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 This paper presents an industrial and innovation dual-band multiple-input 

multiple-output (MIMO) antenna designed for terahertz (THz) frequencies to 

enhance future sixth-generation (6G) communication systems. The antenna 

utilizes a polyimide substrate with a thickness of 12 µm, a dielectric constant 

of 3.5 and a tangent loss of 0.0027. Both the patch and the ground plane are 

constructed from copper, ensuring robust performance. The antenna achieves 

resonance at 5.45 THz with a gain of 14 dB and a bandwidth of 0.7 THz and 

at 6.34 THz with a gain of 14.44 dB and a bandwidth of 1.77 THz. 

Additionally, it demonstrates a minor peak at 7.4 THz and a maximum 

efficiency of 95.87%. The transmission coefficient shows an isolation of -

31.01 dB, indicating excellent separation between antenna elements. Key 

MIMO performance metrics, containing the envelope correlation coefficient 

(ECC), diversity gain (DG), mean effective gain (MEG), total active 

reflection coefficient (TARC), and channel capacity loss (CCL), were 

analyzed, displaying optimum performance. An analogous circuit was 

designed and simulated in advanced design system (ADS) to validate these 

discoveries, creating comparable reflection coefficients to those attained 

from computer simulation technology (CST) simulations. These findings 

approve the antenna’s possible for THz-band 6G wireless communication 

applications. 
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1. INTRODUCTION 

The beginning of sixth-generation (6G) wireless communication scripts a transformative leap in 

connectivity, gifted to revolutionise how we narrate with technology and the world around us [1]. 6G 

technology can spread the aptitudes of current wireless systems by contributing faster speeds and more 

reliable connections, allowing new use cases that contain real-time, high-bandwidth communication [2]. For 

example, in immersive virtual reality, 6G can deliver the ultra-fast data transmission desirable for all-in-one, 

high-definition experiences [3]. Independent systems, self-driving cars, and drones will benefit from 6G’s 

low latency, vital for real-time decision-making and safe process [4]. Additionally, the Internet of Everything 

will see an ignition of connected devices needing efficient and reliable communication links, which 6G can 

provide. Essential to achieving the determined goals of 6G is utilising the terahertz (THz) frequency range, 

https://creativecommons.org/licenses/by-sa/4.0/
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which ranges from 0.1 THz to 10 THz [5]. This mostly unused spectrum offers a vast bandwidth potential, 

making it restful for meeting the high-speed, high-capacity necessities of 6G networks [6]. THz frequencies 

are attractive for wireless communication since they provide multi-gigabit-per-second (Gbps) data rates and 

ultra-low latency [7]. These characteristics are essential for supportive data-intensive and delay-sensitive 

applications intended for 6G, such as remote surgery, real-time holographic communications, and advanced 

manufacturing processes [8]. 

The design of efficient and high-performance antennas is one of the critical challenges in harnessing 

THz frequencies for 6G wireless communication. Mixing multiple-input multiple-output (MIMO) technology 

with THz frequencies offers several advantages, including improved channel capacity, better signal quality, 

and enhanced coverage [9]. MIMO systems influence multiple antennas at both the transmitter and receiver 

to create multiple communication paths, effectually multiplying the capacity of the wireless channel [10]. 

The development of THz MIMO antennas is important for realizing the full potential of 6G wireless 

communication. These antennas will play an essential role in delivering the ultra-fast, high-capacity, and 

low-latency connectivity required to support the varied and challenging applications of the future [11]. The 

study and advancement of THz antenna technology will pave the way for a new period of wireless 

communication, altering how we connect and cooperate in the digital age [12]. 

Table 1 presents a proportional analysis of various MIMO antenna designs, converging on their 

essential parameters and performance metrics. The analysis covers bandwidth, isolation, gain, efficiency, 

envelope correlation coefficient (ECC), diversity gain (DG), and the inclusion of resistance, inductance, and 

capacitance (RLC) circuits. The proposed antenna demonstrates remarkable performance across these 

parameters, showcasing significant advancements in antenna technology. 

 

 

Table 1. Performance comparison with related works 
Ref Resonance 

(THz) 

BW 

(THz) 

Isolation 

(dB) 

Gain 

(dB) 

Efficiency 

(%) 

ECC, DG 

(dB) 

Substrate material Port RLC 

[13] 0.654 0.05 ≥ 25 11.67 76.45% 0.003, 

9.99 

Polyimide - No 

[14] - 0.114 -17 4.4 94 0.006, 
9.97 

Rogers RO4835-T 4 No 

[15] 8.84 0.0404 −22.26 8.2 - 0.0005, 9.995 

 

RT/Duroid/6010 4 No 

[16] 1.9 0.3 -35 10 - 0.000023/9.99 Polyimide 2 Yes 

[17] 2.2 0.78 -20 4.4 96 0.006, 

9.9998 

Polyimide 2 Yes 

[18] - 0.11 -25 4.45 - 0.0372,9.99 Silicon dioxide 2 No 

Proposed 5.45, 

6.34 

0.7, 

1.77 

-30.6, 

-31.01 

14, 

14.44 

91.03, 

95.87 

0.0003, 

9.998 

Polyimide 2 Yes 

 

 

Bandwidth values show considerable variation, with measurements including 0.05 THz, 0.114 THz, 

0.0404 THz, 0.3 THz, 0.78 THz, and 0.11 THz [13]-[18]. The proposed design attains pointedly broader 

bandwidths of 0.7 THz and 1.77 THz at its two resonance frequencies, which is important because of its 

capacity to conceal a wide frequency range. Referenced gains from former works, such as 11.67 dB, 4.4 dB, 

8.2 dB, 10 dB, 4.4 dB, and 4.45 dB, are providing [13]-[18]. In distinction, the proposed design achieves 

considerably higher gains of 14 dB and 14.44 dB at its two resonance frequencies. Isolation levels in the 

proposed layout surpass -30 dB at both resonance frequencies, which is an improvement compared to the 

measured levels of -25 dB, -17 dB, -22.26 dB, -35 dB, -20 dB, and -25 dB in the cited sources [13]-[18]. The 

efficiency of the proposed design is 91.03% at the first band and 95.87% at the second band, surpassing 

efficiencies of 76.45%, 94%, and 96% cited in studies [13], [14], [17].  

The proposed MIMO antenna demonstrated outstanding performance compared to other 

alternatives, with an ECC below 0.0003 and a DG exceeding 9.998. Notably, while references [16], [17] 

incorporated RLC circuits, the proposed antenna integrates RLC components to analyze its electromagnetic 

behaviour, setting it apart and highlighting its innovative approach. These features collectively showcase the 

proposed antenna’s potential to lead the field of antenna technology and drive future advancements, making 

it the best among the compared designs. 

 
 

2. ITERATIVE DESIGN AND ANALYSIS OF PROPOSED SINGLE-ELEMENT ANTENNA 

We meticulously designed a single-element antenna to develop a state-of-the-art one for THz 

applications, refining its structure through three iterative stages to achieve optimal performance. This section 
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details the design methodology. We selected polyimide as the substrate, praised for its superior dielectric 

properties, including a dielectric constant 3.5 and a low-loss tangent of 0.0027 [19]. Copper was applied 

individually to the patch and ground elements, confirming ideal conductivity and performance. A full-ground 

plane was steadily employed throughout the design. Figure 1(a) shows the reflection coefficient at each step, 

Figure 1(b) depicts the respective gain, and Figure 1(c) presents the final antenna design. At first, we 

executed a trapezium-shaped patch with a feedline. Two resonance frequencies caused this configuration 

with a bandwidth of 1.2 THz, but both return loss and gain were suboptimal. As for the second stage, we 

offered two insets on either side of the feedline and added a pole at the top-left corner of the trapezium. This 

design generated a single resonance frequency and improved gain and return loss, though the bandwidth 

remained inadequate. 

 

 

   
(a) (b) (c) 

 

Figure 1. Analysis of the single-element antenna: (a) S11 comparison, (b) comparison of gain across three 

steps, and (c) front view of the single-element antenna 

 

 

At the final stage, we further refined the design by including extra geometric changes, including two 

new poles—one at the centre and another at the right side of the trapezium’s top edge. This final arrangement 

achieved a resonance frequency of 6.33 THz, with a return loss of -37.36 dB and a lingering bandwidth of  

1.4 THz. The gain was improved to 11 dB, marking a noteworthy advancement in performance. These 

improvements condense the antenna highly suitable for next-generation communication technologies and 

high-resolution THz imaging. 

 

 

3. DESIGN AND ANALYSIS OF MIMO ANTENNA 

MIMO technology drives wireless communication systems, particularly for 6G. This leads to 

enhanced spectral efficiency and sturdiness, making it possible to support a higher density of users and more 

complex data streams, which is critical for the demanding requirements of 6G applications [20]. This section 

details the progression from a single-element antenna to a 2-port MIMO antenna. Figure 2(a) depicts the 

proposed MIMO configuration, where two polarized antenna elements are oriented perpendicularly. These 

elements are spaced 53 μm apart edge-to-edge, within overall dimensions of 185×185 μm2. This precise 

arrangement optimizes spatial diversity and reduces mutual coupling, enhancing signal quality and reliability. 

Figure 2(b) compares the return loss between the single-element and MIMO antennas, clearly 

showing that the MIMO antenna achieves dual-band operation. In contrast, the single-element antenna 

supports only a single band. The first resonance frequency for the MIMO antenna occurs at 5.45 THz, with a 

notable bandwidth of 0.7 THz, and the second resonance band appears at 6.34 THz, featuring a bandwidth of 

1.77 THz. This indicates a significant improvement in bandwidth for the MIMO antenna, which also shows 

enhanced return loss compared to the single-element antenna. The resonance frequencies of the two bands in 

the MIMO antenna closely match those of the single-element design. However, the MIMO antenna 

introduces a minor peak at 7.4 THz, indicating strong performance at higher frequencies. 

Figure 2(c) also highlights the comparison between single-element gain and MIMO antennas. The 

MIMO antenna achieves a gain of 14 dB in the first band and 14.44 dB in the second band, compared to a 

maximum gain of 11 dB in the single-element antenna. This performance improvement demonstrates that the 

MIMO configuration suits next-generation communication technologies and high-resolution THz imaging. 

These values represent the ideal setting of the antenna, sw=80 μm, sl=103 μm, L1=10 μm, L2=20 μm,  

L3=35 μm, L4=20 μm, w=5 μm, pw=50 μm, iw=5 μm, il=5 μm, fl=21.5 μm, fw=6 μm, D=120 μm, 

SW=SL=185 μm. 
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(a) (b) (c) 

 

Figure 2. MIMO antenna overview: (a) MIMO antenna design, (b) S11 parameter, and (c) gain 

 

 

4. RESULTS ANALYSIS OF THE RECOMMENDED MIMO ANTENNA 

4.1.  Reflection coefficient and transmission coefficient analysis 

The reflection coefficient, often represented as S11 or return loss, measures how much power is 

reflected from the antenna [21]. It is a crucial parameter in antenna design. For the designed patch antenna, 

the reflection coefficient indicates strong performance in dual bands, as depicted in Figure 3(a). The first 

resonance frequency is at 5.45 THz with a return loss of -27 dB, operating between 5.11 THz and 5.81 THz, 

providing a substantial bandwidth of 0.7 THz. The second resonance band is observed at 6.34 THz with an 

impressive return loss of -43 dB. This band operates from 5.98 THz to 7.75 THz, offering a large bandwidth 

of 1.77 THz. Additionally, a minor peak at 7.4 THz with a return loss of -20.207 dB is noted within this 

band, indicating good performance even at higher frequencies. The significant return loss values in both 

bands suggest that the antenna is highly efficient in its intended frequency ranges and matched to the 

transmission line. 

Regarding the transmission coefficient or isolation, which is represented as S21 or S12, the 

proposed MIMO antenna achieves an isolation of -31.01 dB, as shown in Figure 3(b). The transmission 

coefficient indicates the level of power that is coupled from one antenna element to another. A lower 

transmission coefficient value (more negative in dB) corresponds to higher isolation. This high isolation 

value indicates excellent separation between antenna elements, minimizing interference and enhancing 

overall system performance [22]. 

 

 

  
(a) (b) 

 

Figure 3. Performance analysis of the proposed MIMO antenna: (a) reflection and (b) transmission coefficient  

 

 

4.2.  Gain and efficiency 

Gain and efficiency are important parameters for estimating the performance of an antenna [23]. 

Gain states to the ability of the antenna to straight or pay attention to radio frequency energy in a  

certain direction, though efficiency measures how efficiently the antenna adapts input power into radiated 

power [24]. Figure 4 shows a plot of the simulated gain and Efficiency of the proposed antenna. 

The designed antenna demonstrates excellent recital in terms of gain and efficiency. It attains a 

maximum gain of 14.5 dB transversely to the operating range, with precise gains of 14 dB at 5.45 THz and 

14.44 dB at 6.34 THz, as shown in Figure 4(a). These high gain values specify that the antenna effectively 

directs energy, which is helpful for long-distance communication and high-resolution imaging applications in 

the THz range [25].  
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Additionally, the antenna displays a maximum radiation efficiency of 95.87% at 6.34 THz and 

89.93% at 5.45 THz. Additionally, the total efficiency of the antenna is 95.43% at 6.34 THz and 89.85% at 

5.45 THz, as shown in Figure 4(b). These efficiency values are quite high, suggesting that the antenna has 

minimal power losses and can effectively radiate the input power. 

 

 

  
(a) (b) 

 

Figure 4. Performance evaluation of the proposed MIMO antenna: (a) gain and (b) efficiency  

 

 

4.3.  Diversity performance analysis 

ECC measures the correlation amid signals received or emitted by various antenna essentials. The 

value of ECC can be figured out by using the (1) [26]: 

 

|∫  
 

4𝜋
[𝐸1(𝜃,𝜑)∗𝐸2(𝜃,𝜑)]𝑑𝛺|

2

∫  
 

4𝜋
|𝐸1(𝜃,𝜑|2𝑑𝛺 ∫  

 
4𝜋

|𝐸2(𝜃,𝜑|2𝑑𝛺
 (1) 

 

where the two antennas’ complex electric field patterns are denoted by E1 (θ, ϕ) and E2 (θ, ϕ). The solid 

angle (Ω) over a sphere is comprised of the azimuth angle (ϕ) and the elevation angle (θ). The differential 

element of the solid angle is denoted by dΩ. The integrals are calculated across the whole sphere, indicated 

by 4π. 

Figure 5(a) illustrates that the designed antenna has an ECC value of 0.0003, which is remarkably 

low and highly desired. A low ECC value ensures effective diversity performance and reduces the chances of 

signal fading. DG specifies the enhancement in signal quality due to diversity. The value of DG can be 

determined by using the equation provided here [27]. 

 

𝐷𝐺 = 10√1 − 𝐸𝐶𝐶2  (2) 
 

Figure 5(b) depicts that the achieved DG value is 9.9998, close to the ideal value of 10. This high 

DG value signifies that the antenna system provides excellent diversity gain, enhancing the reliability and 

robustness of the communication link [28]. 

When an antenna is subjected to uniformly arriving signals from all directions, taking into 

consideration fading and polarization effects in a wireless communication environment, the average gain is 

known as mean effective gain (MEG). The MEGs of the two antenna elements vary from 7.8 dB to 5.8 dB 

over the whole frequency spectrum, as shown in Figure 6(a). The variation of MEGs, indicated by the k=power 

ratio, ranges from 0 dB to 0.3 dB within the band. It can be mathematically represented as (3) and (4). 

 

𝑘 = 𝑚𝑖𝑛 (
𝑀𝐸𝐺1

𝑀𝐸𝐺2
,

𝑀𝐸𝐺2

𝑀𝐸𝐺1
) (3) 

 

𝑀𝐸𝐺𝑖 = 0.5 [1 − ∑ 𝑆𝑖𝑗
𝑁

𝐽=1
] (4) 

 

The channel capacity loss (CCL) is measured in bits/s/Hz, which measures the information loss due 

to mutual coupling between other antennas. If the CCL value is lower the information loss will be less. As for 

our proposed MIMO antenna the CCL we get is near to Zero which indicate that the information loss is also 

less that shown in Figure 6(b). 
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The suggested MIMO antenna’s reflection effectiveness is represented by the total active reflection 

coefficient (TARC), which is displayed in dB in Figure 6(c). For the suggested antenna, the TARC simulated 

outputs are shown as < -10 dB. As The TARC values is lower at resonance frequency, which indicate that the 

proposed antenna has better efficiency. The 3 can be utilized to ascertain this. 

 

𝑇𝐴𝑅𝐶 =
√(|𝑆𝑥𝑥|+|𝑆𝑥𝑦|)

2
+(|𝑆𝑦𝑥|+|𝑆𝑦𝑦|)

2

√4
 (5) 

 

 

  
(a) (b) 

 

Figure 5. Diversity performance of the MIMO antenna: (a) ECC and (b) DG  

 

 

   
(a) (b) (C) 

 

Figure 6. Diversity performance: (a) MEG, (b) CCL, and (c) TARC of the MIMO antenna 

 

 

4.4.  Radiation pattern 

The radiation pattern of the proposed antenna at port-1, operating at the resonance frequency of  

6.34 THz, shows distinct characteristics in both the E-field and H-field components, as shown in Figure 7. At 

port 1, the E-field’s main lobe magnitude at ϕ=0° is 16.2 dBV/m with a 3 dB beamwidth of 22.5°, while the 

H-field has a magnitude of -42.3 dBA/m with a beamwidth of 16.4°. At ϕ=90°, the E-field’s magnitude is 

12.1 dBV/m with a 19.8° beamwidth, and the H-field is -25.5 dBA/m with a 28.9° beamwidth. For θ=90°, the 

E-field reaches 26 dBV/m with a beamwidth of 19.4°, and the H-field is -37.5 dBA/m with a 10.3° 

beamwidth. The radiation pattern analysis reveals notable differences in port-2. At port 2, for the E-field, the 

main lobe magnitude at ϕ=0° is 11.7 dBV/m, with a 3 dB beamwidth of 79.4°, indicating a relatively broad 

beam in this plane. At ϕ=90°, the main lobe magnitude increases to 16.4 dBV/m, with a narrower 3 dB 

beamwidth of 21°, reflecting a more focused beam in the perpendicular plane [29]. Regarding θ=90°, the  

E-field’s main lobe magnitude reaches 25.8 dBV/m, with a half-power beamwidth of 19.3°, demonstrating 

significant directivity in this direction. Conversely, the H-field’s main lobe magnitude at ϕ=0° is -25.9 dBA/m 

with a 3 dB beamwidth of 28.8°, while at ϕ=90°, the magnitude is -42.5 dBA/m with a 10.8° beamwidth, 

illustrating a more confined radiation pattern. For θ=90°, the H-field’s main lobe magnitude is  

-40.8 dBA/m with a 21.2° beamwidth, display a comparatively wider beam in this plane compared to the  

E-field. 
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Figure 7. Simulated radiation pattern 

 

 

5. EQUIVALENT CIRCUIT MODELLING AND SIMULATION 

In our pursuit of developing antenna technology, we analyzed the antenna’s electromagnetic 

behaviour using an RLC circuit model. Utilizing CST Studio, we mined detailed R-L-C parameters from our 

antenna simulations. Agilent ADS circuit simulation was used to optimize the antenna further, allowing a 

thorough analysis of its behavior [30]. 
The RLC equivalent circuit design intricate a methodical trial-and-error method within the ADS 

software, where we iteratively accustomed the RLC parameters to attain optimal results. We carefully 

adjusted the RLC parameters to achieve ideal performance, certifying the circuit accurately signified the 

antenna’s operational frequency. This was accomplished through a parallel circuit arrangement that included 

resistance (R1), inductance (L1), and capacitance (C1), sideways with an additional parallel circuit 

comprising R2, C2, and L2. Furthermore, each pole at the top of the patch was represented by distinct 

parallel circuits where L3 and C3 represent the left pole, L4 and C4 for the middle pole, and L5 and C6 for 

the right pole. C6 and C8 denoted capacitances between the left and middle poles, while C7 and C9 

represented the capacitances between the middle and right poles. The feedline was incorporated with 

resistance (R3), capacitance (C10), and inductance (L6), accurately capturing its electrical characteristics. By 

integrating these individual circuit elements, we constructed a model that mirrored the behaviour of our 

single-element antenna. Finally, the model extended to a MIMO antenna, as shown in Figure 8, using the 

single-element circuit as a foundation. Extending this model to a MIMO configuration, we accounted for 

mutual impedance between antenna elements through a parallel circuit of L7 and C12, optimizing 

performance evaluation. Simulating the R-L-C circuit model in Agilent ADS, we validated its equivalence to 

our antenna design. To ensure precision, we compared the outcomes of the CST simulation with the parallel 

circuit simulation results, focusing on the S11 parameter. Figure 9 illustrates this comparison, thoroughly 

assessing the accuracy of our R-L-C circuit model in representing the antenna’s behavior. It is evident from 

Figure 9 that the S11 responses of both the CST-designed antenna and the equivalent circuit model using 

ADS align closely, reinforcing the validity of the equivalent circuit in accurately modelling the antenna’s 

performance. 
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Figure 8. RLC equivalent circuit diagram for the suggested MIMO antenna 

 

 

 
 

Figure 9. Comparative plot of S11 parameter from CST and ADS simulations 

 

 

6. CONCLUSION 

This research evaluated the effectiveness of the suggested MIMO patch antenna intended for THz 

frequency applications using various techniques. Using advanced modelling techniques, we thoroughly 

analysed the antenna’s characteristics and developed an RLC-equivalent circuit model. The simulations, 

performed using ADS and CST software, revealed a remarkable consistency in the antenna’s bandwidth, 

confirming the reliability and precision of our design. The antenna exhibited outstanding performance in 

critical parameters such as reflection coefficient, gain, efficiency, ECC, and DG, supporting dual-band 

operation with efficient signal transmission and reception. The high gain and efficiency and minimal signal 

correlation indicated by the low ECC value affirm the antenna’s capability to support high-quality 

communication and imaging applications in the THz spectrum. The consistent simulation results validate the 

antenna’s potential for integration into advanced communication systems. This study confirms the proposed 

antenna’s viability for THz applications and provides a foundation for future advancements in high-

frequency antenna technologies. Future research could focus on integrating massive MIMO technology to 

enhance system capacity and coverage. Additionally, exploring metamaterials could lead to further 

performance improvements and novel functionalities. Another promising direction involves applying 

machine learning techniques to enhance the MIMO antenna’s performance further. By collecting extensive 

data samples, we aim to use deep learning models such as artificial neural network (ANN) and convolutional 

neural network (CNN) to predict and optimize various antenna parameters, improving future outcomes. The 

findings of this study contribute significantly to the field and pave the way for future innovations in THz 

sensing and communication technology. 
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