nodes Lines Cycles Maximal degree Energy
nWm K+ 1 K n energyε limit EM

10W4 41 80 10 620 720
19W5 96 190 19 2214.8 2660
16W8 129 256 16 3353.8 3584
17W11 188 374 17 5825.1 5984
15W15 226 450 15 7605 7650
21W17 358 714 21 14850 14994
20W19 381 760 20 16262 16340
21W22 463 924 22 21625 21714
23W24 553 1104 23 28029 28152
25W25 626 1250 25 33633 33750

Figure 5. Energy metrics based on the highest degree in the n-wheel graph

3.4. Proposition 3.4.

If µ1, µ2, , . . . , µ2n+1 are the characteristic values of Ec(Wn) then
2n+1∑
i=1

µ2
i = δ + κ.

Proof. The n-wheel color matrix creates two generalized matrix patterns based on the odd and even number of
the n-wheel structure.

Ec(Wn) =


κij = 0, the total of all null entries on the main diagonal where i = j,

δij = 1, the total of all adjacent nodes with different colors,
κij = −1, the total of all non-adjacent nodes with the same color.

Here δ,κ denotes the sum of all the elements 1, -1 node colored matrix respectively.

3.5. Theorem 3.5.
Let nWn be an n-wheel graph consisting of n cycles with n ≥ 4 nodes and m lines on each cycle.

Then Ec(Wn) <
√
(2n+ 1)(δ + κ).

Proof. The color energy upper bound of the n-wheel graph is derived by applying Cauchy-Schwarz inequality
and using proposition 3.4.

4. COMPARISON OF ENERGY VARIATIONS OF n-WHEEL GRAPH
After computing the values of ordinary energy, Laplacian energy, and maximum degree energy for

an n-wheel graph, an intriguing comparison emerges. Among the three energy measures, the ordinary energy
stands out as the lowest, suggesting a relatively uniform distribution of edges throughout the graph. Follow-
ing closely, the maximum degree energy falls in between, indicating moderate connectivity or centrality of
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the highest degree nodes. However, the most striking observation arises with the Laplacian energy, which
presents a drastically higher value compared to the other energies. This disparity highlights the intricate nature
of the graph’s structure, possibly indicating the presence of numerous cycles or complex connectivity pat-
terns. Through this comparison, each energy measure unveils distinct facets of the graph’s topology, providing
valuable insights into its composition and organization. The comparison of these energies is shown in Figure 6.

Figure 6. Energy comparison of n-wheel graph

5. CONCLUSION

The concept of energy in graph theory finds extensive applications across diverse fields such as elec-
trical circuits, sensor networks, mathematics, physics, and the chemical sciences. However, due to the inherent
complexity of graph structures, establishing generalized bounds on graph energies remains a challenging task.
Consequently, numerous researchers have endeavored to refine and enhance these bounds for various types of
graphs. This paper primarily explores the analysis of comparison of three distinct energy measures applied
to the n-wheel graph. Among these energies, our analysis reveals that the Laplacian energy exhibits the most
pronounced influence on the n-wheel graph, surpassing the other two energies examined. Further improved
bounds can be achieved for other energy measures of n-wheel graph and other circuit network structures. The
potential applications include optimizations in network design, where energy measures inform resilience, as
well as in sensor networks and circuit design, where energy stability is paramount. Future work may focus on
refining limits for alternative graph structures, supporting broader applications in mathematical modeling and
physics.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for their insightful comments and suggestions,
which helped to improve the quality of this manuscript.

FUNDING INFORMATION

There is no funding for this work.

TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 4, August 2025: 932–942



TELKOMNIKA Telecommun Comput El Control ❒ 941

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author contribu-

tions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu
Jerlinkashmir Rubancharles ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Naseema Valiyaveettil ✓ ✓ ✓ ✓ ✓
Abdul Lathief
Veninstine Vivik Joseph ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization I : Investigation Vi : Visualization
M : Methodology R : Resources Su : Supervision
So : Software D : Data Curation P : Project Administration
Va : Validation O : Writing - Original Draft Fu : Funding Acquisition
Fo : Formal Analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY
Derived data supporting the findings of this study are available from the corresponding author [VVJ]

on request.

REFERENCES
[1] G. H. Adday, S. K. Subramaniam, Z. A. Zukarnain, and N. Samian, “Fault Tolerance Structures in Wireless Sensor Networks

(WSNs): Survey, Classification, and Future Directions,” Sensors, vol. 22, no. 16, p. 6041, Aug. 2022, doi: 10.3390/s22166041.
[2] I. Daanoune, B. Abdennaceur, and A. Ballouk, “A comprehensive survey on LEACH-based clustering routing protocols in Wireless

Sensor Networks,” Ad Hoc Networks, vol. 114, p. 102409, Apr. 2021, doi: 10.1016/j.adhoc.2020.102409.
[3] F. F. Jurado-Lasso, L. Marchegiani, J. F. Jurado, A. M. Abu-Mahfouz, and X. Fafoutis, “A Survey on Machine Learning Software-

Defined Wireless Sensor Networks (ML-SDWSNs): Current Status and Major Challenges,” IEEE Access, vol. 10, pp. 23560–23592,
2022, doi: 10.1109/ACCESS.2022.3153521.

[4] R. Diestel, Graph Theory, vol. 173. in Graduate Texts in Mathematics, vol. 173. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017. doi: 10.1007/978-3-662-53622-3.

[5] G. Jayabalasamy, C. Pujol, and K. Latha Bhaskaran, “Application of Graph Theory for Blockchain Technologies,” Mathematics,
vol. 12, no. 8, p. 1133, Apr. 2024, doi: 10.3390/math12081133.

[6] S. Kumar, P. Sarkar, and A. Pal, “A Study on the Energy of Graphs and Its Applications,” Polycyclic Aromatic Compounds, vol. 44,
no. 6, pp. 4127–4136, Jul. 2024, doi: 10.1080/10406638.2023.2245104.

[7] M. E. Berberler, “Quasi-Laplacian energy of fractal graphs,” Acta et Commentationes Universitatis Tartuensis de Mathematica, vol.
28, no. 1, pp. 5–18, Jun. 2024, doi: 10.12697/ACUTM.2024.28.01.

[8] C. Adiga and M. Smitha, “On maximum degree energy of a graph.,” Int. J. Contemp. Math. Sci., vol. 4, no. 5–8, pp. 385–396, 2009.
[9] H. S. Ramane, S. Y. Talwar, and I. N. Cangul, “Status sum eigenvalues and energy of graphs,” Advanced Studies in Contemporary

Mathematics (Kyungshang), vol. 30, no. 1, pp. 29–47, 2020, doi: 10.17777/ascm2020.30.1.29.
[10] I. Ali, M. Javaid, and Y. Shang, “Computing dominant metric dimensions of certain connected networks,” Heliyon, vol. 10, no. 4, p.

e25654, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25654.
[11] J.-B. Liu, M. Munir, A. Yousaf, A. Naseem, and K. Ayub, “Distance and Adjacency Energies of Multi-Level Wheel Networks,”

Mathematics, vol. 7, no. 1, p. 43, Jan. 2019, doi: 10.3390/math7010043.
[12] L. L. Lazaro and J. B. Rosario, “The connected partition dimension of truncated wheels,” AKCE International Journal of Graphs

and Combinatorics, vol. 18, no. 2, pp. 123–126, May 2021, doi: 10.1080/09728600.2021.1966683.
[13] V. J. Vivik, P. Xavier, and A. R. Joshi, “Energy of Cartesian Product Graph Networks,” Przeglad Elektrotechniczny, vol. 98, no. 8,

pp. 28–33, Aug. 2022, doi: 10.15199/48.2022.08.06.
[14] D. Kandris, C. Nakas, D. Vomvas, and G. Koulouras, “Applications of Wireless Sensor Networks: An Up-to-Date Survey,” Applied

System Innovation, vol. 3, no. 1, p. 14, Feb. 2020, doi: 10.3390/asi3010014.
[15] M. Faris, M. N. Mahmud, M. F. M. Salleh, and A. Alnoor, “Wireless sensor network security: A recent review based on state-of-

the-art works,” International Journal of Engineering Business Management, vol. 15, Feb. 2023, doi: 10.1177/18479790231157220.
[16] F. Zijie, M. A. Al-Shareeda, M. A. Saare, S. Manickam, and S. Karuppayah, “Wireless sensor networks in the internet of things:

review, techniques, challenges, and future directions,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 31,
no. 2, p. 1190, Aug. 2023, doi: 10.11591/ijeecs.v31.i2.pp1190-1200.

[17] N. Liu, S. Liu, and W.-M. Zheng, “PPSO and Bayesian game for intrusion detection in WSN from a macro perspective,” Complex
& Intelligent Systems, vol. 10, no. 6, pp. 7645–7659, Dec. 2024, doi: 10.1007/s40747-024-01553-6.

Energy analysis and comparative study of n-wheel graphs in hierarchical ... (Jerlinkasmir Rubancharles)



942 ❒ ISSN: 1693-6930

[18] Z. Song and H. Zhang, “Resilient Fiber-Wireless Networks Featuring Scalability and Low Latency: Integrating a Wheel-and-Star
Architecture with Wireless Protection,” IEEE Access, vol. 12, pp. 92682–92707, 2024, doi: 10.1109/ACCESS.2024.3417620.

[19] K. Bose, M. K. Kundu, R. Adhikary, and B. Sau, “Distributed Localization of Wireless Sensor Network Using Communication
Wheel,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 12503 LNCS, pp. 17–31, 2020, doi: 10.1007/978-3-030-62401-9 2.

[20] Y. Chai, L. Wang, and Y. Zhou, “DQ-integral and DL-integral generalized wheel graphs,” Combinatorics, Jan. 2024.
[21] R. Sarathy and J. R. Sankar, “Applications on color (distance) signless laplacian energy of annihilator monic prime graph of com-

mutative rings,” Ain Shams Engineering Journal, vol. 15, no. 3, p. 102469, Mar. 2024, doi: 10.1016/j.asej.2023.102469.
[22] R. Balakrishnan, “The energy of a graph,” Linear Algebra and Its Applications, vol. 387, no. 1–3 SUPPL., pp. 287–295, Aug. 2004,

doi: 10.1016/j.laa.2004.02.038.
[23] V. Nikiforov, “The energy of graphs and matrices,” Journal of Mathematical Analysis and Applications, vol. 326, no. 2, pp.

1472–1475, Feb. 2007, doi: 10.1016/j.jmaa.2006.03.072.
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