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 Trapped victim localization in search and rescue (SAR) operations is 

especially difficult in non-line-of-sight (NLOS) conditions, where traditional 

techniques fail due to debris and signal distortion. Ultra-wideband (UWB) 

NLOS signal datasets offer a promising alternative but are often high-

dimensional and noisy. This study proposes an optimized dimensionality 

reduction framework combining an adaptive human presence detector 

(AHPD) with genetic algorithms (GA) and independent component analysis 

(ICA), followed by support vector machine (SVM) classification. The 

approach is tested on a public NLOS dataset comprising 23,522 dynamic 

instances, each with 256 signal samples per attribute, simulating complex 

SAR scenarios including rubble and dynamic obstacles. The results indicate 

that the AHPD+GA+SVM model reached an accuracy of 85.78%, sensitivity 

of 80.00%, and specificity of 96.46%, which is better than the AHPD+ICA 

+SVM model that had an accuracy of 79.20%, sensitivity of 73.07%, and 

specificity of 81.05%. These findings demonstrate the framework’s 

robustness and scalability, making it a strong candidate for real-time human 

detection in disaster recovery missions. 
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1. INTRODUCTION 

A notable challenge in the analysis of search and rescue (SAR) operations lies in the aggregation of 

information originating from fast, independent, and severe-impact sources [1]. A prominent characteristic of 

the dataset is its extensive sample size, which encompasses a considerable quantity of redundant and 

superfluous noisy features [2], [3]. The presence of these arbitrary input signals detracts from the efficacy of 

classification-based learning approaches [4]. Methods for minimizing dimensionality have been employed on 

numerous occasions. Extracting relevant discriminative subsets from the data representation reduces 

computational demands and enhances the precision of classification predictions [5]. 

In the realm of dataset analysis, the phenomena of model overfitting and issues related to high-

dimensional data are recognised as significant obstacles to optimal classification performance. The structure 

consists of a high-dimensional input space, often denoted as the curse of dimensionality. Numerous 

dimensionality reduction strategies have been used in the literature to overcome the curse of dimensionality 

challenges [6]. To uncover hidden elements and improve the interpretability of the images, the best feature 

combination must be chosen [7], [8]. The goal of dimensionality reduction is to identify a trivial subset of 

data that may improve prediction performance, which will aid engineers and SAR in localisation and 

decision-making [9].  

https://creativecommons.org/licenses/by-sa/4.0/
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The issues surrounding the curse of dimensionality have been covered by numerous writers. 

Although metaheuristics have also been presented, methods for collecting no-line-of-sight (NLOS) signal 

data subsets are challenged by strong correlations, high processing rates, and prolonged computation 

durations [10], [11]. Methodically identifying the ideal subset of data attributes is a major problem. The 

widely recognized methods for reducing dimensionality in feature extraction (FE) [12], [13] (supervised and 

unsupervised) and feature selection strategies, including filter, wrapper, and embedded methods [14] have 

resolved performance enhancement; however, further advancements in hybrid models and optimisation are 

required to achieve even better results [15]-[17]. The objective is to identify the best selected portion of data 

attributes aimed at managing high-dimensional optimisation problems and provide feasible solutions [6], [13]. 

Although GA has been widely utilised and is good at identifying the best-performing feature groups 

within high-dimensional datasets, it is computationally costly and susceptible to overfitting. To get around 

this limitation, optimisation techniques have been applied to provide improved outcomes in terms of 

choosing the best selected feature groups and the precision of classification [18]. A legitimate feature 

extraction technique that has been widely used as a capable standard method for extracting groups of feature 

samples used for classification purposes is independent component analysis (ICA) (linear), which has 

recently attracted more attention [19]. The hybrid approach’s remarkable results and advantages demonstrate 

its value in addressing dimensional issues that hinder classification. Identifying or categorizing NLOS signal 

data and the analysis of expression data depend on the creation of effective models that are simple to use and 

compute quickly [20]. 

Numerous studies have been conducted and reported in the literature [21], [22]. However, given the 

prevalence of building collapses and trapped victims in West Africa, these studies need to be improved to aid 

in making decisions regarding the reduction of victim mortality in the region [23]. The commonly employed 

conventional target location and classification (TLC) methods depend heavily on understanding signal 

behavior and surrounding environmental conditions, despite their effectiveness in controlled situations. 

Because the manual calibration procedure can occasionally be time-consuming, it is not appropriate for 

erratic, extreme situations like earthquake debris. In addition, TLC modes exhibit reduced performance, 

especially when distinguishing low-reflective or stationary targets, since they lack the sophisticated methods 

for eliminating or minimizing signal interference needed to manage the greater degree of obstruction 

naturally present in non-line-of-sight scenarios. To more closely resemble human-generated content, it must 

make several changes that can add complexity and diversity.  

To anticipate NLOS data signals, this paper suggests a hybrid dimensionality reduction method. 

Hybrid systems outperformed conventional methods based on scenario-specific parameterisation in each 

instance. Increased adaptability across a range of settings will result from the use involving adaptive noise 

suppression, self-adjusting parameter tuning, and continuous feature optimisation. When compared to other 

systems, the hybrid solution shown here has several advantages over traditional tracking localisation settings. 

However, the suggested under-rubble adaptive human presence detector (AHPD) method eliminates the need 

for intricate mathematical calculations or parameter searches by combining a genetic algorithm (GA) with 

ICA to flexibly respond to variations in environmental conditions. This is in line with new research findings 

that emphasise the necessity of machine learning-infused flexible models to attain higher generalisations in a 

range of situations. 

Following the methods, the GA and ICA are applied after pertinent data subsets are extracted using 

an AHPD pseudocode that filters out noise and permits automated adjustments in amplitude to identify 

hidden components. AHPD with GA and AHPD with ICA combinations under rubble are classified using 

support vector machines (SVM) on an NLOS dataset. To help engineers and SAR teams make better 

judgments, this effort seeks to minimize challenges in prediction, including computational expenses, 

obtaining pertinent portions of the dataset, and interrelationships among variables. The other portions of this 

study consist of existing research, relevant materials, and methodology, the findings, discussions, and the 

conclusions. 

 

 

2. ADAPTIVE ALGORITHM FOR HUMAN PRESENCE DETECTION IN UNDER-RUBBLE 

ENVIRONMENTS 

The emitted ultra-wideband (UWB) pulse is significantly weakened, altered, and bounced back 

several times due to the nature of the rubble. Radar finds it challenging to detect small features amid the 

noise because of these issues. Preprocessing the raw data gathered from the environment using processing 

techniques is the first step in removing these barriers. For the proposed study, Algorithm 1 shows a flexible, 

dynamic system for detecting human presence.  
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Algorithm 1. Proposed flexible adaptive human presence detector 

Step 1: Main loop  

First step: 512 * n_pulses  

First step: 256 n_samples  

Step 1.3: dtpulse = 0.014  

In step 1.4, breath_freq = [0.2, 0.7].  

Step 1.5: amp_thresh = 0.5  

Step 2: Determine the amplitude’s minimal threshold  

Step 2.1: noise_thresh = 0.3  

In step 3.0, set the noise threshold.  

Step 3.1: The NFFT is 1024.  

Step 3.2: For n_measures, use 10.  

Step 4.0: Replace the actual quantity of measurements  

Step 4: actual_targets = np.random.choice([0,1],n_measures)  

Step 5: Replace the existing target values  

In Step 5.1, CF = np.zeros((2,2)).  

Step 6.0: The feature of noise filtering  

In step 6.1, define filter_noise(data,noise_thresh):  

If noise_thresh > np.max(data) in step 6.2, then  

6.3: filtered_data = data - np.median(data)  

Step 6.4: Should it happen that  

Data = filtered_data in step 6.5  

In step 7.6, return filtered_data.  

Step 7.0: The method by which the measure detects the presence of humans  

Step 7.1 is defined as Def 

verify_human_presence_in_measure(measure,amp_thresh,breath_freq,noise_thresh,n_pulses,dtpul

se,NFFT,n_samples).  

Step 8.0: Subtract the row and column averages.  

Measure in Step 8.1 [:,np.newaxis] - Mdiff_measure- np.mean(axis=0), + np.mean(measure), 

np.mean(measure,axis=1)  

In step 9.0, apply noise filtering.  

Step 9.1: Mfiltered_measure = np.zeros_like(Mdiff_measure)  

Step 9.2: For i in range(Mdiff_measure.shape[1]),  

The formula for step 9.3 is Mfiltered_measure[:,i] = 

filter_noise(Mdiff_measure[:,i],noise_thresh).  

Step 10.0: Use the FFT to determine the amplitude spectrum  

Step 10.1: n_samples = Mfft_measure* / np.abs(np.fft.fft(Mfiltered_measure,NFFT,axis=0))  

Step 11.0: Find the maximum amplitude and pulse index  

Step 11.1: max_amp,pulse_idxmax_amp = np.max(Mfft_measure),np.argmax(Mfft_measure)  

Step 11.2: i,_ = np.unravel_index(pulse_idxmax_amp,Mfft_measure.shape)  

Step 12.0: Ascertain whether the potential target  

Step 12.1 if max_amp > amp_thresh  

Step 12.2: pred_freq = (i - 1) / (n_pulses * dtpulses)  

In case breath_freq[0] <= pred_freq <= breath_freq[1], as stated in clause 12.3,  

Step 12.4: Respond Truthfully  

Step12.5: Return the false  

Step 13.0: Update the Confusion Matrix  

Step 13.2: def update_cf(predicted_target,actual_target,cf) if actual_target:  

13.3: Is predicted_target supposed to be true?  

Step 13.4: Increase cf[0,0] by 1  

Step 13.5: Should it happen that  

Step 13.6: cf[1,0] + 1  

Step 13.7: Should it happen that  

13.8: Should predicted_target come true:  

Step 13.9: Increase cf[0,1] by 1  

Step 13.10: In the absence of  

13.11 Step: 1 + cf[1,1]  

Step 13.12: Return with vigor cf  

Step 13.13: For k in range(n_measures):  

Step 13.14: Measure = np.random.rand(n_pulses,n_samples)  

Step 14.0: Use authentic measurement information  

In step 14.1, actual_target = actual_targets[k].  

The presence of humans in the measure 

(measure,amp_thresh,breath_freq,noise_thresh,n_pulses,dtpulse,NFFT,n_samples) is confirmed 

by the predicted_target function at step 14.2.  

14.3: CF = update_cf(predicted_target,actual_target,CF)  

In step 14.4, print("Confusion Matrix:").  

In step 14.5, print(CF).  

 

From several phases of approach that assess the possibility of human presence, the suggested 

method finds human whereabouts. The algorithm carefully analyses every measurement to ascertain the 

probability of human presence after noise filtering. This thorough analysis guarantees the detection system’s 

resilience and efficacy in a range of situations and applications. 
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An Intel Core 5 CPU consisting of a 64-bit operating system and 16 GB of RAM is used for the 

testing in this research. The algorithm was written using the Python environment. To verify comparable 

training and testing performances of the experiments in terms of accuracy and sensitivity, among other 

metrics, the confusion matrices were employed as the classification evaluation [7].  

 

 

3. MATERIALS AND METHOD 

This section explains the methodology used for the investigation and concurrently. Gives an all-

inclusive discussion of the materials used. Figure 1 presents the technique flow chart. While Table 1 displays 

the dataset description. 

 

 

 
 

Figure 1. Proposed under-rubble AHPD for NLOS data human detection 

 

 

3.1.  Dataset 

The investigation made use of the University of Bologna’s freely available NLOS signal dataset 

collection for human detection buried under debris. It is composed of various types of detritus, ranging from 

glass cement-based materials and wood, and an oriented human body consisting 256 samples and 23,552 

occurrences as described in Table 1. 

 

 

Table 1. Features of the dataset 
Dataset Instances Total number of samples collected per observed window 

Dynamic radar values 23,552 256 

 

 

3.2.  Methodology 

SAR, or through-wall human detection, is a widely used method for locating victims, particularly 

those hidden by debris. The ability to detect several aspects of hidden data is a key element of current high-

throughput genetic factor technologies. It reacts to various training solutions and situations, generating 

sufficient sequencing data [24], and it detects subtle changes occurring in the conditions of buried victims, 
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providing greater insight for inmates, rescue efforts, and improved detections [25]. People behind barriers 

can now be classified and evaluated thanks to the human detection prediction of NLOS signal data [26]. 

Due to the high-dimensional dataset, the detection problem is a key one that leads to unfitting 

conclusions for UWB data signals obtained from sensors. An NLOS signal dataset is used in this 

investigation. The Python application is used to analyse the data samples. The AHPD receives the samples. 

After that, a smaller sample is collected and fed into the GA and ICA independently. Training and testing sets 

are created using the reduced data. SVM is used for classification. 

 

3.3.  Dimensionality reduction 

Dimensionality reduction is a widely used method for getting rid of extraneous features and 

undesirable noise. The high-dimensional features in the NLOS dataset are computationally intensive, which 

hinders the effectiveness of classification methods. Dimensionality reduction strategies are crucial for 

removing duplication and collecting unnecessary features that reduce activity efficiency by reducing the 

sample-to-feature ratios. This approach reduces the likelihood of overfitting. One important technique is 

feature extraction and collection, which lowers the dimensionality [27], [28]. 

 

3.4.  Feature selection 

Model testing and training depend on technologies such as NLOS signal data, which produce unique 

and pertinent feature IDs for transcript sequences. To improve classification performance, feature selection is 

crucial. Feature selection lessens the detrimental impacts of dimensionality and makes it possible to choose 

pertinent components for classification model performances by eliminating unnecessary and duplicate 

characteristics [29], [30]. It supports the learning process throughout the categorisation phase and improves 

the success model. 

For example, both supervised and unsupervised decision-making learning are used in the massive 

information feature selection method that combines wall and SAR data. The prediction model’s efficacy will be 

increased by using carefully chosen optimal rank attributes that communicate priority for categorisation jobs. One 

effective method known as a filter, wrapper, or embedded type is the collection of feature selection [31], [32]. 

 

3.5.  Genetic algorithm 

Engine optimisation problems are analysed using a genetic algorithm, which is an evolutionary 

method for choosing pertinent features based on wrappers. The persistence of the rightist paradigm-based 

genetic algorithms is built on real behaviours connected to human hereditary elements. Genetic algorithms 

include primary population advances, fitness evaluation, parent selection, crossover, and mutation [33], [34].  

A GA is an exploratory discovery technique characterised by a straightforward procedure that 

generates a value appropriate for the primary objective of computing favourable findings by using a model of 

randomly generated results. In general, property sets that are represented as binary strings of 0 s and 1 s 

comprise wreckage or rubble [35]. Even though genetic algorithms are highly sensitive to the beginning 

population, they exhibit an optimality deficit. Although it has been revealed to yield sufficient eminence 

solutions to improve it for NLOS sampling, the quality of its output declines as the problem dimensions 

increase [36]. 

 

3.6.  Feature extraction 

Finding significant traits, attributes, or structures in data is known as feature extraction. Finding 

patterns and public events in an assembly of identifications are two examples of feature extraction strategies 

[37]. Feature extraction is used to obtain an additional detailed picture of the features while working with 

data that contains dimensional loads. The curse of dimensionality can be lessened by employing feature 

extraction to isolate revolutionary feature variables. In particular, there are two main categories of feature 

extraction techniques: linear (supposing a low-dimensional depiction resulting from high-dimensional 

features, comparably ICA) and non-linear (assuming data on a low-dimensional subspace, like PCA) for a 

non-linear relationship between features [19], [38]. 

 

3.7.  Independent component analysis 

By separating multivariate signals into distinct non-Gaussian components for statistically 

independent components, ICA can assist in revealing hidden features from multidimensional data. ICA 

embellishes the data by deleting or altering the relevant information to find a relationship amongst the bits of 

information [39]. A: ICA adopts opinion B as a straight-line combination of the individual parts. If B relates 

to the columns of C, then define the fundamental characteristic, the independent weighted matrix R, vectors 

of observation X.  

 

𝐴 =  𝑅𝑡𝑜𝐵, 𝐵 =  𝐶𝑡𝑜𝑆  (1) 
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ICA has been widely applied in information retrieval, recognition, through-wall applications, and 

SAR [40], [41]. GA is a non-linear optimization technique that reduces the number and dimensionality of 

features. Although GA is inherently non-linear, preprocessing enhances performance and allows ICA to 

operate as a linear technique [42].  

 

 

4. CLASSIFICATION 

One popular supervised learning tactic in data mining methods is classification. It entails class label 

assignment and prediction using predetermined class labels and available data. There are two steps in the 

categorisation procedure [43]. First, a class label and a collection of training data are used to develop a 

classification model. The accuracy of the SVM classifier is then assessed by using this model to predict class 

labels for data that has not yet been observed. The text provides definitions for the utilised equations. 

 

4.1.  Support vector machine 

By identifying the best hyperplane in the input space, SVM aims to separate groups. By 

incorporating the kernel notions into high-dimensional workspaces, SVM, a linear classifier, is developed to 

handle non-linear scenarios. For non-linear scenarios, SVM uses a kernel to train the data in order to narrow 

the spread the dimension. When modifying the proportions, SVM should search for the best hyperplane that 

can distinguish one class from another [44]. By identifying the best hyperplane in the input space, SVM aims 

to separate groups. SVM, a linear classifier, is developed by combining the kernel concepts in high-

dimensional workspaces to handle non-linear scenarios. SVM employs a kernel to train the data to narrow 

distribute the dimension for non-linear situations. SVM can find the optimal hyperplane and differentiate a 

class from other classes by adjusting the proportions [45].  

The Gaussian kernel [46] is associated with the general assumption that all kth-order subordinates 

are smooth. To describe previous learning challenges, kernels that control a certain prior data recurrence 

material can be constructed. All of the polynomial extensions of the x components are included in the 

translation of each input vector, x, into an infinite-dimensional vector [47].  

Adding dimensions to NLOS signal data is a major challenge to straightforward, trustworthy 

research techniques. When learning complex strategies on multiple levels that are influenced by 

morphological processes that are of interest, it is imperative to employ traditional ways. Most traditional 

approaches for handling high-dimensional data, like the NLOS signal data, have several problems. When a 

portion of data from one operation is added to the input of another, the application of different dimensionality 

reduction techniques can provide special advantages. Feature extraction techniques often employ feature 

selection or redundant signal data deletion to choose the original subset of data, respectively, so facilitate 

feature selection. It may be advantageous to extract primary subset features and combine many feature 

extraction techniques [38], [48].  

This work proposed an efficient dimension reduction technique for NLOS signal data classification. 

This method has enormous promise for tracking down, identifying, and locating victims who are concealed 

beneath the ground. However, the structures become more apparent when the dimensionality is reduced. Data 

is still difficult to handle, though, and existing algorithms require improvement to exhibit the right 

characteristics. Although the fusion strategy offers benefits, it also necessitates the use of beneficial 

modelling techniques. 

This work proposed an efficient dimension reduction technique for NLOS signal data classification. 

This method has enormous promise for tracking down, identifying, and locating victims who are concealed 

beneath the ground. However, the structures become more apparent when the dimensionality is reduced. Data 

is still difficult to handle, though, and existing algorithms require improvement to exhibit the right 

characteristics. Although the fusion strategy offers benefits, it also necessitates the use of beneficial 

modelling techniques. 

The AHPD cypher text, features chosen, characteristics eliminated, and the class of the class are the 

four steps that have been suggested prior to the classification technique. The proposed hybrid system for the 

NLOS data human detection architecture, which predicts victims trapped behind debris using the NLOS 

signal dataset, is shown in Figure 1. Four subsystems make up the framework: one for class-based feature 

extraction, one for AHDP pseudocode, one for feature collecting, and one for classification. The function 

selection sub-system employs AHPD pseudocode, which filters noise using the first method and utilises GA 

to evaluate the fitness to identify an ideal subset. ICA is used by the function extraction subsystem due to its 

data projection of efficiency, invariance, and impertinent ordering. SVM is used to classify research 

standards. 

The dynamic properties of the human detecting algorithm, which offer many search areas that 

independently and concurrently review the best result to produce a good result, are what make it important to 
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optimise. To reduce the number of features in this study while preserving discriminating qualities, GA 

features were used. Reduced data are converted into latent components using the best feature extraction 

technique. Sadly, this reduces its productivity and invalidates both dimensionality reduction techniques for 

the dataset. 

 

 

5. RESULTS AND DISCUSSION 

Using a publicly available dataset containing 23,552 samples and 256 occurrences, as shown in 

Table 2, this research presents a Python-based tool for NLOS signal dataset classification [23]. A total of 481 

features were extracted from the dynamic dataset as relevant features. The AHPD approach was employed to 

filter out noise and refine feature selection, thereby enhancing classification accuracy and efficiency. Figure 2 

illustrates the proposed prediction framework for human detection data analysis. 

 

 

Table 2. Comparative approaches 
Methods employed Accuracy (%) 

CNN+stacked-LSTM [49] 82.14 

AHPD+ GA+Bagged ensemble [50] 85.69 

FE+SVM [51] 83.00 

SVM+Ensemble [51] 81.00 

AHPD+GA+SVM (proposed model) 85.78 

 

 

 
 

Figure 2. Proposed complete framework flow for human detection data analysis 

 

 

A 0.5 threshold was applied as a decision boundary in classification tasks to determine whether a 

detected signal corresponds to human breathing. This thresholding mechanism ensures that only signals with 

sufficient confidence are classified as breathing, thereby improving detection reliability. By implementing 

this threshold, the system effectively minimizes false positives, which could misidentify non-human signals 

such as machinery vibrations or environmental noise as breathing. Additionally, false negatives, which occur 

when real human breathing is not detected, are reduced by optimizing the system’s sensitivity within the 

specified frequency range. 

Furthermore, the breath frequency range was set at [0.2, 0.7] Hz to enhance SAR effectiveness, 

particularly in disaster scenarios where victims may have weakened or irregular breathing patterns. 

Individuals trapped under rubble due to structural collapses may experience slow or rapid breathing as a 

result of trauma, panic, or oxygen deprivation. By expanding the breath frequency range, the system becomes 

more adaptive to diverse physiological conditions, thereby improving its robustness in real-world search and 
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rescue applications. The selected range ensures that even subtle respiratory signals are detected, increasing 

the likelihood of successful human presence identification in complex and noisy environments. 

The dataset was evaluated using state-of-the-art machine learning classifiers, with an emphasis on 

optimizing hyperparameters for improved performance. GA-based feature selection was applied to refine the 

dataset by selecting only the most relevant features, thus reducing dimensionality and enhancing 

classification accuracy. Through this optimization process, the ideal number of neighbors (n_neighbors) was 

identified as 11 for the SVM classifier. This value provided the best trade-off between bias and variance, 

ensuring a balance between model complexity and generalization. The use of GA further enhanced 

classification performance by optimizing feature selection and ensuring robust generalization across dynamic 

datasets. This study underscores the effectiveness of integrating dimensionality reduction techniques with 

machine learning classifiers to improve NLOS human detection in search and rescue operations. Figure 3 

shows the confusion matrices for AHPD+GA+SVM. 

 

 

 
 

Figure 3. Confusion matrix for AHPD with GA and SVM (dynamic) TP=1329; TN=1657; FP=154; FN=341 

 

 

The SVM classification technique with validation was used to predict the outcomes of the extracted 

features. To evaluate prediction models, this approach separates the given sample into training and testing 

sets. Performance indicators were then used to assess the SVM confusion matrix. Additionally, the filtered 

AHPD features were subjected to the GA method and the ICA variables. The confusion matrix was evaluated 

following the classification of the latent features using SVM with cross-validation. The algorithms AHPD 

+GA+SVM and AHPD+ICA+SVM were tested on the NLOS signal dataset. Figure 4 display the ROC for 

ICA-SVM performance  

 

 

 
 

Figure 4. A ROC curve of the SVM attributes with ICA 
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Numerous researchers have employed machine learning approaches to address fundamental 

classification problems and develop reliable detection and prediction strategies for identifying trapped 

victims. Figure 5 depicts the confusion matrices for AHPD+ICA+SVM. The results presented in Figure 6 

demonstrate an improvement over the previous method. Compared to the state-of-the-art, the accuracy 

improved (Table 2). When a GA for feature selection was used in conjunction with an SVM classifier, the 

AHPD system demonstrated significant performance improvements, particularly for the dynamic dataset.  

 

 

 
 

Figure 5. Confusion matrix for AHPD with ICA and SVM (dynamic data) TP=1202; TN=1555; FP=281; 

FN=443 

 

 

 
 

Figure 6. Performance metrics classification result for the experiment 

 

 

The AHPD+GA+SVM model achieved the highest performance, with an accuracy of 85.78%. This 

implies that it has a strong ability to correctly predict both the presence and absence of humans trapped 

behind rubble. The high accuracy suggests that GA effectively selects the most relevant features while 

removing redundant or noisy data caused by NLOS signal reflections, leading to improved classification 

efficiency. The ability to correctly detect the presence of trapped victims (sensitivity) is 80.00%. This means 

the system is effective in minimizing false negatives, which is crucial in SAR missions where the inability to 

detect a trapped individual could have life-threatening consequences. The model is robust against false alarms, 

as it demonstrates a high capability (96.46%) in correctly identifying non-human presence (specificity), making 

it highly reliable for real-world deployment in disaster scenarios. This reduces unnecessary resource allocation, 

ensuring that rescue teams focus on actual human presence rather than false detections. Figure 6 contains the 

list of performance evaluation results from the experiments.  
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The precision of 80.82% indicates that 80.82% of the model’s human presence classifications were 

correct, showing that the predictions made were generally reliable. The balance between precision and 

sensitivity is essential in applications where both minimizing false positives and maximizing true positives 

are necessary. The recall (90.00%) is the highest among all the evaluated metrics, highlighting that the model 

successfully identified a high proportion of true human presence cases. This is particularly important in SAR 

operations, where missing a trapped victim could delay rescue efforts and reduce survival chances. The F1-

score of 80.41% confirms strong classification performance, showing a good balance between precision and 

recall. This means that the model maintains overall effectiveness, making it suitable for complex, noisy 

environments where accurate human presence detection is critical. 

The AHPD+ICA+SVM model demonstrated slightly lower performance, achieving an accuracy of 

79.20%. This suggests that while ICA is somewhat effective in extracting meaningful features, it may retain 

some redundant or noisy components, leading to reduced classification accuracy. The 73.07% sensitivity 

indicates that the model is less effective than the GA-based model in detecting human presence, which could 

increase the likelihood of false negatives. The model has a tendency (84.69%) to misclassify non-human 

signals as human presence (specificity), potentially leading to more false alarms. The precision of 81.05% 

suggests that when the model does classify human presence, it is relatively confident in its prediction. 

However, the recall (77.83%) indicates that the model is less effective at capturing all instances of human 

presence. The F1-score of 76.85% suggests a weaker overall balance between precision and recall. 

The performance of AHPD+ICA+SVM suggests that ICA is less effective than GA in feature 

extraction for human detection in NLOS environments. However, the superior performance of 

AHPD+GA+SVM indicates that using a GA for feature selection enhances the model’s ability to distinguish 

between relevant and irrelevant features, leading to improved generalization and robustness in classifying 

human presence in challenging NLOS conditions. 

The accuracy of the GA-SVM hybrid increased significantly (by 6.58%) from 79.20% to 85.78% in 

a complex and dynamic scenario compared to ICA. Sensitivity rose from 73.07% to 80.00%, demonstrating 

GA’s ability to optimize feature selection. Additionally, the F1-score (80.41) improved, indicating a better 

balance between precision and recall. These results emphasize the importance of feature selection in dealing 

with complex scenarios where irrelevant features could obscure important patterns. 

The AHPD with GA and SVM appears to be a reliable technique for through-wall detection. To 

further improve performance, future work should focus on noise reduction strategies and additional feature 

refinement techniques. These findings highlight the potential of GA-enhanced SVM models for NLOS 

human detection, particularly in search and rescue applications where accurate victim identification is 

critical.  

 

 

6. COMPARATIVE ANALYSIS 

This work provides a better way to make observations than more traditional approaches. 

Furthermore, it can provide a more precise assessment of human detection and localization during search-

and-rescue operations. Table 2 shows how this study compares to other approaches that have been reported in 

the literature. 

 

 

7. CONCLUSION 

This study proposes a hybrid dimensionality reduction approach combining AHPD, GA, and ICA, 

integrated with SVM classification, to enhance victim localization in NLOS scenarios for SAR operations. 

The AHPD+GA+SVM model achieved superior performance with an accuracy of 85.78%, demonstrating its 

potential as a scalable and robust solution for real-time disaster response. 

Despite promising results, the model was tested on controlled datasets, and its real-time adaptability 

in unstructured environments remains to be validated. Limitations include potential computational overhead 

and challenges with sensor reliability in practical scenarios. Future research should explore real-world 

testing, lightweight model optimization, deep learning integration, and multi-sensor fusion to improve the 

system’s robustness and deployability in actual SAR missions.  
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