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 Wood species identification is a crucial task in various industries, including 

forestry, woodworking, and conservation. Traditional methods rely on 

manual expertise, which can be time-consuming and error prone. Hence, an 

automatic wood species recognition system is developed in this study using 

deep learning (DL) models. In this study, three deep convolutional neural 

network (CNN) architectures, SqueezeNet, GoogLeNet, and ResNet-50 was 

tailored for wood species classification. The accuracy of the DL models was 

evaluated in recognizing fifty different wood species. Additionally, the wood 

species images were altered using JPEG Compression, Gaussian Blur, Salt 

and Pepper, and Speckle noises to assess the models' performance in 

identifying the wood species from the distorted images. Results show that 

the ResNET-50 based wood recognition system is the most accurate model 

to recognise the wood species. The implications of this research extend to 

forestry management, quality control in woodworking industries, and the 

preservation of endangered wood species in conservation efforts. 
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1. INTRODUCTION 

Wood is extensively utilized in the production of furniture, structures, and paper products. Various 

varieties of wood possess distinct features in terms of their origin, thickness, coloration, and texture. The 

various attributes of these qualities play a significant role in determining their optimal applications and 

economic worth. Misclassification may result in monetary losses due to the differences in the value and 

properties of each wood species [1], [2]. The selection of the appropriate wood species and quality is of 

utmost importance in construction, as it significantly impacts the materials utilized for constructing a roof 

truss. The utilization of inferior timber may result in the instability of the entire roof structure, potentially 

culminating in a disaster. Likewise, a range of wooden products, including furniture, requires the use of wood 

materials that meet specific quality standards [3]. Moreover, accurate species identification is crucial for the 

conservation of plant life [4], [5]. Despite international agreements, it has been found that some imported 

woods, such as rosewood (Dalbergia) and ebony (Diospyros), are still illegally logged [5]. Although the 

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) requires permits 

https://creativecommons.org/licenses/by-sa/4.0/
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to trade these species, regulating the logging trade remains challenging. Various tactics such as swapping the 

wood species labels, mixing the endangered with other woods and forged permits are employed to trade the 

illegally logged wood [5]. Therefore, it is important to identify various wood species precisely [6]. 

Conventionally, trained human professionals are hired to recognise the wood species manually using 

botanical or dendrological characterization, as well as macroscopic and microscopic anatomical analysis  

[7]–[9] However, eye strain or lapses in concentration during manual visual inspections can lead to wood 

misclassification, causing substantial financial losses [4], [10], [11]. The advancement of technology has 

supported the work of humans that used to examine timber manually. The potential for error reduction can be 

achieved through the implementation of automated vision recognition systems on wood species. Moreover, 

the system can be used by various people, not only certain expertized people on wood but also beginners in 

the world of forestry. 

The emergence of machine vision and image processing technologies presents a promising avenue 

for automating the wood identification process and improving its accuracy and efficiency. Recent research 

has explored the application of various image processing techniques and machine learning (ML) algorithms 

to the problem of wood species recognition. Computer vision-based wood identification systems have been 

developed that utilize expert knowledge of wood anatomy to detect and extract relevant features from 

images. These features, such as the patterns of wood grain, vessel distribution, and cellular structure, are then 

used to train classification models to recognize different wood species. 

In general, wood species recognition system can be divided systematically into conventional ML 

and deep learning (DL). In conventional ML, feature extraction and classification are separate processes. 

Feature extraction involves identifying important features from images, while classification involves learning 

these features and categorizing query images [12]. One such approach is the use of histogram of oriented 

gradient (HOG) features proposed by Sugiarto et al. [13] to capture the textural characteristics of wood 

samples, coupled with support vector machine (SVM) classifiers to categorize the wood species. Tou et al. 

[14] and Khalid et al. [15] proposed a wood recognition system which extracted the grey-level co-occurrence 

matrices (GLCM) features and classified the features using the multi-layer perceptron (MLP) technique [15], 

[16]. Khalid [16] proposed wood identification algorithm that extracted wood features using basic grey level 

aura matrix (BGLAM) and statistical properties of pores distribution (SPPD) techniques, then the features 

were classified using the linear discriminant analysis (LDA) and k-nearest neighbour (KNN) models. 

Recently, Yang et al. [17] had used the ML approach for wood species recognition by extracting wood 

features using local binary pattern (LBP) and GLCM techniques and these features were then classified using 

back propagation neural network (BPNN) and SVM models. However, these traditional ML approaches often 

require significant domain expertise and manual feature engineering, which can be time-consuming and 

labour-intensive. To overcome the limitations of traditional ML, researchers have also explored the use of 

DL for wood species recognition [12]. 

DL models, such as convolutional neural networks (CNNs), can automatically learn relevant features 

from image data without the need for manual feature engineering. These DL models have shown promising 

results in accurately recognizing wood species from images, outperforming traditional ML approaches. Several 

studies had proposed ResNet based model for wood species recognition [18]–[21]. Lens et al. [22] had 

proposed GoogLeNet, Alexnet, Visual Geometry Group (VGG) models to identify the wood species. 

Recently, Bello et al. [23] proposed wood species identification system using hybrid method which is Mask 

RCNN-ResNet approach. Based on these studies, the use of DL-based systems shows promising results in 

microscopic wood identification, particularly for the analysis of fibrous materials. Therefore, in this paper, 

three DL models namely, SqueezeNet, GoogLeNet, and ResNet-50 are investigated in terms of their accuracy 

in recognising the 50 wood species. Furthermore, these wood species were then distorted with JPEG 

Compression, Gaussian Blur, Salt and Pepper, and Speckle noises to examine the accuracy of these three DL 

models in identifying distorted wood images. 

 

 

2. METHOD 

The DL-based wood species recognition system comprises several steps, which are data input, 

training, testing, and output as shown in Figure 1. Firstly, wood images database will be generated, and it will 

be used as the input for both training and testing. The dataset will be trained using DL models, namely 

SqueezeNet, GoogLeNet, and ResNet-50 on MATLAB 2023a with different ‘Epoch’, ‘Batch Size’, and 

‘Learning Rate’ settings. Testing will then be done to check the accuracy of the models with variations of 

settings. Lastly, the accuracy of the tested models will be compared. 
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Figure 1. Flow diagram of the DL-based wood recognition system 
  

  

In the context of a DL-based wood recognition system, training and testing databases are critical for 

constructing an accurate and robust model [24]. In this study, the database was generated using 50 different 

wood species images obtained from a public wood database: https://www.wood-database.com/ [25]. The 50 

wood species are Bulnesia arborea, Euxylophora paraensis, Julbernardia pellegriniana, Dalbergia retusa, 

Berchemia zeyheri, Borassus flabellifer, Juglans cinerea, Carya tomentosa, Diospyros malabarica, Dipteryx 

odorata, Entandrophragma cylindricum, Eucalyptus camaldulensis, Fraxinus nigra, Dalbergia cultrate, 

Guibourtia ehie, Gleditsia triacanthos, Hardwickia binate, Hevea brasiliensis, Ilex opaca, Ilex mitis, Libidibia 

paraguariensis, Pouteria spp., Krugiodendron ferreum, Koompassia malaccensis, Laburnum anagyroides, 

Liriodendron tulipifera, Magnolia grandiflora, Swartzia spp., Nothofagus cunninghamii, Notholithocarpus 

densiflorus, Ostrya virginiana, Olneya tesota, Cordia alliodora, Paulownia tomentosa, Quercus velutina, 

Dipterocarpus spp., Roupala montana, Senna siamea, Swartzia cubensis, Turraeanthus africanus, Tilia 

americana, Ulmus americana, Umbellularia californica, Vouacapoua americana, Vachellia erioloba, 

Weinmannia trichosperma, Zygia racemosa, Zanthoxylum flavum, Diospyros virginiana and Oxandra 

lanceolata. Each wood species is distorted using different distortion methods such as Gaussian White Noise, 

Salt and Pepper, Speckle, Gaussian Blur, Motion Blur, and JPEG compression at five levels. Table 1 explains 

the five levels of the distortions applied to the wood images. Eventually, there are a total of 1,800 images for 

the wood images dataset which comprises of 50 original (noiseless) and 1,750 distorted wood species images. 

Figures 2(a) and (b) show samples of original and distorted images in the dataset. The images are labelled 

with their respective species names by storing the original image and distorted images of each species in a 

respective folder. As there are 50 species, the dataset consists of fifty folders in total. 
 

  

Table 1. Explanation of distortions applied 
Distortion type Distortion levels 

Gaussian white noise Mean, 𝑚=0.01, 0.02, 0.03, 0.04, and 0.05. 

Salt and pepper Noise density, 𝑑=0.01, 0.02, 0.03, 0.04, and 0.05. 

Speckle Variance, 𝑣=0.1,0.2,0.3,0.4, and 0.5. 

Gaussian blur standard deviation, 𝜎=0.5,1.0,1.5,2.0, and 2.5. 

Motion blur length of the motion, 𝑙𝑒𝑛=2,4,6,8, and 10 with the angle of motion in degrees in a counterclockwise 

direction, 𝜃=0. 

and (𝑙𝑒𝑛, 𝜃)=(2,36), (4,72), (6,108), (8, 144) and (10, 180).  

Jpeg compression Quality factor=10, 20, 30, 40, and 50. 

 

 

Three DL architectures, SqueezeNet, GoogLeNet, and ResNet-50 are trained to recognise the wood 

species using MATLAB 2023a software in this study. SqueezeNet [26], GoogLeNet [27], and ResNet-50 

[28] are CNN models with a depth of 18, 22, and 50 layers, respectively. The input sizes of the three 

architectures are also different where GoogLeNet and ResNet-50 have an input size of 224×224, while 

SqueezeNet has an input size of 227×227. Table 2 explains the DL based architecture used in this study. 

There are several steps to train the models in MATLAB 2023a. Firstly, the respective DL model on 

deep network designer [29] is chosen. Then, the architecture of the selected model needs to be fine-tuned by 

replacing the fully connected layers of the pre-trained models with new layers to accommodate the training 

class to fifty since there are fifty wood species. Next, the wood image dataset is loaded into the model and the 

dataset is split randomly into 70% for training, 30% for testing and 80 % training, 20% for testing. Then, 

training parameters such as learning rate, batch size, and epoch were set. In this study, four sets of training 

parameters are used to identify the most suitable parameters to recognise the wood species accurately. The 

training parameter sets used in this study are shown in Table 3. The performance of the trained model is 

evaluated based on the accuracy rate of the model trained with these parameters. 
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(a) 

 

 
(b) 

 

Figure 2. Sample of original image and distorted images of; (a) Hardwickia binate and (b) Hevea brasiliensis 

 

 

Table 2. Explanation on DL models 
DL model Explanation 

SqueezeNet A small CNN architecture where it is 510 times smaller than AlexNet and requires 50 times fewer parameters 

compared to AlexNet [26]. The layers of this model are input layer, convolution layer, fire modules such as 

squeeze layer and expand layer, pooling layers, final convolution layer, dropout layer, and output layer. 
GoogLeNet Each module has bottleneck and parallel convolutional filters to boost computing efficiency and decrease input 

detections. A deeper network compared to AlexNet that has 12 times less parameters [27]. The layers of this 

model are input layers, inception blocks such as 1x1, 3x3, and 5x5 convolution branches, and max pooling 
branch, pooling layers, and final layers. 

ResNet-50 Popular backbone that performs well for a variety of tasks, such as instance segmentation and object detection; 

residual block and skip connection designs that enable effective optimisation even with very deep networks [28]. 
The layers of this model are input layer, convolution layer, max pooling layer, residual blocks, average pooling 

layer, fully connected layer, softmax layer, and output layer. 

 

 

Table 3. Training parameter set 
Training set Parameters 

Epoch Batch size Learning rate 

1 50 16 0.001 

2 100 16 0.0001 
3 100 16 0.001 

4 100 32 0.001 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Performance of the deep learning architectures 

In this study, three DL architectures, SqueezeNet, GoogLeNet, and ResNet-50 were trained with 

four sets of training parameters (epoch, batch size and learning rate) to recognise the wood species 

automatically. This forms twelve DL models and their performance was evaluated in terms of accuracy rate 

of the wood species recognition. Tables 4 and 5 depict the accuracy of the twelve models for 70% training, 

30% testing and 80% training, 20% testing, respectively. The average accuracy of the SqueezeNet, 

GoogLeNet and ResNet-50 models for 70% training, 30% testing are 98.25, 99.21 and 99.63 while for 80% 

training, 20% testing, the average accuracy was recorded as 99.38, 99.76, and 99.82, respectively. This shows 

that the accuracy rate for all the twelve models is higher when more dataset is used to train the models. 

However, the time taken for the training is longer for 80% training set compared to 70% training set. The 

accuracy of the model ranges from 98 to 99% which also shows that they are capable to recognise the wood 

species accurately even with the images being distorted. Nevertheless, with an accuracy of nearly 100%, 

ResNet-50 surpassed SqueezeNet and GoogLeNet, according to Tables 4 and 5 accuracy data. As a result, in 

comparison to the other two architectures, ResNet-50 is the best architecture for identifying wood species. In 

contrast to SqueezeNet and GoogLeNet, ResNet-50 requires more training time because of its deeper model 
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than the other two. Twelve DL models employed in this study which obtained the highest accuracy rate of 

were compared with the state-of-the-art DL model-based wood species recognition systems and the data is 

presented in Table 6. All the twelve trained models were pre-trained using 80% and 20% of training and 

testing wood species datasets, respectively. Based on the data shown in Table 6, none of the state-of-the-art 

models were trained and tested with distorted wood species images and their accuracy rate is also lower 

compared to the accuracy rate of DL models trained in this study. 

 

 

Table 4. Accuracy of the trained DL model and time taken to train the models for 70% training and 30% 

testing dataset splitting 
Model SqueezeNet GoogLeNet ResNet-50 

Epoch 50 100 100 100 50 100 100 100 50 100 100 100 

Batch size 16 16 16 32 16 16 16 32 16 16 16 32 

Learning rate 0.001 0.0001 0.001 0.001 0.001 0.0001 0.001 0.001 0.001 0.0001 0.001 0.001 
Accuracy (%) 98.09 98.09 98.09 98.73 99.27 99.10 99.20 99.27 99.80 99.09 99.82 99.82 

Error (%) 1.91 1.91 1.91 1.27 0.73 0.90 0.80 0.73 0.20 0.91 0.18 0.18 

Time taken (minutes) 7.37 13.22 13.02 11.62 8.92 17.67 18.50 14.63 13.70 28.73 28.07 27.15 

 

 

Table 5. Accuracy of the trained DL model and time taken to train the models for 80% training and 20% 

testing dataset splitting 
Model SqueezeNet GoogLeNet ResNet-50 

Epoch 50 100 100 100 50 100 100 100 50 100 100 100 
Batch size 16 16 16 32 16 16 16 32 16 16 16 32 

Learning rate 0.001 0.0001 0.001 0.001 0.001 0.0001 0.001 0.001 0.001 0.0001 0.001 0.001 

Accuracy (%) 99.71 98.29 99.71 99.82 99.80 99.71 99.71 99.80 99.83 99.80 99.83 99.83 
Error (%) 0.29 1.71 0.29 0.18 0.20 0.29 0.29 0.20 0.17 0.20 0.17 0.17 

Time taken (minutes) 7.63 15.40 14.58 13.48 10.87 20.85 19.88 16.52 17.38 32.40 32.60 33.10 

 

 

Table 6. Comparison of the DL architecture used in this study with the state-of-the-art DL models-based 

wood species recognition system 
DL-model Trained with 

distorted 

images 

Tested with 

distorted 

images 

Accuracy 

rate (%) 

Error 

(%) 

3-ConvNet [30] No No 95.80 4.20 

LeNet [31] No No 99.30 0.70 

ResNet101 [22] No No 96.40 3.60 
Residual convolutional encoder network [19] No No 98.70 1.30 

InceptionV4_ResNetV2 [32] No No 92.60 7.40 

DenseNet [33] No No 98.80 1.20 
VGG16 [34] No No 88.70 11.30 

MobileNetV2 [35] No No 98.13 1.87 

Densenet121 [35] No No 99.52 0.48 
SqueezeNet (epoch=50, batch size=16, learning rate=0.001) Yes Yes 99.71 0.29 

SqueezeNet (epoch=100, batch size=16, learning 

rate=0.0001) 

Yes Yes 98.29 1.71 

SqueezeNet (epoch=100, batch size=16, learning rate=0.001) Yes Yes 99.71 0.29 
SqueezeNet (epoch=100, batch size=32, learning rate=0.001) Yes Yes 99.82 0.18 

GoogLeNet (epoch=50, batch size=16, learning rate=0.001) Yes Yes 99.80 0.20 

GoogLeNet (epoch=100, batch size=16, learning 
rate=0.0001) 

Yes Yes 99.71 0.29 

GoogLeNet (epoch=100, batch size=16, learning rate=0.001) Yes Yes 99.71 0.29 

GoogLeNet (epoch=100, batch size=32, learning rate=0.001) Yes Yes 99.80 0.20 
ResNet-50 (epoch=50, batch size=16, learning rate=0.001) Yes Yes 99.83 0.17 

ResNet-50 (epoch=100, batch size=16, learning rate=0.0001) Yes Yes 99.8 0.20 

ResNet-50 (epoch=100, batch size=16, learning rate=0.001) Yes Yes 99.83 0.17 
ResNet-50 (epoch=100, batch size=32, learning rate=0.001) Yes Yes 99.83 0.17 

 

 

3.2.  Performance of the proposed deep learning based wood species recognition system 

The accuracy rate of the trained models was further examined using fifteen wood images which 

comprises of Bulnesia arboreea, Euxylophora paraensis, Julbernardia pellegriniana, Dalbergia retusa and 

Berchemia zeyheri wood species images which were distorted randomly by one of the distortion types, 

Gaussian White Noise, Salt and Pepper, Speckle, Gaussian Blur and JPEG compression at different level 

compared to the one used to generate the training and testing dataset. For this task, six models were chosen 
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out of twelve trained models based on their higher accuracy rate (around 99.8%) in Table 6. The six models 

were: i) SqueezeNet (Epoch=100, Batch size=32 and Learning rate=0.001), ii) GoogLeNet (Epoch=50, Batch 

size=16 and Learning rate=0.001), iii) GoogLeNet (Epoch=100, Batch size=32 and Learning rate=0.001),  

iv) ResNet-50 (Epoch=50, Batch size=16 and Learning rate=0.001), v) ResNet-50 (Epoch=100, Batch 

size=16 and Learning rate=0.001), vi) ResNet-50 (Epoch=100, Batch size=32 and Learning rate=0.001). The 

image quality of the fifteen images were evaluated using a well-known Image Quality Assessment (IQA) 

metric, Feature Similarity Index Metric (FSIMc) [36]. FSIMc computes the quality score based on the features 

similarity between the test and its reference images. In this case, the reference image is a noiseless image 

which refers to the original wood image and test images are the fifteen distorted wood images. The FSIMc 

score ranges between 0 to 1 where a high FSIM value denotes great similarity between images, implying that 

the test image is having a high image quality as the original image. A low FSIM value, on the other hand, 

suggests that the test image is not as high quality as the original image. Table 7 displays the accuracy rate 

attained from the trained models. Referring to Table 7, the ResNet-50 model trained with Epoch=50, Batch 

size=16 and Learning rate=0.001 recorded the highest recognition accuracy, which is 96.38%, with the 

SqueezeNet model having the lowest accuracy rating of 87.80% when compared to the other models. This 

demonstrated once more that the distorted wood species images could be recognised by the ResNet-50 model 

accurately. Furthermore, it is discovered that for images with FSIMc scores less than 0.9, the accuracy rates 

for both the GoogLeNet and SqueezeNet models were lower. This shows that these models are not able to 

accurately recognise wood species images which have higher distortion levels. 

 

 

Table 7. Accuracy rate obtained from the DL trained models 
Wood 

species 

Distortion 

type 

Distortion 

level 

FSIMc Parameters DL model 

SqueezeNet GoogLeNet ResNet-50 

Epoch 100 50 100 50 100 100 
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001 

Batch size 32 16 32 16 16 32 

Bulnesia 
arboreea 

Gaussian 
white noise 

 

𝑚=0.027 0.882 Accuracy 
rate (%) 

88.50 92.10 92.30 97.30 97.24 97.15 

𝑚=0.034 0.765 87.20 92.00 92.00 98.34 98.31 95.10 

𝑚=0.041 0.653 87.00 91.20 91.50 96.54 96.50 96.50 

Euxylophora 

paraensis 

Salt & 

pepper 
𝑑=0.025 0.962 97.43 97.37 89.34 97.90 97.50 97.47 

𝑑=0.033 0.853 97.67 96.32 92.60 98.12 98.12 97.39 

𝑑=0.041 0.743 98.53 96.74 93.25 97.45 97.45 97.45 

Julbernardia 
pellegriniana 

Speckle 𝑣=0.27 0.779 67.30 86.30 86.50 93.25 93.20 92.50 

𝑣=0.36 0.749 60.50 82.50 82.50 93.58 93.55 89.55 

𝑣=0.45 0.724 54.90 80.10 80.30 94.15 94.10 90.36 

Dalbergia 

retusa 

Gaussian 

blur 
𝜎=1.1 0.951 96.45 95.67 82.45 95.75 95.70 95.69 

𝜎=1.4 0.710 97.21 92.59 86.73 97.60 97.60 95.92 

𝜎=1.7 0.656 96.50 95.78 94.25 96.70 95.83 95.79 

Berchemia 
zeyheri 

JPEG 
compression 

Quality 
factor=35 

0.992 94.19 94.56 95.40 95.56 95.52 95.50 

Quality 

factor=28 

0.989 95.43 94.23 93.60 95.80 95.60 94.75 

Quality 

factor=21 

0.9834 98.15 95.56 94.25 97.68 97.60 96.47 

Average of accuracy rate (%) 87.80 92.20 89.80 96.38 96.25 95.17 

 

 

4. CONCLUSION 

In this paper, a DL based wood species recognition system is proposed. Three DL architecture, 

SqueezeNet, GoogLeNet, and ResNet-50 were trained to recognize fifty wood species images. The models 

were trained with 1800 wood images which consists of 1,750 distorted and fifty original images. The images 

were distorted to train the models to recognize the wood species accurately even though the image is 

distorted. This is because it is difficult to obtain noiseless images due to the dusty environment in timber 

factories. The performance of the models was evaluated in terms of the accuracy of wood species 

recognition. Based on the results obtained, ResNet-50 based wood species recognition outperformed 

SqueezeNet, and GoogLeNet based wood species recognition models. This shows that the ResNet-50 model 

trained with Epoch=50, Batch size=16, and Learning rate=0.001 can recognize the wood species even though 

the wood images are noisy. The ResNet-50 based wood species recognition system can enable more efficient 

and accurate tracking of timber supply chains, helping to combat illegal logging and ensure sustainable forest 

management practices. This work can be future enhanced by training the models with more wood species 

images. Furthermore, more DL architectures such as EfficientNet-b0, DarkNet-53, and DarkNet-19 can be 

trained to recognize the wood species. 
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