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 This article presents a three-band low noise amplifier (LNA) in microstrip 

technology based on composite right left handed transmmision line (CRLH-

TL) resonators for multi-band behavior, which has been designed to meet all 

the criteria that determine the quality of its operation. The transistor used is 

biased via a transmission line and matched by λ/4 transformer filters with 

CRLH-TL type resonators at the output to establish multiband behavior with 

improved band rejection to suppress unwanted frequencies and interference. 

The results demonstrate excellent performance at three frequencies: 900 

MHz (15.03 dB gain), 2.1 GHz (13.58 dB gain), and 3.5 GHz (12.57 dB 

gain), with a noise figure below 2 dB and unconditional stability. The size of 

the proposed amplifier is 73×63 𝑚𝑚2 in area. 

Keywords: 

Composite right left handed 

transmmision line 

Low noise 

Low noise amplifier  

Multi band  

Split ring resonator 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Faycal El Hardouzi 

Department of Physics, Electronics, Communication Systems and Energy Optimization Group 

(OPTIMEE), Faculty of Sciences, Moulay Ismail University 

Meknes, Morocco 

Email: fa.elhardouzi@edu.umi.ac.ma 

 

 

1. INTRODUCTION 

The rapid evolution of wireless communication technologies has enabled the emergence of new 

standards, such as 4G and 5G, aimed at delivering high-speed voice, data, and multimedia services. These 

advances, supported by technological progress, meet the growing user demand for reliable and high-

performance communications. Modern networks must not only provide extensive coverage but also ensure a 

smooth transition between different standards (2G, 3G, 4G) to guarantee continuous service quality [1]. 

In this context, low noise amplifiers (LNAs) play a crucial role in the signal reception chain. 

Positioned immediately after the antenna, LNAs amplify low-power signals while minimizing additional 

noise, which is essential to maintain signal quality in multi-standard environments [2]. Designing these 

amplifiers for multiple frequency bands presents several challenges, particularly due to interference and the 

need to reject unwanted bands. In response to these challenges, recent research has explored various 

configurations of multi-band impedance matching networks, often using impedance transformers and 

wideband filtering techniques [3]-[12]. 

However, traditional methods for multi-band LNAs tend to become more complex as the number of 

supported bands increases. They often require numerous localized components and are difficult to implement 

at higher frequencies. In this study, we propose an innovative approach for a multi-band LNA based on 

composite right left handed transmmision line (CRLH-TL) resonators, which achieve enhanced performance 

in terms of unwanted band rejection. Unlike conventional methods, our design remains simple and compact, 
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providing improved rejection of undesired frequencies through controlled spatial arrangement of the 

resonators and air gap configuration in fused rings [13]-[15]. 

The proposed LNA operates efficiently at frequencies of 900 MHz, 2.1 GHz, and 3.5 GHz, 

corresponding to global system for mobile communications (GSM, 2G), universal mobile 

telecommunications system (UMTS, 3G), and new radio (NR, 5G) communications standards. Its design is 

based on the ATF-34143 RF transistor, ensuring stable performance and low noise figure, suitable for the 

requirements of next-generation mobile applications. This approach offers a promising solution for 

integrating multi-band LNAs into future communication systems, meeting needs for portability, cost 

efficiency, and spectral efficiency. In addition, metamaterial-based structures like those we have used are 

applicable across various fields, including microwave devices such as antennas, as well as other advanced 

applications [16], [17]. 

 

 

2. PROPOSED CRLH-TL RESONATORS 

Composite right/left-handed (CRLH) transmission lines are advanced metamaterial structures 

comprising unit cells that incorporate both capacitive and inductive elements arranged in series and parallel 

configurations. This configuration enables the propagation of left-handed (LH) modes at certain frequencies due 

to series capacitance and shunt inductance, while right-handed (RH) modes dominate at higher frequencies 

owing to series inductance and shunt capacitance. Unlike ideal LH transmission lines, which consist solely of 

series capacitance and shunt inductance, CRLH lines account for parasitic effects, making them more suitable 

for practical applications. A distinctive feature of CRLH lines is their ability to support infinite-wavelength 

propagation at finite, non-zero frequencies, distinguishing them from other structures [18], [19]. 

This article introduces two resonators that leverage this unique infinite-wavelength property of 

CRLH lines, known as zeroth-order resonators (ZORs). These resonators exhibit a resonance frequency 

independent of the physical length of the transmission line, offering enhanced design flexibility for compact 

devices. The zeroth-order resonance characteristics are analyzed using the dispersion relation of CRLH lines, 

formulated through Bloch-Floquet theory. Additionally, the paper emphasizes how these resonators exhibit a 

resonant frequency independent of the physical length of the transmission line, allowing for greater design 

flexibility. An ideal open or short CRLH-TL resonator with a physical length of l. Resonance occurs when 

the condition (1) [18], [19]: 

 

𝛽𝑛 = 
𝑛𝜋

𝑙
 (n=0, ±1, ±2, …) (1) 

 

as 𝛽𝑛 represents the phase constant of the CRLH transmission line for the resonance mode n. 

 

A notable feature of Zero-Order Resonators (ZOR) is that their resonance frequency does not 

depend on the physical length of the transmission line. This allows tuning of the resonance frequency without 

altering the resonator's size, making them highly versatile for various applications. Besides filtering out 

unwanted frequencies, these resonators are also essential for impedance matching in specific circuits, adding 

multifunctional value to microwave system designs [20]. Therefore, CRLH-TL resonators, especially ZOR, 

unlock new possibilities in RF circuit design by providing innovative solutions that address the increasing 

demands for miniaturization and performance in modern wireless technologies. These ZOR resonators 

resonate at 𝜔𝑠ℎ as shown in (2) [18]. 

 

𝜔𝑠ℎ =  
1

√𝐿𝐿𝐶𝑅
 (2) 

 

with 

 

𝐿𝐿 =  𝜇0𝑅𝑚 (ln (
8𝑅𝑚

ℎ+𝑊𝑎
) − 0.5) [20]  (3) 

 

such as μ0 is the vacuum permeability, h is the ring height, Wa is the width of the ring, and Rm is the mean 

radius (Figure 1).  

and 
 

𝐶𝑅= 𝜀0𝜀𝑟 
𝐷.𝑊𝑙

𝐻
 [21] (4) 

 

here, 𝜀0 represents the permittivity of vacuum, 𝜀𝑟 denotes the relative permittivity of the substrate, L is the 

length of the microstrip line, 𝑊𝑙 is its width, and H corresponds to the substrate height (Figure 2). 
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Figure 1. Split ring resonator with geometric parameters 

 

 

 
 

Figure 2. Right-handed side of the split ring resonator with geometric parameters 

 

 

The circuit shown in Figure 3 achieve resonance at two distinct frequencies, enabling multiband 

operation. One resonator is tuned to f = 1.6 GHz, while the other resonates at f = 2.8 GHz. These frequencies 

were determined using the computer-aided design program advanced design system (ADS). To verify the 

theoretical cited in (2)-(4) within our circuit, we will examine, for example, the resonator set to resonate at  

𝑓=2.8 GHz. Table 1 outlines the parameters applied in the design of this specific resonator. 

 

 

 
 

Figure 3. Image of the manufactured prototype of the proposed zero-order resonator 
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Table 1. Design parameters for the CRLH-TL resonator 
μ0 Rm R Wa h 

12 × 10−7 H/m 4.7 mm 4.35 mm 0.7 mm 35× 10−3 mm 

ε0 εr D Wl H g 

8.854 ×10−12 F/m 3.38 2.34 mm 1.6 mm 0.813 mm 0.5 mm 

 

 

So, the resonant frequency is: 

 

𝑓𝑟𝑒𝑠 =  
1

2𝜋√𝐿𝐿𝐶𝑅
=2 .88 GHz (5) 

 

This is almost the same result we obtained from simulation, as shown in Figure 4. Following the 

same steps for the second resonator, we find that f= 1.58 GHz. This is almost the same result we obtained 

through simulation, as shown in Figure 4. 

 

 

 
 

Figure 4. Measured transmittance (S21) of the resonators (Figure 3), highlighting the frequency response, 

passband, and rejection bands 

 

 

From Figure 4, we can see that the resonators resonate at frequencies of 1.6 GHz and 2.8 GHz, 

which are almost the same as the frequencies obtained by applying the previously mentioned (2) to (4). We 

have dimensioned the two resonators to resonate at these frequencies (1.6 GHz and 2.8 GHz) in order to 

create bands around 900 MHz, 2.1 GHz, and 3.5 GHz. Thus, these resonators have high precision, and these 

three bands are now separated from each other, which helps to avoid interference between these bands. From 

here, the importance of the resonator becomes clear, as does its ease of multi-band realization and high-

precision tuning of the desired resonant frequency. 

The importance of this resonator in the multiband application can be clearly seen in comparison 

with other work in the multiband field, thanks to its smooth and controlled control. It also enables us to adjust 

and widen the rejection band, while remaining extremely compact. The frequency of our system's 0th-order 

resonator is directly related to the value of the unit cell's capacitor CRand coil LL, rather than to the physical 

length of the resonator. What's more, this resonator requires no localized components, making it easy and 

cost-effective to manufacture. Its use in our amplifier gives excellent results. 

 

 

3. PROPOSED LNA TRIBAND 

Figures 5 and 6 displays the proposed tri-band LNA. For this design, we employed the ATF34143, a 

commercially available pseudomorphic HEMT transistor, with bias voltages set to 𝑉𝐷𝑆=4 V and 𝑉𝐺𝑆=−0.1 V. 

The amplifier is constructed on a Roger RO4003 substrate, featuring a relative permittivity of 3.38, a loss 

tangent of 0.0027, and a thickness of 0.813 mm. The overall dimensions of the amplifier are 73×62 mm². The 

key contribution of this work centers on the use of resonators to create a multiband response within a LNA 

structure.  
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Figure 5. Schematic of the proposed multiband LNA 
 

 

 
 

Figure 6. Photograph of the fabricated prototype of the proposed tri-band LNA 
 

 

The multiband LNA is designed with a calibrated resistor to ensure stability and minimize noise. A 

DC power supply is used to precisely bias the transistor, which is connected to a series capacitor and a λ/4 

transformer leading to a radial line section. This configuration optimizes the transistor's operating point, 

improving gain, noise figure, linearity, output power, and expanding the amplifier's bandwidth to process a 

wider frequency range [22], [23]. 

Effective impedance matching is also emphasized, as it is vital for the performance of microwave 

amplifiers. To optimize power transfer and prevent instability, a quarter-wave line is used between load and 

input impedances. Multi-section designs with cascaded λ/4 lines and uniform quarter-wave section 

impedance transformers are implemented to enhance matching further. The formula establishing the 

relationship between characteristic impedance Z0, load impedance ZL, and Impedance values that define the 

multi-section transformer is as (6) [23]: 

 

𝑙𝑛
𝑍𝑛+1

𝑍𝑛
=  2−𝑁𝐶𝑛

𝑁 𝑙𝑛
𝑍𝐿

𝑍0
 (6) 

 

To perform the matching, we study the case of three sections of length (λ/4), as shown in Figure 7. 

This approach aims to ensure optimal impedance matching at both the input and output of the transistor, in order 

to reduce losses due to reflections. Effective matching directly improves the amplifier’s performance, especially 

in terms of gain and stability. 
 

 

 
 

Figure 7. Three-section wave quard transformer 
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For the 2.2 GHz center frequency, we find: he optimum impedance at the transistor input is  
𝑍𝑠 = 43,89 − 𝑗0,14 and the optimum impedance at the transistor output is 𝑍𝐿 = 31,93 − 𝑗4,96, so  

𝑍𝑖𝑛 = 43,89 + 𝑗0,14 and 𝑍𝑜𝑢𝑡 = 31,93 + 𝑗4,96. As far as CRLH-TL resonators are concerned, we discussed 

them in section 2. 

 

 

4. RESULTS AND DISCUSSION 

The performance results of our tri-band LNA circuit are presented in Figures 8 to 11. Figure 8 

displays the simulated gain 𝑆21 for the multi-band LNA. As shown, the signal gain reaches 15.03 dB at  

900 MHz, 13.58 dB at 2.1 GHz, and 12.57 dB at 3.5 GHz. The reverse isolation 𝑆12 indicates the internal 

feedback from the output to the input of the two-port device. The simulated reverse isolation of the proposed 

multi-band LNA is shown in Figure 7. At 900 MHz, 𝑆12 is -34 dB, at 2.1 GHz it is -26.19 dB, and at 3.5 GHz 

it is -20.44 dB. For proper LNA operation, it is crucial to minimize 𝑆12. A low reverse isolation ensures 

maximum isolation between the output and input, which is vital for achieving optimal stability and 

performance. 

Figure 9 presents the reflection coefficients at the input (𝑆11) and output (𝑆22) for low excitation 

levels. As observed in Figure 9, the input reflection losses are -6.76 dB at 900 MHz, -10.17 dB at 2.1 GHz, 

and -12.76 dB at 3.5 GHz. For the output, the reflection losses are -1.5 dB at 900 MHz, -6.4 dB at 2.1 GHz, 

and -11.64 dB at 3.5 GHz. 

 

 

 
 

Figure 8. Transmission coefficients S21and S12 

 

 

 
 

Figure 9. Reflexion coefficients S11and S22 

 

 

Figure 10 illustrates the evolution of the noise figure as a function of frequency. It can be observed 

that the minimum noise figure (NFmin) remains below 2 across all targeted frequency bands. This 

demonstrates that the designed amplifier provides good noise performance, which is essential for ensuring 

high-quality signal reception. 
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Figure 11 presents the stability coefficients k (StabFact1) and μ (μ′ and μ1) simulated at the three 

targeted frequencies. Since the stability factors exceed 1 across all frequency bands, the stability criteria for 

the proposed multi-band LNA are fulfilled. This ensures that the LNA can handle any source or load at these 

frequencies without the risk of instability or oscillation. In Table 2, the performance of the designed 

multiband amplifier is summarized and Compared with the state of the art in multiband amplifiers. We can 

clearly see that our technique is useful and easy, and despite our single stage, we've achieved good results. 

 

 

 
 

Figure 10. Noise of LNA multiband 

 

 

 
 

Figure 11. The stability factors of multiband LNA 

 

 

Table 2. State of the art of low-noise multiband amplifiers 
Ref. Freq.(GHz) Gain (dB) S(1,2) (dB) S(1,1) (dB) NF (dB) VDS (V) Number of stage 

[24] 2.44 

5.25 

7.15 

7.80 

- -10.54 

-15.98 

4.34 

4.69 

2.7 Single 

[25] 2.45 
5.25 

28.4 
28.8 

-45 
-45 

-13 
-20 

0.7 
1.1 

 
1 

Two stage 
(cascade) 

[26] 28 

60 

16.2 

15 

 

- 

 

- 

2.8 

3.35 

 

- 

 

Cascode topology 
[This work] 0.9 

2.1 

3.5 

15.03 

13.58  

12.57 

-34 

-26.19 

-20.44 

-6.7 

-10.17 

-12.76 

0.98 

1.72 

1.84 

 

4 

 

 

Single 

 

 

5. CONCLUSION 

This study introduces the design and analysis of a multiband low-noise microwave amplifier based 

on resonators and implemented in microstrip technology using a composite right/left-handed (CRLH) 

transmission line. The results indicate that the proposed amplifier delivers excellent performance for mobile 

network standards including GSM (2G), UMTS (3G), and NR (5G). Specifically, the amplifier achieves a 
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gain of 15.03 dB with a noise figure of 0.98 at 900 MHz, a gain of 13.58 dB with 1.72 noise at 2.1 GHz, and 

a gain of 12.57 dB with 1.84 noise at 3.5 GHz, powered by 𝑉𝐷𝑆=4V and 𝑉𝐺𝑆=-0.1 V. 

The proposed amplifier demonstrates strong stability, high gain, and low noise, thereby validating 

the novel application of CRLH-TLs to achieve multiband capabilities in amplifiers. This approach shows 

promise for broad application across various amplifier types. 
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