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 The advancement of machine learning (ML) and deep learning (DL) 

techniques has significantly improved crop yield prediction, making it more 

accurate and reliable. In this review, the implementation of ML and DL 

algorithms for crop yield prediction is thoroughly investigated, focusing on 

their crucial role in enhancing crop productivity. Along with ML and DL 

algorithms examine, the review analyses the use of remote sensing 

technologies, such as satellite and drone data, in providing high-resolution 

inputs essential for accurate yield predictions. The study identifies the state 

of art algorithms, most used features, data sources and evaluation metrics, 

providing a comparison of ML and DL. The findings indicate that DL 

models are more effective with large datasets, while ML models remain 

robust for smaller datasets. The future directions are proposed to develop the 

generalised models for different crops and regions. The review aims to assist 

researchers by summarising state of art techniques and identifying the 

present. 
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1. INTRODUCTION 

The field of computer science is constantly advancing and ever-evolving, driven by the pursuit of 

even more sophisticated solutions to complex problems. Machine learning (ML) has emerged as a powerful 

paradigm within this domain, enabling computers to learn and adapt without explicit programming [1]. ML 

encompasses a diverse set of techniques, each with its unique strengths and applications [2]. Some common 

approaches include supervised learning, which involves training algorithms on labelled data to perform tasks 

like classification and regression. Unsupervised learning, on the other hand, focuses on uncovering hidden 

structures within unlabelled data, allowing for tasks like data clustering and dimensionality reduction. 

Additionally, reinforcement learning enables systems to learn through trial and error, interacting with an 

environment. 

ML is also making significant contribution in the agriculture industry, particularly in the area of 

crop yield prediction [3]. ML can help farmers and policymakers mitigate food insecurities. It is based on the 

concept of statistics and ML in which crop yield is predicted using historical data associated with the crops 

like climate, soil, and region. Modern tools such as satellites, drones and sensors are also used to obtain data 

and monitor crops. One of the key drivers of this progress is the integration of remote sensing technology [4]. 

Satellites and drones equipped with various sensors can gather data on factors like soil moisture, vegetation 

health, and weather patterns from a distance [5]. These models then identify intricate relationships between 

these diverse factors and historical crop yields, allowing for accurate predictions. 

https://creativecommons.org/licenses/by-sa/4.0/
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With surge in demand of food with increasing population, ML in agriculture has propelled to the 

forefront of research aimed at advancing the sector. However, navigating the complexities of choosing 

suitable datasets, algorithms, and methodologies can be challenging for researchers as these vary greatly 

depending on the area of study and type of crop. This review paper addresses questions such as the most used 

features, data sources, types of evaluation metrics, the algorithms and models used and the type of remote 

sensing techniques used in recent studies. Our review addresses these gaps by comparing and summarizing 

the most recent advances based on the literature available to answer our prepared research question that aims 

to create a more generalised approach for researchers that can be used for most crops and areas. The aim is to 

equip researchers with the insights needed to make informed decisions by answering the following questions: 

RQ1: what are the state-of-the-art techniques used? 

RQ2: which among ML and deep learning (DL) is better for making yield predictions? 

RQ3: what are matrices used for model evaluation? 

RQ4: what are the data sources? 

RQ5: what are the most used features? 

RQ6: which among ensembled models and traditional ML and DL perform better? 

RQ7: what are the limitations and future directions? 

Similar reviews are conducted by researchers but each vary with one another based on the type of 

crop or area being studied. It is crucial to analyse the recent reviews to get insights on the recent practices in 

crop yield prediction. According to the study [6] which was carried out on different crops, geographical 

positions and various features. It was found that DL performs better than ML for making predictions of 

which convolutional neural network (CNN) and long short-term memory (LSTM)-based models were 

identified to be most effective. It was also concluded that meteorological data and Vegetation are the most 

used features. Similarly, the review [7] also included papers that conducted studies performed in different 

environments stated that there were no single or multiple specific models found that were able to outperform 

others and also stated that including more features in the dataset doesn’t necessarily mean that they perform 

better. However, it concluded that there were a few popular models that are used very often such as random 

forest, neural network, linear regression, and gradient boosting tree. Further, the review concluded that out of 

the neural network, the most used models were CNN, LSTM, and deep neural network (DNN). 

According to the study [8] which was conducted on Palm oil prediction stated that while there was 

no particular algorithm that could be concluded as the best but few most promising ML algorithms were 

linear regression, random forest and neural network. Out of the DL algorithms, the popular algorithms were 

DNN, CNN, and LSTM. The review also concluded that there are very few studies on Palm oil with versatile 

features which makes it difficult to determine which algorithm or features are best since it’s still in the early 

stages. According to another review with emphasis specifically on DL algorithms for yield prediction [9]. 

Crop yield with DL depends majorly on the type of data and crops. It was also noted that image was the most 

demanded source of data with the majority of publications focusing on supervised learning. CNN was widely 

used for making predictions which also outperformed other DL algorithms such as DNN, LSTM, Faster  

R-CNN and hybrid models. The most used evaluation metric was root mean square error (RMSE) followed 

by R^2, mean absolute percentage error (MAPE), mean absolute error (MAE), and mean square error (MSE). 

Similarly [10] also concluded that DL provides a promising solution for crop yield estimation. However, they 

are largely depend on many factors including scalability, availability of the dataset, and location of study. We 

still are very far from finding a generalised approach to predict crop yield in all types of environments. Our 

study aims at finding the most relevant and common features for crop yield prediction in various 

environments with state of the art techniques and data sources to give a better and cleared idea to researchers 

to start with crop yield prediction with the updated techniques that can be be applied over most crops and 

environments. Table 1 summarizes the gaps in the considered studies for comparison without study. ‘Y’ 

represents YES and ‘N’ represents NO. 

 

 

Table 1. Test model specifications and test conditions 
Comparison points [6] [7] [8] [9] [10] Our review 

State of the art techniques discussed Y Y Y Y N Y 

Comparison between ML and DL N N N N N Y 
Evaluation metric N Y N Y N Y 

Data sources N N N Y N Y 

Ensembled vs classic ML, DL models N N N N N Y 
Most used features N Y Y Y Y Y 

Limitations and future work Y Y Y Y N Y 
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2. METHOD 

This review addresses unanswered questions outlined in Table 1 and updates the existing literature 

with the latest findings. It examines the comparison between ensemble and traditional ML/DL models, as 

well as between ML and DL models specifically for crop yield prediction, areas not clearly covered in 

previous reviews. By synthesizing recent findings, this review provides researchers with updated insights into 

best practices, data sources, and methodologies in the field. This contribution aims to support researchers in 

building upon current work and advancing future research in crop yield prediction. 

 

2.1.  Literature review 

A detailed systematic review is carried out in this study to answer our specific research questions. 

This includes the selection criteria of all the literature included and reviewed in this study. The selection of 

all the literature was done using a bunch of relevant keywords for our study. The literature included in this 

review were pulled from Google Scholar in a year-wise manner. The keywords used are mentioned in  

Table 2. The yearly filter was used on Google Scholar to download papers that were of relevance. After this, 

each paper was reviewed for relevance based on the abstract, introduction and technologies used. The papers 

further discarded were due to the reasons that they were associated with plant disease detection, traditional 

phenology without using ML or DL, specific to data mining, internet of thing (IoT) and soil management. 

Finally, we were left with 80 quality literature to review in this study which was included. 
 

 

Table 2. The keywords used to search papers 
Sr. No. Keywords 

1 Crop yield prediction 

2 Crop yield prediction ML 
3 Crop yield prediction DL 

4 Crop yield prediction DL remote sensing 

5 Crop yield prediction ML remote sensing 

 

 

More precisely as shown in Figure 1, the total number of downloaded papers was 238. From the 

downloaded papers 198 papers were selected based on the title and further 165 papers were selected from the 

then selected papers based on the abstract of the paper. Among the 165 papers finally 80 papers were selected 

that are used for our study. The Figure 1 gives an insight on the selection criteria. 
 

 

 
 

Figure 1. Paper selection criteria 
 

 

As shown in Figure 2 the selected papers range from the year 2014 to 2024. The increment in the 

papers can be seen from 2019. The researcher’s interest in the domain has grown with the advancement in 

satellite technology and enhanced computation. 
 

 

 
 

Figure 2. Year wise paper distribution 
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2.2.  Algorithms 

There are several algorithms available for making crop yield prediction, and the selection of most 

suitable one depends on multiple factors, including the type of data available, the number of features in the 

dataset, and the nature of the data—whether it is statistical, image-based, or a combination of both. 

Additionally, understanding the linearity or non-linearity of the data plays a crucial role in determining which 

algorithm will perform best. Crop yield prediction is a complex issue involving various factors such as 

climate conditions, soil properties, rainfall, temperature, humidity, fertilizer usage, and crop variety. The 

accuracy of predictions depends on selecting an appropriate ML or DL model that can effectively capture the 

relationships between these factors. 

 

2.2.1. Support vector machines 

These algorithms find a hyperplane in the feature space that best separates the data points belonging 

to different classes. Support vector machine (SVM) focus on identifying a small subset of training data points 

(support vectors) that define the hyperplane's margins. This approach makes them robust to outliers and 

efficient for high-dimensional data. SVM has given promising results in many studies such as this study [11] 

that predicts potato yield using Sentinel 2 data in Segovia, Spain with a high r^2 value of 0.93. Another study 

[12] conducted in Tamil Nadu, India, compared different feature subsets for crop yield prediction and also 

showed that SVM had a high R Score of 0.92. A research work [13] which also used Landsat-8 data showed 

that SVM had achieved a high accuracy of 98.72%. A recent study [14] aimed at comparing various ML 

models for Soybean yield prediction using remote sensing and weather data also showed that SVM had a 

decent R^2 score of 0.722. A study [15] was each on the prediction of Winter Wheat on multi-sourced data in 

China and also showed that SVM was among one of the highest accurate algorithms for making predictions. 

This being said SVM though not the best in all cases gives promising results because of its inability to handle 

non linear and very large datasets. SVM is also computationally very expensive. 

 

2.2.2. Random forests 

It is build upon decision trees by creating an ensemble of them. Each tree is trained on a random 

subset of features and data points, enhancing accuracy and reducing overfitting. Predictions from all trees are 

then aggregated for a final output. A study [16] done on soybean and corn datasets 4 times a year for 3 years 

as test data concluded that random forest gives good accuracy with RMSE observed 5.62 bushels per acre for 

the soybean dataset for August 2017. Similarly, another research [17] that was done in the main wheat-

producing region of China using data from various sources such as remote sensing meteorological data etc 

also received the second highest R^2 score among all algorithms studied. The r^2 of random forest was 0.72. 

A study [18] performed on wheat crops aimed to compare random forest and three different DL algorithms 

and concluded that random forest had the best R^2 score of 0.89. Another research [14] also conducted on 

soybeans also concluded that random forest after tuning its hyperparameters specifically gave a promising 

and the highest R^2 of 0.748 in the particular study outperforming support vector regression (SVR). Another 

study [15] that was done to predict winter wheat yield concluded that random forest demonstrates the best 

generalization ability among other popular algorithms used. Also, according to Sarr and Sultan [19] random 

forest performed the best in predicting Maize yield with an R^2 value of 0.64. The study also had peanut, 

millet and sorghum datasets in which random forest also performed well and was behind by a small margin. 

 

2.2.3. Artificial neural networks 

They consist of interconnected layers of processing units (neurons) that learn patterns from data 

through an iterative process called backpropagation. Strengths include tackling complex, non-linear problems 

and excelling at feature extraction. According to a study [20] potato yield in Bangladesh using remote 

sensing satellites using artificial neural network (ANN) and the error of prediction was very small and less 

than 10%. Which indicated that ANN is highly accurate in predicting potato yield in Bangladesh. The study 

[21] which was done on Rice crops in the Indian region found that the accuracy of ANN was 97.5 in this 

study with a sensitivity of 96.3. Another research [19] was performed in Senegal located in the African 

continent and statistical and satellite data were used ANN outperformed all other models in predicting Peanut 

and Sorghum yield with an R^2 score of 0.66 and 0.57 respectively. Similarly [22] was carried to predict 

Mustard crop yield which concluded that ANN had an accuracy of 99.94%, precision of 99.94% and an  

F-Score of 0.9976. Another study [12] which was executed to predict paddy crops in the state of Tamil Nadu 

in India which achieved an R^2 score of 0.92 for ANN. Similarly [23] aiming to predict rice produced a high 

testing R^2 score of 0.978. 

 

2.2.4. Extreme gradient boosting 

It leverages ensemble learning with gradient boosting. New models are sequentially added to correct 

the errors of previous models, focusing on minimising the loss function while controlling model complexity 
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to prevent overfitting. According to research [24] extreme gradient boosting (XGBoost) was the best-

performing algorithm for crop prediction with the highest R^2 score of 84.79, which outperformed all other 

algorithms in the study. The highest R^2 score by XGBoost was 0.92 in the month of April 2022. A study 

[25] aimed at predicting maize yield and Nitrogen loss from soil using data from seven locations in the US 

Midwest over 5-7 years and concluded that XGBoost had 3rd highest R^2 score among all algorithms used in 

the study. However, XGBoost had the highest R-RMSE in predicting N-Loss at 98.3%. Similarly [26] aimed 

at predicting crop yield using meteorological data and remote sensing data from moderate resolution imaging 

spectroradiometer (MODIS) and it was concluded that XGBoost had the best accuracy in the study with an 

R^2 score of 0.845. However, a research [27] aimed at predicting corn yield in USA county-wise from the 

year 2000-2018 XGBoost did not perform well as it had one of the highest RMSE scores among all the 

algorithms used. Similarly [28] was conducted on nine features from remote sensing satellites and ML 

algorithms were applied month wise out of which XGBoost’s performance was not outstanding with very 

high R^2. 

 

2.2.5. Long short-term memory 

It is a specific type of recurrent neural network (RNN), that excels at handling sequential data (time 

series) by learning long-term dependencies. LSTMs utilize memory cells with gates to control information 

flow, allowing the network to retain relevant information for extended periods. A study [29] was aimed at 

predicting winter wheat yield used a Bayesian optimization-based LSTM model which concluded that the 

proposed model performed the best compared to all other models in the study with a R^2 score of 0.82. 

Another study [30] performed over the region of Punjab, India to predict wheat crops showed that RNN with 

LSTM outperformed all other algorithms in the study by a considerable margin. Similarly, the study [31] was 

executed over a dataset consisting of meteorological data and soil and crop data and compared different 

models in the study. LSTM performed the best among all other models with a marginal difference with an 

accuracy of 86% in predicting yield. Another study [32] also showed that Stacked LSTM performed the best 

out of all algorithms considered for the study with weather variables and had an R^2 score of ~0.732. This 

shows that LSTM can produce promising results for crop yield prediction. 

 

2.2.6. Convolutional neural networks 

CNNs are specialized ANN architectures designed for processing grid-like data, particularly images. 

CNNs efficiently extract spatial features through convolutional layers with learnable filters and pooling 

layers for dimensionality reduction. A research [33] aimed to make crop yield prediction using CNN-RNN 

performed well outperforming all other algorithms used in the study. Similarly, another study [34] aimed at 

predicting soybean yields also showed CNN performed well when combined with LSTM the CNN-LSTM 

model produced the best RMSE compared to all other models in the study. Another study [35] aimed at 

predicting crop yield using satellite images in the US showed that the CNN-LSTM model had an R^2 score 

of 0.91. Similarly [36] authors also showed that CNN+RNN+2FFNN produced the highest correlation 

coefficient 0.9183. This shows that if the right data is obtained CNN in combination with other networks can 

be very accurate in predicting crop yield. 

 

 

3. EVALUATION METRICS 

3.1.  Regression metrics 

Regression is a supervised ML technique that is used to predict continuous values. It plots a best-fit 

line passing through the data. Crop yield prediction is typically a regression task, where models predict 

continuous values (yield in tons per hectare). No model is perfect and there is always a scope of some error. 

Regression metrics help in evaluating the models. Here are the key metrics for evaluating regression models: 

RMSE measures the average difference between predicted and actual yield values. Lower RMSE indicates 

better model performance. MAE calculates the average absolute difference between predicted and actual 

yield values. R-squared (R²) metric represents the proportion of variance in the actual yield data explained by 

the model's predictions. A value closer to 1 indicates a better fit. 

 

3.2.  Classification metrics 

Classification tasks are also part of supervised ML and are typically used for categorising data by 

predicting its correct label. In some cases, models might predict yield categories (low, medium, high) instead 

of continuous values. Here are the relevant evaluation metrics used to evaluate classification algorithms: 

Accuracy metric simply measures the percentage of correctly classified yield categories. F1-score metric 

considers both precision (proportion of true positives among predicted positives) and recall (proportion of 

true positives identified by the model). An F1-score closer to 1 indicates better model performance, 
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especially for imbalanced datasets where some yield categories might be less frequent. Among the 80 papers 

considered in our review four classification metrics were used F-Score, recall, precision, accuracy a total 20 

times and regression metrics were used 135 times in total which consisted of MSE, RMSE, MAE, R^2, 

MAPE, relative root mean squared error (RRMSE), and R Score. 

 

 

4. RESULTS AND DISCUSSION 

For the present review, we have considered both conference and journal articles to ensure a 

comprehensive analysis of the existing literature. To maintain the quality and relevance of the review, we 

applied a rigorous inclusion and exclusion criteria, based on parameters such as relevance of studies to the 

theme, and alignment with the objectives of our study. We have finalised 67 journal articles and 13 articles 

from conferences i.e., 84% from journals and 16% from conferences as represented in Figure 3. 

 

 

 
 

Figure 3. Journal vs conference papers 

 

  

4.1.  Research questions 

4.1.1. RQ1: what are the state-of-the-art techniques used? 

State-of-the-art techniques can be judged based on the most used techniques in recent publications 

and the techniques or models that tend to perform the best in various studies to predict crop yield production. 

In the study [37] concluded that random forest regressor outperformed all other supervised learning models 

included in the study. Another study [38] that was done on Soyabean crop concluded that the best-performing 

model was RNN in the study. A similar study [39] showed the reliability of making significant predictions. 

The study [31] also compared various models and concluded that LSTM outperformed all other models in the 

study. Another study [40] used an optimised LSTM approach to receive a high accuracy in prediction. The 

study [41] carried in region of China on winter wheat also showed that LSTM performed the best among all 

other models included in the study. The researchers [29] that used Bassein optimizer with LSTM performed 

the best among all models. Considering the discussed studies and other detailed studies that we compared in 

this review, we can infer that state of art algorithms used are ensembled tree models like decision tree, 

random forest, XGBoost and LSTM, RNN, and CNN are also used that usually tend to perform better 

compared to the classic ML models. 

Figure 4 shows the number of times these algorithms were used in all the considered studies. 

random forest emerged as the most frequently employed algorithm across 34 studies. Following closely 

behind were SVM, ANN, LSTM, least absolute shrinkage and selection operator (LASSO), decision tree 

regression, linear regression, CNN, and gradient boosting regression, with usage counts of 20, 16, 14, 14, 13, 

13, 10, and 10 studies, respectively. The diversity of algorithms indicates the variety of tasks performed in 

the research. The others in the below figure consisted of Bayesian Ridge, R-CNN, ACNN-BDLSTM, light 

use efficiency (LUE), bayesian ridge (BR), Huberg regression, long short-term memory-Gaussian process 

(LSTM-GP), wavelet convolutional neural network (W-CNN), radial basis function neural network (RBF-

NN), cat boost regression, Res-NET 2D, 3D, ABR, DCNN, multiple logistic regression, temporal 

convolutional neural network (TCNN), CNN-RNN, convolutional neural network-Gaussian process (CNN-

GP), multi-view gated Fusion (MVGF), and adaptive boosting (ADA Boost) each being used a single time in 

our selected papers and collective count being 19. 
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Figure 4. Count of algorithms 

 

 

4.1.2. RQ2: which among machine learning and deep learning is better for making yield predictions? 

A study [42] that compared SVR, partial least squares (PLS) regression, random forest regression 

(RFR) and DNN showed that DNN outperformed all other models in the study. Another study [38] done on 

soybean crop compared various ML and DL models such as ADA Boost, DNN, least absolute shrinkage and 

selection operator, random forest, and SVM out of which DNN outperformed all the models. The study [43] 

which included DNN compared various models out of which SVR and KNN outperformed all other models. 

This happened due to the small dataset used to train the model since DNN is more sensitive to the amount of 

data fed into it. A similar study [41] which included LASSO, random forest, and LSTM concluded that 

LSTM performed the best among all studied models in predicting winter wheat yield in China. The study 

[18] that compared DL models such as DNN, CNN, LSTM, and random forest showed that DNN performed 

best among the compared models. The research work [44] showed that XGBoost performed better than CNN 

and LSTM due to small dataset again showing that DL models require a large dataset. Another study [30] 

conducted over the region of Punjab, India on Wheat crop compared RNN and LSTM with ANN, random 

forest and multivariate Linear regression. RNN and LSTM outperformed the classical ML algorithms with a 

large margin. Another study [32] that also showed that stacked LSTM outperformed other ML models 

included in the study such as LASSO and SVR. Another study [36] that used ensembled DL models also 

showed that CNN-RNN+ 2Feed forward neural network outperformed linear regression, XGBoost, random 

forest with considerable difference in testing accuracy. While it can be said that there is no definitive answer 

as to which ML performs best. It can be concluded from the present literature that the performance of the 

models majorly depends on the dataset that is being used and more over the size of dataset. In general when 

there is large dataset available DL algorithms tend to perform better and when there is comparatively a 

smaller dataset ML tend to perform better for making crop yield predictions. 

 

4.1.3. RQ3: what are matrices used for model evaluation? 

Evaluation metrics are an important aspect of any study as these serve as the parameters for 

evaluating how well a model performs. The selection of evaluation metrics depends on the objective of the 

study however, the few most used metrics for crop yield prediction are RMSE, R^2, and MAE. These are 

used mostly in regression tasks. While RMSE is good to compare models on the same dataset this is not the 

perfect parameter to compare models trained on different datasets as RMSE can vary and doesn’t have a 

fixed range. For comparison of models from different studies, R^2 value is used because the value ranges 

from 0 to 1, 1 being a perfect model. Studies often use more than one evaluation metric for model evaluation 

to give a better idea for comparison such as [45] comparing 4 models on all three parameters to predict the 

yield. Authors have similarly [18] made use of R^2 and RMSE to evaluate predictions made on wheat crops. 

The Figure 5 shows the frequency of evaluation metrics used in the paper. The RMSE is the most used 

evaluation metric followed by R^2 and MAE. 
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Figure 5. Evaluation metrics used in papers 

 

 

4.1.4. RQ4: what are the data sources? 

Data sources primarily depend upon the region of study and the type of crop being studied. Crop 

largely depends upon meteorological data such as rainfall, temperature, and humidity. National Oceanic and 

Atmospheric Administration (NOAA) which is a part of the U.S. Department of Commerce stores a wide 

range of meteorological datasets majorly from the U.S. Territories and waters. Studies such as [20], [46] 

conducted over the U.S make use of this service. Similar to NOAA countries have their own datacentre to 

monitor and collect data for research such as the study [47] conducted on Columbia used a dataset obtained 

from the Consultation and Download of Hydrometeorological Data system of the Institute of Hydrology, 

Meteorology and Environmental Study of Columbia, Ministry of Agricultural and Rural Development. 

Another study [48] conducted over Tamil Nadu, India used the Department of Economics and Statistics, 

Government of Tamil Nadu. Similar studies [49], [50] also used Indian government sources to obtain data. 

The yield data of crop particularly is obtained from the United States Department of Agriculture such as in 

the studies [34], [51]-[56].  

Remote sensing data is actively used to monitor crops. Among our selected studies satellite data was 

the major source of remote sensing data with some studies also using unmanned aerial vehicle (UAV). For 

the satellites, MODIS was used majorly for the calculation of Vegetation Indices in 58% of the studies such 

as [14], [19], [26], [35], [44], [51], [57]-[61]. Followed by Landsat 8 satellite used in the studies  

[13], [57], [62], [63] and Landsat 7 used in the studies [35], [62]. This was followed by the use of other 

satellites such as Sentinel 2 [23], [35], [52], [57], [62], Sentinel 2B and Sentinel 2B [64], World View-3 and 

UAV [42], Landsat 2, Landsat 2 (L2A) [65], and Sentinel 2L1C [11]. The Figure 6 represents the satellite 

sources used in the studies. 

  

 

 
 

Figure 6. Type of satellites used in the study 

  

 

4.1.5. RQ5: what are the most used features? 

Meteorological data is crucial for making accurate predictions. The type of meteorological feature 

depends on the crop being studied. However, there are a certain group of most commonly used features we 

have encountered in our selected papers such as temperature. This was the most used feature among all the 

selected studies such as [14], [19], [41], [47], [52], [59], [65]-[75] followed by precipitation in the studies 

[15], [17], [18], [21], [33], [52], [54], [59], [72], [74]-[76], rainfall [12], [14], [48], [67], [69], [70], [77]-[79], 

vapour pressure [19], [80] and other meteorological data such as humidity, wind speed, humidity. Soil 
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characteristics such as Nitrogen, Phosphorus and potassium were most used soil features [22], [33], [41], 

[65], [68], [69], [81]-[83] followed by Soil Ph [22], [41], [50], [54], [76], [82], [84]. Among the vegetation 

indices obtained from satellite images normalized difference vegetation index (NDVI) [11], [13], [14], [19], 

[23], [26], [29], [57], [58], [65], [68], [85]-[87] was the most used vegetation index followed by Enhanced 

Vegetation Index (EVI) [13]-[15], [18], [57], [58], [60], [78], [88], and LAI [23], [29], [56], [62], [75]. 

Figure 7 shows the total count of the most used features used in the selected papers. 

 

 

 
 

Figure 7. Count of features 

 

 

4.1.6. RQ6: which among ensembled models and traditional machine learning and deep learning 

perform better? 

Ensembled models are a way of integrating more than one classical model to get advantages of both 

and increase the accuracy of the prediction. The paper [52] demonstrates the effectiveness of ensemble models 

that combine CNN and DNN in predicting corn yields. The ensemble models outperformed individual ML 

models, suggesting that the combination of different types of neural networks can improve prediction 

accuracy. Similarly, the research [27] also advocates for ensemble models in corn yield forecasting. The 

optimized weighted ensemble and the average ensemble were found to be the most precise models. Another 

study [87] used ensemble tree methods, specifically boosted regression trees (BRT) and random forests, for 

early prediction of winter wheat yield. The results suggest that ensemble tree methods can effectively handle 

complex interactions between variables and improve prediction accuracy. The study [89] focused on 

predicting sugarcane yield in Brazil using NDVI time series and neural networks ensemble and also suggested 

that ensemble methods can be effective in different geographical locations and for different crops. 

From these studies, it seems that ensemble methods, whether they are based on classical ML 

algorithms or DL algorithms, show superior performance in crop yield prediction. The ensemble methods can 

effectively combine the strengths of multiple models to improve prediction accuracy and precision. However, 

it’s important to note that the choice between ensemble and classical ML or DL algorithms may depend on 

the specific problem and data at hand. While ensemble methods have shown promising results in these 

studies, classical ML or DL algorithms might perform better in other scenarios. 

 

4.1.7. RQ7: what are the limitations and future directions? 

With advancing technology of satellites, it has become easier to monitor crops and obtain data for 

making predictions. However, a large model that heavily relies on satellite data is still very difficult to run 

because of the very high-resolution satellite images that are typically a couple of gigabytes, and they have to 

be collected for a certain period to make a historic dataset for predictions making it costly to run. This has 

however been made a little easier by Google Earth Engine which uses cloud computing for running such 

heavy computations. But with large study areas, this is still a problem as platforms like Earth Engine have 

their limitations such as time out limit, and limited size of particular satellite Images for computation at a 

time. For very large study areas, it’s necessary to buy high cloud storage on platforms like Earth Engine for 

making calculations or work on very high-end machines which are typically only in Labs. For researchers 

looking to use these Satellite images directly, they have to be downloaded to perform operations using 

various frameworks such as Geospatial Libraries and OpenCV. Historic images of an area for a couple of 

years can easily go over a few hundred gigabytes and more. This requires very high storage capacity and very 

advanced and capable GPUs for image feature extractions. The cost reduction can be looked as a joint effort 
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of researchers in the field that can set up labs dedicated to crop predictions and other related work to crops, to 

grow the community and help researchers collaborate which would in turn reduce the cost. 

In developed countries like The United States and Canada the Agriculture sector is very organised 

that the government is able to release a high-resolution crop data layer. The crop can be identified through 

CDL without any other preprocessing. This is very useful as it allows researchers to eliminate the 

unnecessary fields or roads and buildings being considered in the dataset. However, there are only a few 

countries that have been able to do this. In developing countries crop data layers are still unattainable because 

of mixed agricultural practices and lack of monitoring by the government which makes it difficult for 

researchers to track down the exact area of the cropland that is to be studied. This makes crop data layers a 

very crucial part of studies related to crops as they are responsible for the precision of the study as satellite 

images being used directly cannot provide as a satellite image contains information of not only the cropland 

but also of surrounding uncropped area that is not needed for study. While it is difficult to make crop data 

layers in developing countries, efforts can be made by starting to work with small areas that cover a 

particular state, district or county and further be expanded to other areas of the country. This, however, would 

require a lot of groundwork as well to organise the agricultural practices so tracking crop fields can be made 

easier for a particular crop. Multi-source data can also be experimented including different soil features, 

water, and climate for each crop so the researcher can make informed decisions as to what exact features 

impact the crop that is being studied. The more relevant VIs such as perpendicular vegetation index (PVI), 

soil-adjusted vegetation index (SAVI), atmospherically resistant vegetation index (ARVI), solar-induced 

fluorescence (SIF), and difference vegetation index (DVI) can also be used to further for making accurate 

studies. 

Comparing this study with similar reviews, according to a review [7], the most frequently used 

features include temperature, soil type, and rainfall, with neural networks and linear regression being the 

most common algorithms, followed by random forest and SVM. Common evaluation metrics were RMSE 

and RR^2. Another study [6] noted LSTM and CNN-based approaches as prevalent DL techniques, primarily 

using the MODIS satellite, followed by Landsat 8 and Landsat 7, with VIs, meteorological data, and yield 

information as key features. Additionally, [8] identified VIs and satellite data, alongside historical yield and 

climate data, as frequently used inputs, with random forest and ANN as top algorithms, followed by CNN, 

using RMSE, Accuracy, and R2R^2R2 for evaluation. Similarly, [9] observed images, precipitation, and 

actual yield as major features, with CNN, LSTM, ANN, and DNN as common algorithms, using RMSE as 

the primary evaluation metric. Another review [10] showed CNN and RNN as the most-used algorithms. In 

comparison, our study highlights temperature and precipitation as primary features, MODIS and Landsat 8 as 

primary satellites, with RMSE and R^2 as main evaluation metrics, and random forest and SVM as prevalent 

models, with CNN and LSTM as state-of-the-art techniques. Table 3 represents the comparison among 

randomly selected papers. 

 

 

Table 3. Comparison with similar work 
Ref Paper focus Findings 

[46] Improving crop yield prediction in 

Morocco. 

ML models outperformed statistical models inmaking predictions. ML 

models achieved R^2 ranging from 0.76 to 0.84. 
[52] County level corn yield prediction using 

CNN-DNN in US corn belt. 

The model made 2019 prediction with RMSE of 866 kg/ha. 

[76] Improving crop yield prediction in China. Proposed a model that predicts pre season and in season prediction for 5 
crops. 

[63] Silage maize yield prediction using time 

series dataset from NDVI. 

BRT had highest R value of 0.87. 

[28] Proposed a framework for wheat yield 

prediction. 

LASSO received highest performance with R^2 of 0.93. 

 

 

The findings of the research questions in this study highlight that, leading crop yield prediction 

models include ensemble techniques like random forest and XGBoost, alongside DL approaches such as 

LSTM and CNN. Each model type offers distinct strengths depending on dataset size and complexity. 

Ensemble and neural network models work especially well with larger datasets due to their ability to capture 

complex patterns, while traditional ML models can perform effectively with smaller datasets. Metrics like 

RMSE, R², and MAE are commonly used to evaluate model accuracy and reliability. Data sources span 

meteorological information from organisations like NOAA, where temperature is a frequently used feature, 

to satellite-based remote sensing data with vegetation indices like NDVI and EVI, which are essential for 

monitoring crop health. However, challenges persist, such as the high computational cost of processing 

satellite imagery and limited crop data availability in developing regions. Future research should focus on 

improving model efficiency, creating crop-specific data resources in rural areas, and fostering collaborations 
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to support global crop prediction efforts. This summary provides researchers with insights into the latest 

methods and practices, helping them identify best practices for enhancing prediction accuracy and building 

on existing advancements. 

 

 

5. CONCLUSION 

This study concludes that data sources are often specific to the area being studied, with 

meteorological data frequently obtained from organizations like NOAA and soil data from Food and 

Agriculture Organization (FAO). Satellites such as MODIS are widely used for calculating vegetation indices 

like NDVI and EVI, while newer, high-resolution satellites like Landsat-8 provide improved precision. 

Efforts to develop crop data layers in various countries could make satellite data more accurate, especially in 

rural areas. Combining these vegetation indices with meteorological data, such as temperature, rainfall, 

humidity, and soil characteristics, creates robust datasets for crop yield prediction. Tree-based models like 

random forest excel with smaller datasets due to their ability to combine weak and strong learners, while 

SVM are effective in high-dimensional spaces and for modelling non-linear boundaries. For larger datasets, 

DL models like ANN and CNN-LSTM outperform traditional ML models by capturing complex patterns in 

data. However, challenges remain, including the high cost of processing high-resolution satellite imagery and 

limited access to crop data in developing regions. Future advancements in satellite and cloud computing 

technology could help overcome these challenges, while collaborative labs and localized studies may 

improve data accessibility. Expanding datasets to include advanced vegetation indices and multi-source data 

could further enhance prediction accuracy and support the development of scalable, generalized models for 

diverse crops and regions. 
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