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 This study proposes a hybrid Kolmogorov-Arnold networks (KANs) and 

convolutional neural networks (CNN) to classify electrocardiogram (ECG) 

signal abnormalities in one lead ECG data of wearable telemedicine. The 

hybrid model combines CNN to extract hierarchical features from sequential 

data and KANs to model non-linear relationships with fewer parameters as an 

efficient classification. The study explores the model’s capacity to balance 

accuracy, computational efficiency, and memory usage as critical factors for 

real-time health monitoring in resource-constrained environments on the 

single-lead MIT-Beth Israel hospital (MIT-BIH) Supraventricular Arrhythmia 

database with five different class labels. For comparison, standalone CNN and 

KAN models were also trained on the same balanced dataset. The CNN model 

achieved an accuracy of 96.62%, precision of 96.81%, and recall of 96.53%. 

The KAN model, while computationally efficient, performed less effectively, 

with an accuracy of 94.15%, precision of 95.01%, and recall of 92.57%. In 

contrast, our hybrid KAN-CNN model outperformed both, attaining an 

accuracy of 97.53%, precision of 97.66%, recall of 97.40%, and a low loss of 

0.0840. The study also explores the impact of quantization and compression 

on model performance, revealing that both CNN and Hybrid KAN-CNN 

models retained high accuracy post-quantization, whereas the KAN model 

exhibited a more significant drop in performance. 
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1. INTRODUCTION  

Cardiovascular diseases remain the leading global cause of death [1], and their early diagnosis relies 

heavily on electrocardiogram (ECG) interpretation [2]. Traditionally, ECG analysis was done visually by 

cardiologists, which is time-consuming and susceptible to human bias [3]. The emergence of wearable 

telemedicine devices has created a demand for automatic, reliable ECG classification methods that are 

compatible with resource-constrained environments [4], [5]. These devices are typically limited to single-lead 

ECG due to constraints in power, memory, and size [6]–[8]. Moreover, the use of data compression further 

degrades signal quality [9], making accurate classification more challenging. Machine learning has gained 

widespread traction in addressing these limitations due to its flexibility in identifying complex patterns, even 

from reduced input data [10]. However, the challenge remains in designing models that achieve a balance 

between classification accuracy and computational efficiency. 

https://creativecommons.org/licenses/by-sa/4.0/
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A growing body of work has focused on single-lead ECG classification. Mitchell et al. [10] and  

Kim et al. [11] demonstrated high performance in arrhythmia and atrial fibrillation (AF) detection using hybrid 

and deep learning models, while Gadaleta et al. [12] showed that combining morphology with demographic 

features improves near-term AF prediction. Additional efforts have addressed practical deployment. Athif et al. 

[13] and Fan et al. [14] developed accurate models for AF detection, though limited in robustness across 

arrhythmias. Wasimuddin et al. [15] proposed a lightweight convolutional neural networks (CNN) for 

myocardial infarction detection with strong performance and low complexity. Kuznetsova et al. [16] used 

spectral analysis with artificial intelligence (AI) to assess left ventricular diastolic dysfunction (LVDD) but 

lacked real-time benchmarks. He et al. [17] used support vector machines (SVMs) for postoperative AF 

prediction but didn’t explore scalable architectures. Kim et al. [18] introduced Tiny convolutional ECG-based 

system (TinyCES), a memory-efficient CNN validated on MIT-Beth Israel Hospital (MIT-BIH), yet did not 

evaluate inference time. These studies affirm the feasibility of single-lead ECG classification on constrained 

platforms, but most focus narrowly on accuracy while underreporting key deployment concerns like 

quantization, latency, and profiling issues vital for real-time, embedded health monitoring [19]. 

To address this, the present study evaluates Kolmogorov-Arnold networks (KANs), which 

approximate complex functions with fewer parameters by leveraging learnable univariate activations [20]. 

KANs have demonstrated compactness and potential for ECG classification [21], but their performance 

remains limited. In contrast, CNNs extract rich hierarchical features [11], [22] but are often too computationally 

intensive for wearables [23]. A hybrid KAN-CNN model is proposed to combine the compact efficiency of 

KANs with the robust feature extraction of CNNs, offering a potential solution for accurate and efficient single-

lead ECG classification in wearable devices [24]. This model has not been previously explored in literature. 

We will benchmark KAN, CNN, and the hybrid model using the MIT-BIH Supraventricular Arrhythmia 

database, with detailed evaluation of classification performance, memory usage, inference latency, and 

quantization effects to assess their feasibility for real-time, embedded deployment. 

 

 

2. METHOD  

2.1.  Problem formulation and objective 

This study addresses the classification of heartbeats from single-lead ECG signals, a common format 

in wearable devices. The task is framed as a multi-class classification problem, where each input ECG segment 

is assigned to one of five classes: normal (N), supraventricular (S), ventricular (V), fusion (F), and 

unclassifiable (Q), as illustrated by the ECG signal morphologies. Given a dataset of m ECG segments, each 

example consists of a signal 𝑥𝑖 ∈ ℝ𝑛 and a label 𝑦𝑖𝜖{0,1,2,3,4}. The model aims to learn a function 𝐹(∙) with 

parameters , such that the output is 𝑧(𝑖) = 𝐹(𝑥𝑖; 𝜃).  

To interpret the model’s output, a SoftMax function is applied to compute class probabilities 

as𝑝(𝑧𝑗
𝑖) =

exp(𝑧𝑗
𝑖)

∑ 𝑒𝑥𝑝(𝑧𝑘
𝑖 )𝑘

 . The model is trained using the cross-entropy loss:  

 

𝐿(𝑋) = −
1

𝑚
∑ ∑ 1{𝑦𝑖 = 𝑗}log𝑝(𝑧𝑗

𝑖)4
𝑗=0

𝑚
𝑖=1   (1) 

 

which penalizes incorrect predictions and encourages the model to assign higher probabilities to the correct class. 

 

2.2.  Model training strategy 

All models are trained using the Adam optimizer [25], which automatically adjusts the learning rate for 

each parameter and works well with sparse data and noisy gradients. Both are common in ECG classification 

tasks. An initial learning rate of 0.0005 is used. Training is halted early if the model does not improve for 10 

consecutive epochs (early stopping), and categorical cross-entropy is used as the loss function [26]. 

 

2.3.  Neural network architectures 

Three machine learning models are evaluated and shown in Figure 1, a CNN, a KAN, and a hybrid 

KAN–CNN model. Each is designed for single-lead ECG signals and optimized for low-resource environments 

such as wearable health monitors. CNN architecture Figure 1(a), CNNs are designed to automatically detect 

patterns from raw input signals, making them highly effective for ECG feature extraction. This architecture 

uses two layers of one-dimensional (1D) convolution followed by max-pooling, dropout, and activation layers 

(ReLU) to capture low- and high-level features such as QRS complexes and P-waves. A flatten layer prepares 

the data for a fully connected (dense) layer, which outputs class probabilities using SoftMax activation. CNNs 

are known for their speed and simplicity, making them a strong baseline. 

KAN architecture Figure 1(b), KAN are a new class of machine learning models that aim to 

approximate complex functions using fewer parameters by combining univariate functions. This makes them 
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well-suited for environments with limited memory. The ECG signal is first flattened and passed through two 

dense layers with learnable univariate activations based on the Kolmogorov–Arnold representation theorem 

[20]. These dense layers focus on modeling nonlinear relationships within the ECG signal. A final SoftMax 

layer outputs the class probabilities. 

Hybrid KAN–CNN architecture Figure 1(c), the proposed hybrid model combines the advantages of 

both CNNs and KANs. It begins with the CNN component, which extracts structured and hierarchical features 

from the raw ECG signal using convolution and pooling layers. After flattening the CNN output, the resulting 

feature vector is fed into the KAN component. Here, dense layers with learnable activation functions refine the 

extracted features by modeling complex, non-linear relationships. Additionally, residual connections are used 

between layers to improve training stability and enable deeper learning by allowing easier gradient flow, 

following the approach of Huang et al. [27]. This architecture is designed to maintain CNN’s powerful pattern 

recognition while leveraging KAN’s efficiency for more accurate classification with fewer computational 

resources. 

 

 

   
(a) (b) (c) 

 

Figure 1. The architecture machine learning models: (a) CNN model, (b) KAN model, and (c) hybrid KAN-

CNN 

 

 

3. EXPERIMENT 

3.1.  Datasets 

The dataset used for training and evaluating the hybrid KAN-CNN model is the MIT-BIH 

supraventricular arrhythmia database [28]. This database is a widely used standard in ECG classification 

research and provides a diverse set of arrhythmia recordings. The dataset includes annotated single-lead ECG 

signals, with a focus on supraventricular arrhythmias and contains recordings of ECG signals from 48 patients, 

each with two-channel recordings (V1 and V2) collected over a period of 24 hours. Each recording is sampled 

at 128 Hz, and annotations are provided for various types of arrhythmias, see Figure 2. In this classification 

study, the graphs of each signal type in Figure 2 are considered, with five labels from the dataset: N, S, V, F, 

and Q. Signal N, normal beat, has symmetrical waveform with clear P, QRS, and T waves. Signal S, 

supraventricular premature beat, is similar to signal N, but might have slight variations in amplitude or duration. 

Signal V, ventricular premature beat, is a wide, bizarre QRS complex, often preceded by a compensatory pause. 

Signal F, fusion of ventricular and normal beat, is a hybrid of signals N and V, with a wider QRS complex than 

N but not as wide as V. Meanwhile, signal Q, unclassifiable beat, is a waveform that doesn’t fit the typical 

patterns of N, S, V, or F. 

For this study, the dataset is splitted into training and test sets. The training set is used to train the 

model, while the test set is reserved for evaluating the model’s performance. The training set is further balanced 

using Synthetic minority over-sampling technique (SMOTE) to address class imbalance issues by generating 

synthetic samples for minority classes [29], see Figure 3(a). All the data were balanced into 10000 data.  
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Figure 2. The different morphology of ECG signals classed in the MIT-BIH dataset 

 

 

3.2.  Data preprocessing 

Data preprocessing, as shown in Figure 3(b), is a critical step to ensure that the ECG signals are 

suitable for input into the model. The preprocessing steps are applied, such as segmentation, reshaping, and 

data augmentation. To simulate real-world wearable scenarios, data compression is applied by down sampling 

the ECG signals. The impact of compression on model performance is evaluated alongside the effects of 

quantization, particularly when deploying models on resource-constrained devices. 

 

 

  
(a) (b) 

 

Figure 3. Data preprocessing: (a) the balancing data and (b) overall data flow 

 

 

3.3.  Time profiling and computational efficiency analysis 

Time profiling evaluates the computational efficiency of each model by measuring both training and 

inference durations, which are essential for real-time applications on wearable devices with limited processing 

capacity [9]. While training is usually performed offline, fast training remains important for use cases requiring 

frequent updates, such as personalized ECG monitoring systems [30]. In such contexts, reduced training time 

enables quicker model adaptation with minimal service interruption. Inference time, the duration required to 

make predictions on new data, is especially critical for continuous, real-time monitoring. Wearable ECG 

devices must operate within tight latency constraints to detect cardiac abnormalities promptly [31]. Delays in 

inference could compromise timely feedback and reduce clinical effectiveness [9]. 

 

3.4.  Quantization, compression, and different dataset size analysis 

To make the models suitable for embedded systems, quantization was applied using TensorFlow lite. 

Quantization reduces the precision of model weights from 32-bit floating-point to 8-bit integers, significantly 

reducing model size and inference times [32]. Additionally, compression analysis was conducted by applying 

signal down sampling, simulating data compression typically used in wearable ECG monitors to reduce storage 

and transmission requirements [33]. Meanwhile, we also conducted the different dataset sizes (500, 5000, and 
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10000 samples) in order to evaluate the robustness in real situations in which the number of data could be 

limited [34]. 

 

3.5.  Evaluation metrics 

The performance of the models is evaluated using several key metrics [35], such as accuracy, 

precision, recall, and confusion matrix. These metrics are calculated for both the training and test datasets to 

assess the model’s ability to generalize to new, unseen data. The results are compared with those of traditional 

CNNs and standalone KANs to demonstrate the effectiveness of the hybrid KAN-CNN approach. 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Model performance comparison (accuracy, precision, recall) 

Figure 4 presents the comparative performance of CNN, KAN, and hybrid KAN-CNN models in 

terms of accuracy, precision, recall, and loss. The hybrid KAN-CNN consistently outperforms the other 

models, making it particularly suitable for real-time single-lead ECG classification. 

The hybrid KAN-CNN achieves the best results with an accuracy of 0.9753, precision of 0.9766, 

recall of 0.9740, and a low loss of 0.0840. Its superior performance stems from combining CNN’s hierarchical 

feature extraction with KAN’s efficient function approximation, enhanced further by residual connections that 

mitigate vanishing gradient issues. The CNN model follows closely with an accuracy of 0.9662, precision of 

0.9681, recall of 0.9653, and a loss of 0.1163. Its strength lies in automatic feature learning from sequential 

data, which is essential for identifying diverse cardiac patterns. The KAN model, while offering the fastest 

training and inference times, shows lower accuracy (0.9415), precision (0.9501), and recall (0.9257), with a 

higher loss of 0.3464. Its reduced performance reflects limited feature extraction capability, though its low 

computational cost may benefit embedded, low-power devices. Overall, the hybrid architecture effectively 

integrates the advantages of CNN and KAN, delivering high precision and low error rates crucial for 

minimizing misdiagnoses in wearable ECG systems. 
 

 

 
 

Figure 4. Model performance comparison: training and inference time comparison, memory usage during 

inference comparison, and quantized and compressed accuracy comparison 

 

 

4.2.  Training and inference time comparison 

As shown in Figure 4 (upper right), computational efficiency is crucial for real-time ECG analysis on 

wearable devices. CNN achieves a balanced performance with 889.79 seconds training and 2.27 seconds 

inference time; quantization slightly increases inference to 3.56 seconds per 10,000 samples. KAN offers the 

fastest processing—224.10 seconds training and 0.67 seconds inference—but with lower classification 
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accuracy, limiting its suitability for high-stakes monitoring. Hybrid KAN-CNN takes 902.27 seconds to train 

and 2.61 seconds for inference, rising to 4.64 seconds post-quantization. This trade-off delivers a strong gain 

in accuracy, remaining practical for mid-tier embedded systems. Overall, hybrid KAN-CNN provides the most 

effective balance of speed and accuracy for wearable ECG applications. 

 

4.3.  Memory usage during inference 

The memory usage comparison is shown in Figure 4 (bottom left). KAN is the most memory-efficient 

model, requiring 1595.03 MB during inference. This is advantageous for systems where memory is a constraint, 

though the model’s reduced classification performance must be considered. Hybrid KAN-CNN consumes 

2633.96 MB during inference, which is slightly lower than the CNN model at 2814.00 MB. This shows that 

despite the additional residual connections, the hybrid model manages memory efficiently, making it suitable 

for devices with higher memory availability. Therefore, hybrid KAN-CNN strikes a good balance between 

memory usage and performance, which is beneficial for wearable ECG classification systems that operate in 

resource-constrained environments. 

 

4.4.  Quantized and compressed accuracy comparison 

Quantization and compression, as shown in Figure 4 (bottom right), are critical for deploying machine 

learning models on embedded systems. CNN follows a similar pattern, with a quantized accuracy of 0.9728 

and compressed accuracy of 0.9667, making it suitable for systems where moderate computational resources 

are available. KAN model, while efficient in terms of memory and computation, suffers from a larger drop in 

accuracy, with quantized accuracy of 0.9392 and compressed accuracy of 0.9402. This shows that KAN alone 

is not as robust in real-time, compressed environments, limiting its applicability in high-performance wearable 

devices. Hybrid KAN-CNN shows resilience to both quantization and compression, with only a slight drop in 

accuracy after quantization (0.9777) and compression (0.9717). This ensures that the model maintains its high 

classification performance even on resource-constrained devices. 

 

4.5.  Dataset size variation 

Considering the real practice, the number of datasets could be limited and not always available. Thus, 

evaluating the model performances with different dataset sizes should be conducted. Here, we evaluated three 

different dataset sizes which are 500, 5,000, and 10,000 samples. As shown in Figure 5, model performance 

comparison across different dataset sizes shows a significant effect on accuracy, precision, and recall among 

the models.  
 

 

 
 

Figure 5. Model performance comparison across different dataset sizes 
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When trained on the largest dataset of 10,000 samples, the hybrid KAN-CNN with residual 

connections achieved the highest performance. The CNN model follows closely, while the KAN-only model 

underperforms. At a dataset size of 5000 samples, a similar trend is observed. The hybrid KAN-CNN with 

residual connections maintains its superior performance. For the smallest dataset (500 samples), performance 

drops across all models, yet the hybrid KAN-CNN maintains the highest accuracy, precision, and recall. The 

results suggest that larger datasets amplify the feature extraction capabilities of the hybrid KAN-CNN model 

which helps preserve crucial features across layers. 

 

4.6.  Confusion matrix analysis 

Figure 6 illustrates how each model classifies ECG beats across predefined classes. CNN, Figure 6(a), 

shows strong performance, particularly for normal, unclassifiable, and ventricular classes. However, it has 

noticeable misclassifications in the fusion (62 beats misclassified as supraventricular) and supraventricular 

classes (79 beats misclassified as fusion). KAN, Figure 6(b), exhibits higher misclassification, especially for 

fusion beats (77 misclassified as supraventricular) and supraventricular beats (63 misclassified as fusion, 37 as 

ventricular), reflecting its limitations in handling complex patterns. Hybrid KAN-CNN, Figure 6(c), 

significantly reduces misclassification across all classes, improving generalizability. The confusion matrix 

shows reduced off-diagonal values, particularly for fusion, supraventricular, and ventricular classes, indicating 

fewer misclassifications. for example, supraventricular beats are better distinguished (only 43 misclassified 

compared to 63 and 79 in the other models), and ventricular misclassifications are the lowest among the three 

models. The hybrid model retains CNN’s high fidelity in feature extraction while leveraging KAN’s compact 

and efficient function approximation, leading to improved generalization and accuracy. Its ability to capture 

subtle distinctions enhances its reliability for real-time ECG analysis in wearable telemedicine. 

 

 

   
(a) (b) (c) 

 

Figure 6. Comparison of confusion matrix: (a) CNN, (b) KAN, and (c) hybrid KAN-CNN 

 

 

4.7.  Comparison with existing study and perspective for future studies 

Compared to the work by Huang et al. [21], who used KAN for efficient ECG classification on single-

lead data (F1: 0.75 in-sample, 0.62 out-of-sample), our study demonstrates that while KAN alone offers speed 

and compactness, it lacks the robustness required for complex signal interpretation. The hybrid KAN-CNN 

model introduced here outperforms both our KAN-only baseline and Huang’s KAN approach, achieving 

0.9753 accuracy, 0.9766 precision, and 0.9740 recall on the MIT-BIH dataset—at the cost of increased 

architectural complexity. 

While Huang’s model favors edge deployment with fewer parameters and learnable edge activations, 

its lower generalizability and lack of reported inference times limit direct comparison. In contrast, our hybrid 

KAN-CNN balances accuracy and computational load (902.27s training, 2.61s inference), benefiting from 

residual learning and CNN-based feature extraction—crucial for wearable ECG applications. 

Future research can extend this work by: scaling to multi-lead ECGs for better detection of complex 

arrhythmias, expanding from classification to real-time anomaly detection and prediction, exploring advanced 

CNN-KAN integration with attention or deeper residual paths, testing generalizability across diverse datasets 

and patient populations, enhancing KAN’s adaptability on small datasets via better regularization and 

architectural tuning for deployment in a wearable device. 

 

4.8.  Discussion 

The hybrid KAN-CNN outperforms both standalone KAN and CNN models due to its ability to 

integrate their complementary strengths. While CNN excels at hierarchical feature extraction from raw ECG 
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signals and KAN offers fast, memory-efficient approximation, their combination in the hybrid model enables 

both rich representation and efficient learning. This synergy is evident in its superior accuracy (0.9753), 

precision (0.9766), and recall (0.9740), alongside a low loss (0.0840). The addition of residual connections in 

the hybrid model further enhances training stability and mitigates vanishing gradient issues, particularly in 

deeper architectures. Compared to CNN, the hybrid maintains comparable inference time and slightly lower 

memory usage, while significantly outperforming KAN in classification robustness. Notably, under dataset 

size variation, the hybrid consistently maintains top performance, especially when data is limited—suggesting 

better generalization. Its resilience to quantization and compression also makes it suitable for deployment in 

real-time, resource-constrained wearable systems. The hybrid model strikes a superior balance between 

performance, efficiency, and adaptability, making it the most viable architecture for accurate and scalable ECG 

signal classification. 

 

 

5. CONCLUSION  

In this study, we evaluated the performance of KAN, CNN, and a hybrid KAN-CNN model for ECG 

classification in the context of wearable telemedicine systems, particularly focusing on single-lead ECG 

signals. The hybrid KAN-CNN model is the most viable solution for single-lead ECG classification in wearable 

telemedicine, offering the best trade-off between classification performance, computational efficiency, and 

memory usage. Its robustness and adaptability to embedded systems make it ideal for real-time health 

monitoring applications. 
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