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 Substrate height (Hs) is an important parameter that influences antenna 

propagation. This research designed a low-profile 28 GHz microstrip antenna 

on a polyimide substrate with varying Hs using CST Studio software. The 

simulated results and MINITAB software were used to develop regression 

model equations, which analyzed the impact of Hs variation on the antenna 

performance. The proposed models’ equations have indicated an increase in 

average responses of resonant frequency (Fr), percentage bandwidth (% BW), 

gain (G), return loss (RL), and efficiency (ƞ) as the Hs decreased. The antenna 

achieved a BW of 3.87 GHz at Hs 0.525 mm and 5.54 GHz at 0.025 mm, a G 

of 3.89 dBi at Hs 0.525 mm and 3.91 dBi at Hs 0.025 mm, and an ƞ of 94.19% 

at Hs 0.525 mm and 98.24% at Hs 0.025 mm. The antenna was fabricated and 

tested, and the experimental results were validated with the models’ equations. 

The thinner substrate resulted in an improvement in the antenna performance. 
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1. INTRODUCTION  

In recent years, wireless devices have become portable and require small antennas. Thus, substrate 

height (Hs) significantly impacts antenna portability and performance, as thinner substrate antennas are 

lightweight and portable [1]. The Hs employed propagation characteristics, such as electromagnetic field 

distribution with radiation efficiencies and resonating frequencies [2]. The relationship between the Hs 

variation and microstrip antenna performance is such that lower Hs generally perform better at high frequencies 

[3]. The lower Hs is applicable in higher-frequency applications, including a millimeter-wave (mm-wave) in 

the internet of things (IoT) and wearable devices [4]. Various substrates, including polyesters, textiles, and 

polymers with varying thicknesses and electrical properties, have been used in the antenna design [5]. 

However, the major challenge of designing a printable microstrip antenna is finding a suitable 

substrate and thickness with suitable dielectric constants. Changing the Hs affects the capacitance, effective 

dielectric constant, and inductive properties, causing a shift in the resonant frequency [6]. A substrate with a 

lower dielectric constant (𝜀𝑟=2.2, 3, or 4) achieved a wider bandwidth of the operating mm-wave frequency 

with a high gain, while a high dielectric constant of 𝜀𝑟=10.2 leads to an increase in surface wave loss and 

dielectric loss [7]. A polymer-based substrate such as polyimide (PI) has been considered for low-profile 

antennas due to its lightweight and better performance [8]. PI has a low dielectric permittivity with a reduced 

dielectric constant to improve circuit integration [9]. A printable antenna using a thin Hs exhibits a broad 
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frequency range and high performance [10]. A thin substrate has been reported to improve antenna bandwidth 

and efficiency at high frequencies due to its dielectric permittivity [11]. 

A study investigates the design of antennas by stacking four different types of substrates to improve 

the antenna performance, in which thinner substrates lead to better performance [12]. An antenna array with a 

thin-film substrate significantly enhanced gain with a compact size [13]. The PI thin substrate is low-cost 

compared to thicker substrates in producing a low-cost antenna [14]. A fabricated microstrip antenna on a thin 

PI substrate decreased antenna weight by up to 92% compared to a thicker substrate antenna [15]. A thin PI 

substrate improved antenna bandwidth for wideband applications [16]. A PI substrate with varying thicknesses 

is proposed in this research work due to its flexibility, lightweight, and low power consumption. This article 

applied regression modeling to investigate the effect of Hs variation on the antenna performance using the 

regression models and the models’ equations. 

Different regression models include nonlinear, linear, multiple linear, and polynomial regression 

models. The model design depends on the dependent and independent variables (x and y). The x variable 

predicts the response of y. Several recent studies [17]–[20] illustrated the regression in (1)-(15) with the various 

methods. This article worked on polynomial regression and developed the proposed regression models that 

analyzed the relationship between dependent and independent variables. 
 

𝑌 ≈ 𝛽0 + 𝛽1𝑋 (1) 
 

𝑦 = 𝛽0 + 𝛽1𝑥+∈ (2) 
 

𝑦 = 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑛𝑥+∈ (3) 
 

𝑦 = 𝛽0 + 𝛽1𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛+∈ (4) 
 

The y is the dependent variable, x is the independent variable, and x predicts the y response. β0 is the y-intercept, 

and β1 is the regression coefficient on the vertical axis of the regression line, which is the slope of the regression 

line. ε represented the random error and expressed the random factors’ effect on the dependent variable.  

≈ represents approximately, and (4) represents the polynomial equation. 
 

𝑦̂ = 𝛽̂0 + 𝛽̂1𝑋 + 𝜀 (5) 
 

𝛽̂1 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖=1(𝑥𝑖−𝑥̅)2)𝑛
𝑖

 (6) 

 

𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅  (7) 
 

𝜀 = 𝑋̃𝛽 − 𝑦 (8) 
 

ŷ represents a prediction of Y where X represents x and the hat symbol denotes the estimated value for unknown 

parameters or coefficients in the predicted value of the response. The regression techniques will evaluate β0 

and β1 and observe the sample (xi, yi) to the model parameters and the scatter diagram. The determination 

coefficients (Coef) are in (9) and (10). 
 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂)2𝑛
𝑖−1  (9) 

 

𝑅𝑆𝐸 = √
1

𝑛−2
𝑅𝑆𝑆 (10) 

 

RSS is a regression sum of squares, and RSE measures fitness, indicating whether the model fits or 

does not fit the data. The predicted value ŷ is the original value of y. The Coef determined R-Square (R-Sq) 

analyzes the regression data of model performance and the strength of the relationship between the model and 

the data. The range of R-Sq is between 0 and 1. The higher value of R-Sq indicates the model to be optimal. 
 

𝑅 − 𝑆𝑞 = 1 −
𝑆𝑆𝐸𝑟𝑟𝑜𝑟

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
  (11)  

 

𝑆𝑆𝐸𝑟𝑟𝑜𝑟 = ∑ (𝑡𝑖 − 𝑦𝑖)2
𝑖  (12) 

 

𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ (𝑡𝑖 − 𝑡𝑖̅)
2

𝑖  (13) 
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SSError is the sum of the residual squares from the model, and SSTotal is the sum of squares of errors of the actual 

output and the mean of the output. 

Since R-Sq determines the fitness of data on the regression model, the model performance, the 

adjusted R-Sq or modified R-Sq, is called R-Sq adjust, which increases with the increased model performance. 

When unimportant features are added to the model and the residual error is reduced, the R-square adjustment 

(R-Sq(adj)) will also be reduced, and the R-Sq will increase. 
 

𝑅 − 𝑆𝑞(𝑎𝑑𝑗) = 1 −
(1−𝑅−𝑆𝑞)(𝑁𝑣−1)

𝑁𝑣−𝑁−1
 (14) 

 

𝑟 = √(𝑅 − 𝑆𝑞)r (15) 
 

where NV represents the number of the data sample, N is the number of features, making the R-Sq(adj) more 

robust to the change of features, and r is the model correlation. 

This article aims to address the issues of drawbacks in the 28 GHz printable microstrip antenna’s 

parameters performance, such as resonant frequency (Fr), bandwidth (BW), gain (G), and efficiency (ƞ) caused 

by the variation of Hs. To investigate, analyze, evaluate, and validate the experimental results and the 

regression models’ equations. The proposed model and mathematical model equations were used to give insight 

to the antenna designers on how to enhance the antenna’s parameters and the overall antenna’s performance. 

 

 

2. METHOD 

2.1.  Antenna design and configuration 

The antenna design and configuration used a coplanar waveguide (CPW) with two slots on the patch 

and a gap between the feedline and the patch, as illustrated in Figure 1. The substrate thickness was varied to 

analyze the impact of PI substrate thicknesses (Hs) on the antenna’s performance. Understanding the dielectric 

material is necessary since the dielectric material has a significant role in the antenna performance. The 

proposed antenna has a dielectric constant of εr=3.5 and a loss tangent, δ=0.0027, designed with various 

substrate thicknesses. The variation of Hs has a significant impact on the antenna’s performance. The slotted 

CPW printable antenna with a compact size of 5×5×0.125 mm3 was designed and fabricated. The antenna has a 

bidirectional radiation pattern suitable for IoT and biomedical applications. It has a bandwidth of (26.200 GHz - 

30.242 GHz) with a return loss (RL) of 22.62 dB and achieved a gain of 3.81 dBi and 96.21% efficiency.  

Table 1 shows the proposed antenna dimensions, and Figure 1 shows the proposed antenna design. The impact 

of Hs variation on these parameters was investigated, analyzed, evaluated, and validated by the simulated and 

measured results and regression modeling. 
 
 

 
 

Figure 1. Proposed 28 GHz microstrip antenna 
 

 

Table 1. Antenna dimensions 
Parameter Ls Ws Mt Hs Lf Wp Lp Wf g L W 

Dimension (mm) 5 5 0.035 0.125 2.15 3.1 1.95 0.4 0.15 1.00 0.95 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Simulated result and discussion 

The simulated results in Figures 2(a) to (d) illustrate the effect of varying Hs on the frequency response 

characteristics. The Figure 2 show the simulated result with various Hs values ranging from (a) 0.025 mm to  

0.075 mm, (b) 0.100 mm to 0.150 mm, (c) 0.175 mm to 0.225 mm, and (d) 0.250 mm to 0.300 mm at which the 

frequencies resonated. The results demonstrated how Hs variation causes a shift in center frequency, BW and RL. 
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Generally, the results in Table 2 show that the lower the Hs, the higher the ƞ, while the higher the Hs, the lower 

the ƞ. And the thicker the substrate, the higher the BW and G, but a thinner substrate of 0.025 mm to 0.125 mm 

leads to good impedance matching. These resulted in an improvement in the BW and G from 3.6 GHz to  

5.54 GHz and from 3.8 dBi to 3.91 dBi, respectively. 
 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 2. Frequency response characteristics on the following substrate thickness: (a) 0.025 mm to  

0.075 mm, (b) 0.100 mm to 0.150 mm, (c) 0.175 mm to 0.225 mm, and (d) 0.250 mm to 0.300 mm 
 

 

Table 2. Effect of substrate thickness on the antenna parameters 
No. Hs (mm) Fr (GHz) Operating bands (GHz) BW(GHz) % BW (GHz) RL (dB) Gain (dBi) Dir (dB) Ƞ (%) 

1 0.025 31.753 28.541-34.164 5.54 17.45 21.46 3.91 3.98 98.24 

2 0.050 30.084 28.541-34.084 5.62 18.68 28.67 3.89 3.97 97.98 

3 0.075 29.052 27.44-32.114 4.67 16.07 36.19 3.87 3.97 97.48 
4 0.100 28.448 26.477-30.979 4.50 15.82 33.86 3.85 3.97 96.98 

5 0.125 28.000 26.200-30.242 4.04 14.43 22.62 3.81 3.96 96.21 

6 0.150 27.555 26.004-29.600 3.60 13.06 24.46 3.80 3.96 95.96 
7 0.175 27.194 25.462-29.173 3.71 13.64 25.93 3.79 3.97 95.47 

8 0.200 26.867 25.14-28.777 3.64 13.55 27.18 3.79 3.97 95.47 

9 0.225 26.600 24.587-28.164 3.58 13.46 28.74 3.80 3.98 95.48 
10 0.250 26.391 24.41-28.164 3.75 14.21 30.04 3.79 3.98 95.23 

11 0.275 26.172 24.171-27.917 3.75 14.33 30.59 3.80 3.99 95.24 

12 0.300 25.999 23.995-27.75 3.76 14.46 31.24 3.80 4.00 95.00 

13 0.325 25.844 23.839-27.559 3.72 14.39 32.05 3.80 4.01 94.76 

14 0.350 25.705 23.684-27.404 3.72 14.47 32.84 3.81 4.02 94.78 
15 0.375 25.585 23.58-27.283 3.70 14.46 33.64 3.82 4.03 94.79 

16 0.400 25.481 23.425-27.179 3.75 14.72 35.00 3.81 4.05 94.07 

17 0.425 25.360 23.079-27.024 3.95 15.58 35.30 3.83 4.06 94.33 
18 0.450 25.261 22.975-26.851 3.88 15.36 35.59 3.84 4.08 94.12 

19 0.475 25.204 22.906-26.747 3.84 15.24 36.19 3.85 4.09 94.13 

20 0.500 25.135 22.837-26.644 3.81 15.16 35.74 3.85 4.11 93.67 

21 0.525 25.026 22.711-26.577 3.87 15.46 36.22 3.89 4.13 94.19 
22 0.550 24.995 22.672-26.595 3.92 15.68 36.65 3.91 4.15 94.22 

23 0.575 24.904 22.604-26.455 3.85 15.46 36.80 3.93 4.18 94.02 

24 0.600 24.857 22.589-26.425 3.84 15.45 35.00 3.93 4.20 93.57 
25 0.625 24.823 22.537-26.339 3.80 15.31 31.23 3.95 4.21 93.82 

26 0.650 24.772 22.435-26.305 3.87 15.62 30.65 3.97 4.24 93.63 

27 0.675 24.721 22.384-26.288 3.90 15.78 30.75 4.01 4.26 94.13 
28 0.700 24.670 22.367-26.237 3.87 15.69 30.35 4.03 4.29 93.94 

29 0.725 24.636 22.265-26.169 3.90 15.83 29.27 4.05 4.31 93.97 

30 0.750 24.585 22.214-26.135 3.92 15.94 29.42 4.08 4.34 94.01 
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The antenna achieved a peak gain of 3.81 dBi, a BW of (26.200 GHz - 30.242 GHz), and an average 

radiation ƞ of 96.21% at the 28 GHz center frequency on the Hs 0.125 mm. The antenna achieved a better BW 

and radiation ƞ compared with the other related works, as shown in Table 3. The bidirectional radiation pattern 

enables the antenna for mm-wave applications for wearable devices. These made the antenna be placed in 

either the front or back position. Table 2 shows the data obtained from the simulation results, which were used 

to develop the proposed regression models’ equations to analyze and evaluate the effect of Hs variation on Fr, 

G, % BW, RL, and ƞ. 
 

 

Table 3. Comparison of other work with the proposed design 

 

 

3.2.  Fabrication result and discussion 

A sputtering machine deposits silver ink on a PI substrate to print the proposed antenna. The one-

layer printing process, which used a conductor thickness of one micrometer (1 µm) per round, lacked the 

required conductivity. Depositing additional layers of paste ink in the printed area has improved the 

conductivity. The antenna prototype was fabricated and tested to evaluate the validity of the simulated result. 

The process is cost-effective and safe to use, as the silver ink is toxin-free for the lungs and skin. The printed 

antenna maintains flexibility without cracking the ink surface, even at the possible maximum bending radius. 

Figure 3(a) illustrate the proposed antenna prototype, and Figure 3(b) the return loss (reflection coefficient) of 

S11 parameters, simulated and measured results. Figures 4(a) and (b) illustrate the simulated and measured 2D 

radiation patterns for the H-plane and E-plane, respectively. The simulated and measured results are in good 

agreement, confirming their validity. The antenna’s radiation ƞ, BW, G, and bidirectional radiation pattern 

signify its suitability for the proposed mm-wave applications. 
 
 

  
(a) (b) 

  

Figure 3. Fabricated antenna and its simulated and measured S11: (a) antenna prototype and (b) S11 

performance 
 
 

  
(a) (b) 

 

Figure 4. Simulated and measured 2D radiation patterns: (a) H plane and (b) E plane 
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Ref. Fr GHz Sub. type Sub εr Sub. tan δ Size (mm2) SH (mm) BW (GHz) Gain (dBi) Ƞ (%) 

[21] 28 FR4 4.40 0.0200 7×7 0.800 2.620 6.59 82.08 
[22] 28 PI 3.50 0.0027 5.19×4.73 0.270 1.427 5.33 86.00 

[23] 28 Rogers RT6002 2.94 - 6×8 1.520 1.410 3.12 89.25 

[24] 28 Rogers RT 4003 3.55 - 12×12 0.240 4.500 4.50 94.00 
[25] 28 Polypropylene 2.34 0.0010 - 0.100 0.500 5.14 - 

[26] 28 RT Duroid 5880 2.20 0.0040 5×4.4 0.500 0.850 1.00 90.00 

This work 28 PI 3.50 0.0027 5×5 0.125 4.710 3.81 96.41 
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3.3.  Result analysis 

The simulated results have demonstrated the impact of Hs variation on the frequency response 

characteristics. The average result illustrates how the average values of BW and G increased as the Hs increased 

and shifted to lower values as the Hs decreased. Generally, the result shows that the higher the Hs, the lower 

the Fr and ƞ, and the lower the Hs, the higher the Fr and ƞ. These indicate that thinner Hs increase the Fr and 

radiation ƞ, which improves the antenna’s performance. The illustration of a bidirectional radiation pattern 

enables the antenna to be placed in either the back or front positions. The PI substrate is a polymer-based 

material that has less power consumption, making the antenna ideal for mm-wave applications in IoT and 

wearable devices. The measured and simulated S-parameter, E, and H planes are in good agreement. Slightly 

disturbed due to conductor and dielectric effects, causing impedance mismatches that slightly affected the 

fabricated results, but they are still in good correlation. Future work needs to investigate the impact of Hs 

variation on the radiation patterns and impedance matching on the microstrip antenna’s performance. 
 

3.4.  Comparative analysis 

The proposed antenna achieved a wider BW and higher radiation ƞ compared with the other related 

articles reported in the literature, as shown in the summary in comparison Table 3. The improvement is 

primarily attributed to the selection of a suitable thin Hs, which enhanced both radiation ƞ and BW. This has 

made the microstrip antenna suitable for the proposed mm-wave applications. The measured and simulated 

results in this research work are correlated, confirming the validity of the results. 
 

 

4. DEVELOPMENT OF MATHEMATICAL MODEL 

4.1.  Model design 

The data (simulation result) was used to develop the proposed model equations using the MINITAB 

software. The Hs is the predictor variable, while the Fr, G, % BW, RL, and ƞ are the response variables. Many 

models were developed in linear, quadratic, and cubic forms and analyzed, evaluated, and validated. The model 

with the least residual value on the fitted line plots and residual plots indicates the model’s fitness to the data 

and is considered the proposed regression model. And the model is validated by checking the significance of 

the model coefficients, R-Sq and R-Sq(adj), and testing the hypotheses’ P-value. The R-Sq and R-Sq(adj) values 

closer to 1 and the P-value less than the significance level α (0.05) indicate the model validity. The proposed 

models are to investigate the impact of the predictor variable (Hs) on the response variables (Fr, G, BW, RL, 

and ƞ). Figure 5 illustrates the flow chart of the model design procedures. 

 

 

 
 

Figure 5. Flow chart 

 

 

4.2.  Model testing 

The proposed regression models were tested for their validity and acceptability. Hypotheses (P-value) 

and R-Sq were tested to determine the fitness and validity of the models. The R-sq value is between 0 and 1; the 

R-sq value that is closer to 1, and the P-value is less than 0.05, indicating the model’s fitness and validity [27]. 

The developed models achieved the following results: R-sq values are 94.6%, 72.1%, 97.9%, 41.5%, and 96.1% 

for the Fr, % BW, G, RL, and ƞ, respectively. These results indicate the validity of the models except the RL 
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model, whose value is closer to zero, 41% (0.41), which indicates insufficient evidence to conclude the model’s 

validity. Still, the RL model P-value is 0.00, indicating the model’s fitness and validity. The P-value of all the 

developed models is less than 0.05, except that of % BW, whose P-value is 0.059, indicating insufficient evidence 

to validate the model fitness. It does not evaluate the overall model’s fitness. Thus, the % BW R-Sq value is 0.72, 

signifying the model’s fitness and acceptability. We can, therefore, conclude that all the proposed models are 

validated. Table 4 summarizes the models’ performance and shows the correlation between the dependent and 

independent variables. Figures 6(a) to (e) and Figures 7(a) to (e) illustrate the impact of Hs on the fitted line plots; 

the straight lines indicate the proposed model, while the dotted lines indicate the data (CST-simulated result). 

 

 

Table 4. The Summary of the model performance 
Regression fitness 𝑆 𝑅 − 𝑆𝑞 𝑅 − 𝑆𝑞(𝑎𝑑𝑗) 𝑟 

Center frequency 0.425860 94.6% 94.2% 0.97 

Percentage bandwidth 0.640043 72.1% 68.9% 0.85 

Gain 0.012882 97.9% 97.7% 0.99 

Return loss 3.345330 41.5% 37.1% 0.64 

Efficiency 0.263875 96.1% 95.9% 0.98 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

Figure 6. Fitted plot: (a) substrate thickness versus center frequency, (b) substrate thickness versus 

percentage bandwidth, (c) substrate thickness versus return loss, (d) substrate thickness versus gain, and 

(e) substrate thickness versus efficiency 
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(c) (d) 

  

 
(e) 

 

Figure 7. Residual plots of four-in-one as a function of fitted values: (a) resonant frequency, (b) percentage 

bandwidth, (c) return loss, (d) gain, and (e) efficiency 

 

 

4.3.  Developed equation 

Analysis of variance (ANOVA) on the developed polynomial regression models and the correlation 

between the data and the developed regression models. The proposed models’ (16), (18), and (20) are 

quadratic, while (17) and (19) are cubic. The developed regression models were analyzed using the MINITAB 

software. In the proposed equations, the negative coefficients on the Hs indicate that the average responses of 

the antenna parameters (Fr, G, % BW, RL, and ƞ) increase as the Hs decreases, and the positive coefficient 

indicates a decrease in the response variable as the Hs increases. The proposed equations can provide accurate 

information for a fast solution to filtering the design parameters. To avoid the computational cost and produce 

a low-profile antenna. 

 

𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐺𝐻𝑧) = 30.71 − 20.45𝐻𝑠 + 17.28𝐻𝑠2 (16) 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝐺𝐻𝑧) = 18.79 − 43.20𝐻𝑠 + 115.5𝐻𝑠2 − 85.62𝐻𝑠3 (17) 

 

𝐺𝑎𝑖𝑛(𝑑𝐵𝑖) = 32.908 − 0.7730𝐻𝑠 + 1.356𝐻𝑠2 (18) 

 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑙𝑜𝑠𝑠(𝑑𝐵) = 28.13 − 23.12𝐻𝑠 + 169.7𝐻𝑠2 − 187.7𝐻𝑠3 (19) 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(%) = 98.31 − 15.13𝐻𝑠 + 12.78𝐻𝑠2 (20) 

 

4.4.  ANOVA on the fitness of the developed model 

The ANOVA table determines the performance of the developed models, evaluates and validates the 

results, and determines the significance of the models. To assess the models’ fitness to the data provided and to 

validate the fitted line and residual plots of the models. Tables 5 and 6 present the ANOVA results for the model 
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fitness and acceptability. When the P-value is <0.05, the null hypothesis (H0) is rejected, signifying that the 

model fits the data; for the P-value >0.05, the H0 is accepted, meaning that the model does not fit the data [27]. 

 

 

Table 5. ANOVA on the model fitness 
Predictor versus response variables Source Regression Residual error Total 

Resonant frequency versus substrate thickness DF 1 28 29 

SS 70.116 20.548 90.664 
MS 70.116 0.734  

F 95.54   

p 0.000   
Percentage bandwidth versus substrate thickness DF 3 26 29 

SS 27.5305 10.6510 38.1815 

MS 9.17684 0.40965  
F 22.40   

P-value 0.000   

Return loss versus substrate thickness DF 2 27 29 
SS 214.092 302.163 516.256 

MS 107.046 107.046  

F 9.57   
P-value 0.001   

Gain versus substrate thickness DF 2 27 29 

SS 0.204666 0.004481 0.209147 
MS 0.102333 0.000166  

F 616.62   

P-value 0.000   
Efficiency versus substrate thickness DF 2 27 29 

SS 46.9208 1.8800 48.8008 

MS 23.4604 0.0696  
F 336.93   

P-value 0.000   

 

 

Table 6. Sequential ANOVA 
Predictor versus response variables Source Linear Quadratic Cubic 

Resonant frequency versus substrate thickness DF 1 1  

SS 70.1159 15.6513  

F 95.54   
p 0.000 0.000  

Percentage bandwidth versus substrate thickness DF 1 1 1 

SS 0.4002 13.3687 13.7616 
F 0.30 14.79 33.59 

P-value 0.590 0.001 0.000 

Return loss versus substrate thickness DF 1 1 1 
SS 90.804 123.288 66.111 

F 5.98 11.02 7.28 

P-value 0.021 0.003 0.012 
Gain versus substrate thickness DF 1 1  

SS 0.108280 0.096386  
F 30.06 580.79  

P-value 0.000 0.000  

Efficiency versus substrate thickness DF 1 1  

SS 38.3528 8.5680  

F 102.78 123.05  

P-value 0.000 0.000  

 

 

4.5.  ANOVA on the sequential prediction 

Table 7 shows ANOVA on sequential prediction; Hs predicts the response variables (Fr, BW, G, RL, and 

ƞ). In the ANOVA table, T-values represent the standard errors of the regression coefficient, and a high T-value 

with the least P-value indicates that the model is of substantial significance. The Coef (coefficient) shows the 

direction and size of the relationship between the predictor and response variables. A positive Coef indicates a 

positive relationship, while a negative Coef indicates a negative relationship between the variables. This 

signifies that the negative Coef in Hs-values on the Fr and ƞ relationship indicates a continuous decrease in the 

Fr and ƞ values as Hs-values increase. SE Coeff represents the standard error of the Coef; the higher SE Coef 

indicates less confidence in the predicted values, while the smaller SE Coef signifies a more precise prediction. 

A P-value less than the significance level (0.05) indicates a significant relationship between the predictor and 

response variable, and a P-value greater than the significance level of 0.05 indicates an insignificant 
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relationship between the variables. To confirm the model’s precision and validity. The P-values of 0.000 and 

0.021 signify the model’s significance and acceptability, while the P-value of 0.059 indicates poor model 

fitness. A P-value greater than 0.05 indicates insufficient evidence to validate the model fitness and 

acceptability; it does not evaluate the overall model fitness and acceptability. The 4-in-one residual plots can 

further assess the regression model’s fitness and acceptability. 

 

 

Table 7. Sequential prediction ANOVA 
Predictor versus response variables Predictor Constant Hs 

Resonant frequency versus substrate thickness Coef 28.9270 -7.0651 

SE Coef 0.3208 0.7228 

T-value 90.17 -9.77 
P-value 0.000 0.000 

Percentage bandwidth versus substrate thickness Coef 14.9518 0.5337 

SE Coef 0.4350 0.9801 
T-value 34.37 0.54 

P-value 0.000 0.590 

Return loss versus substrate thickness Coef 28.340 8.040 
SE Coef 1.460 3.289 

T-value 19.41 2.44 

P-value 0.000 0.021 
Gain versus substrate thickness Coef 3.76775 0.27764 

SE Coef 0.02248 0.05064 

T-value 167.64 5.48 
P-value 0.000 0.000 

Efficiency versus substrate thickness Coef 96.9878 -5.2253 

SE Coef 0.2287 0.5154 
T-value 423.99 -10.14 

P-value 0.000 0.000 

 

 

4.6.  Residual plot 

The residual plots include residual value versus data order, in which the mean values are zero (0) for 

the model to be valid. Figures 7(a) to (e) include a histogram of the residuals, which indicates the distribution 

of errors to assess whether the model is appropriate for the data, confirm the model’s fitness, and its 

acceptability. The model errors are more on -1, 0, 1, -1, and -0.5 as shown in Figures 7 (a) to (e), respectively. 

These fall within the model error limit close to the trend line to signify the model’s fitness and validity. The 

histogram residuals confirm the normality assumptions, as the mean values are approximately zero and the data 

points are within ±2 standard errors, which corresponds to a 95% confidence interval. The standardized 

residuals, calculated from the regression standard errors, must be within the range of ±2, which is 

approximately 95% of the data points [28]. 

 

 

5. CONCLUSION  

This research work simulated and fabricated a 28 GHz microstrip antenna and developed and proposed 

regression model equations to investigate and evaluate the impact of Hs variation on Fr, G, % BW, RL, and ƞ. 

The fitted line plots analyzed the correlation between the data and the developed models. The antenna was 

printed on a flexible PI substrate using silver ink to avoid computational cost and fast solutions for filtering 

design parameters, which is the main objective of the proposed design. The models’ equations and experimental 

results were validated. This was done by comparing the simulated and measured results and the ANOVA of 

the model characteristics. The measurement shows good agreement with the simulation results. The lower Hs 

achieved an improved BW and ƞ, a low-cost and low-profile antenna for future mm-valve applications. The 

model equations can accurately and faster predict the antenna’s parameters (Fr, BW, G, RL, and ƞ) and overall 

antenna performance than many commercially available advanced simulation tools. This gives an insight into 

how antenna designers can predict the antenna’s parameters and performance. These methods could reduce the 

cost of production and improve the antenna’s optimum performance. This paper suggested that the regression 

models can be expanded to evaluate additional antenna parameters, such as radiation patterns and polarization, 

to enhance the antenna performance. It also meant the proposed design should be used in frequency-sensitive 

applications. This article is the first to use the polynomial regression model equations to evaluate the impact 

of Hs variation on the 28 GHz printable microstrip antenna to the best of our knowledge. The paper suggested 

extending the proposed regression modeling approach to evaluate additional parameters such as radiation 

patterns, polarization, and impedance-matching characteristics. It also suggested regression modeling to 

evaluate the impact of Hs on various parameters in the Terahertz frequencies. Moreover, it suggested that future 
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advancements in microstrip antenna technology should focus on modern integration techniques to optimize the 

overall antenna performance for future applications. 
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