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 A new communication framework has been developed that allows voice 

transmission over long distances for internet of things (IoT) applications such 

as healthcare, smart cities, and remote monitoring in the least costly way and 

most secure manner. The system is based on long range (LoRa) technology 

and takes advantage of its spread spectrum technique, to provide long range 

transmission without the high-power requirements. The main limitation is 

LoRa’s bandwidth with a maximum throughput of 22 kbps for data. This 

presents a challenge for voice transmission communications. To address this 

shortened bandwidth issue, researchers developed an innovative compression 

solution that compresses voice data to less than 8 kbps to fit into LoRa’s 

capabilities. The compression allows for real practical voice communications 

and possibly can provide even greater distance than an uncompressed voice 

transmission update. The voice communications transmissions have 

cryptographic protection in place to protect the transmitted voice messages 

from unauthorized access. 
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1. INTRODUCTION  

There has been an explosion of inexpensive wireless systems able to send large amounts of data long 

distances over a distance without physical connections [1]–[5]. The applicable communications environments 

vary widely and include military operations, remote data collection, urban infrastructure, health services, 

environmental monitoring, agriculture, internet of things (IoT) and telecommunication networks. Wireless 

long-distance communications can rely on a variety of technologies, including those utilizing satellites, radio 

frequency (RF) transmission, and microwave communications, each exhibiting distinct frequency use and 

techniques of operation [6], [7]. Long range (LoRa) technology comes as a specialized communication 

technology in a specific ecosystem for wireless communication of IoT applications considering its unique long 

communication range and low power requirements [8], [9]. LoRa manages to maintain its wide range 

communication and energy efficient operations due to its spread-spectrum modulation techniques. Moreover, 

economic advantage comes in the form of absence of ongoing payment due to its operations in un-licensed RF 

bands for a LoRa device’s non-recurring RF bandwidth. For IoT applications with wide geographical 

distribution, the communication range of several kilometers provided by LoRa devices is ideal [9]–[11]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Semtech corporation innovations in the form of LoRa devices makes it an appropriate choice for energy 

sensitive battery powered IoT devices due to its low power consumption. Moreover, its high-capacity network 

makes it possible to cover a wide range and densely distribute the devices in many areas such as health care 

services, asset tracking, environment and agriculture, industrial sectors, home automation, water management, 

and smart city applications [8]–[10]. 

 Ensuring the security of transmitted data is essential, requiring a communication system that 

guarantees the privacy and confidentiality of messages [12], [13]. Such a system needs to be made to prevent 

unauthorized access and ensure data integrity in-transit. End-to-end encryption is a good example of a secure 

communication system that is both effective and inexpensive, as facilitated by apps like WhatsApp and Signal. 

End-to-end encryption performs encryption and decryption on the sender and receiver devices so that even 

third parties that proxy the communications cannot see the content of the communications [14]–[17]. An 

inherent limitation of LoRa is its low data rate for transmissions, which makes exchange of voice 

communication difficult. LoRa uses chirp spread spectrum (CSS) which uses chirp pulses that exhibit linear 

frequency modulation. This enables flexible, energy efficient, low latency data communication; especially 

valuable for long-range communication where it is felt further value can be gained in radar systems using pulse 

compression [18]. Use of existing voice encoding techniques can improve the digital transmission and storage 

of speech [19]–[25]. As brought to light in this research, a speech encoding method based on sinusoidal signal 

operation was proposed for use in LoRa speech applications enabling voice signal transmission. This method 

in wired and mobile environments has been omega encoded which allows optimal bandwidth and voice 

compression while not sacrificing power consumption and transmission distance with acceptable configuration 

needed for meaningful deployment. Thus, this research solves the limitation of voice communications over LoRa 

by proposing a new encoding method, which ultimately encodes speech into a few kbps allowing voice 

transmissions over LoRa systems. The research also provides a new encryption-decryption protocol tailored to 

LoRa hardware, and emphasizes speed and reliability while keeping cost low, and this was shown through testing. 

 

 

2. RESEARCH METHOD 

The sinusoidal model of physical representations of speech first presented in [26], created a voice 

coding method that capitalized on the properties of sine waves, amplitude, frequency, and phase, to allow for 

efficient speech processing. The method has been shown to allow for high fidelity speech reconstruction with 

a relatively low data rate [26]–[30]. In this framework, voice signal segment k can be expressed mathematically 

as a finite sum of sinusoidal components, where each component is specified by its amplitude, frequency, and 

phase: 

 

𝑠(𝑛) = ∑ 𝐴𝑘 .sin(Ω𝑘𝑛 + 𝜙𝑘)𝑁
𝑘=1   (1)  

 

In (1), 𝐴𝑘, Ω𝑘, 𝜙𝑘, and N denote the amplitude, frequency, and phase of the k-th sinusoidal component 

respectively, while N indicates the total number of potential peaks. Another positive aspect of the sinusoidal 

coding scheme is that it can represent both voiced speech and unvoiced speech. It performs an analysis function 

by breaking the incoming speech signal into frames and then extracting parameters while analyzing each frame, 

which is why we call it an analysis function. The parameters extracted during the analysis are then employed 

at the receiving end to reconstruct the original speech segments. 

 

2.1.  Encoder stage 

The encoding system works to parameter sets, and quantizes those parameters then converts them into 

binary format for transmission. The paradigm used strives to minimize the data rate necessary to represent the 

parameter sets while maintaining perceptual quality. The first step is sampling the speech at 8 kHz and 

segmenting it into many frames. Each frame is further classification into two distinct groups of voiced and 

unvoiced. Voiced segments will receive more peaks than unvoiced. In addition, the analysis of voiced segments 

has a further level of analysis which identifies these segments, and sub-classes the segments into N sub-

segments based on energy classification. The sub-segments will also be classified as peeled or not peeled, for 

example, based on energy levels. The segment with a higher amount of energy will receive more peaks to 

represent versus the segment with the lower level of energy that will receive the lowest number of peaks. The 

intention of this level of classification strategy is to identify the most significant parameters with a major extract 

and returns that based on its highest and most complete representation. The encoding system is made up of two 

functional blocks that provide details on how the distinction and applications of both methodologies are 

expressed in the next few sections. 
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2.1.1. Sinusoidal peaks selection strategy 

Signal stability is achieved through boundaries in which speech was divided into primary segments of 

20-40 milliseconds. These segments were put through fast fourier transform (FFT) processing to expose 

sinusoidal peaks which are vital to reconstruct speech at the receiving end. One of the main challenges was 

properly identifying significant peaks and defining their properties, particularly what the optimum window 

length is to analyze the peaks. It is imperative to weigh the lengths of the component of the sinusoidal waves 

between two frames of reference. A short window length captures the rapid variations of the signal, and a long 

one allows for accurate measurements of frequency and separation of closely situated sinusoids. The analytic 

portion incorporated a windowing function of Hanning. The Hanning window was selected not only for its side 

lobe reduction capabilities but also for the improvement of speech quality. The sinusoidal components 

presented were taken from actual signals from short-time fourier transform (STFT) processing, which scanned 

every 20-40 milliseconds, extracting every peak across many local maxima. The magnitude peaks in STFT, 

represent sinusoidal components. This methodology of sinusoidal extraction is a standard practice and has been 

established in many audio compression methods, as long as they protect the bit rate and selected components 

to create the most efficient data. Threshold based peak detection also optimized system performance where 

only maxima over a defined threshold would be quantified as legitimate peaks. 

An additional organizational layer uses and groups the primary frames, while dividing each frame into 

6 smaller parts. Peak identification involves examining transitions in the spectral gradient from high to low 

values. Each peak is parabolically fitted, a fitting process illustrated in the parabola’s vertex determining the 

exact frequency. If everything goes well, the above description generally produces about eighty peaks, which 

are then pragmatically reduced to minimize perceivable information loss. The last processing stage simply 

needs the frequencies of the identified peaks and their critical phase values, to be quantified prior to 

transmission. A scheme of this type allows for efficient encoding that possesses the essential characteristics 

necessary for speech reconstruction. 

 

2.1.2. Optimization of data rate  

The encoding scheme takes a targeted approach and seeks to compress only the most important peaks 

possible. The approach is to segment the speech into smaller pieces, and the model incorporates a hierarchical 

classification structure. The overall architecture of the model is described in Figures 1 (a) and (b). For the 

purposes of grouping and encoding data, speech is first segmented into frames (primary frames) and classified 

using an energy-based threshold criterion which classifies frames as voiced or unvoiced. Any frames that had 

energy above the threshold are classified as voiced, and frames that were below the threshold are classified as 

unvoiced. For voiced segments, the algorithm then processes a voiced frame and segments each frame into N 

sub-segments and uses another energy-based classification for the sub-segments. A higher energy sub-segment 

segment would receive a higher number of peaks to encode. The unvoiced frames use the segmented sub-

segments through the same manner; however, there is no way to distinguish the energy levels of the sub-

segments - each sub-segment for every unvoiced frame is given the peak allocation from the lowest energy 

allocation determined for the voiced frames. The segmenting to segmentation and classification enables 

identification of the most important peaks as possible and encode them while also compressing data while 

maintain reconstruction of speech. 

The model heavily emphasizes parameter reduction as a means to minimize compression-related 

errors. The system targets a reduction in frame parameters to between 15 and 30 per main frame. Beyond these 

initial reduction methods, additional compression is achieved during quantization. The encoding process 

implements three distinct levels of processing following the frame classification and segmentation: 

− Peak reduction: focuses on minimizing the number of peaks to reduce redundant data. 

− Phase reduction: simplifies phase information without significantly affecting quality. 

− Threshold reduction: implements a threshold to eliminate minor peaks, retaining only the most critical 

ones. 

a. Number of peaks minimization 

The emphasis of this phase is to determine the N most powerful harmonic components within each 

voiced segment, where N is specified by the target bitrate. These notably include two distinct steps: first, the 

spectral decomposition of the segments will be performed to determine the dominant frequency components 

in that segment. Then, if there is more than one amplitude peak in the vicinity, the algorithm will only keep the 

largest one in order to avoid redundant information and accurately represent the spectral information. This 

methodical approach allows for high-fidelity reproduction of voice in the decoded output and provides a strong 

foundation for the next encoding phases. 

b. Phase minimization 

This process intends to enhance phase related parameter extraction, by differentiating sub-frames into 

voiced and unvoiced sub-frames. Voiced sub-frames display three attributes as evidence of voicedness: i) they 
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are above a certain amplitude level, exhibit a lower-than-normal frequency of zero-crossings, and they include 

identifiable pitched characteristics typical of voiced phonemes; ii) the energetic magnitude is designated as the 

primary metric for classification: we use a simple binary classification process. In the case of voiced sub-frames 

displaying considerable energy, phase extraction is direct; when the frame is unvoiced, then well-used phase 

extraction methods may be used, such as methods in [27]-[30]. In this way, it is possible to reduce the number 

of phase parameters while retaining perceptual quality in speech, since the human ear is essentially insensitive 

to non-ideal phases. 
 
 

  
(a) (b) 

 

Figure 1. System’s architecture: (a) encoder stage and (b) parameter extraction and reduction stage 

 

 

c. Threshold optimization 

This stage represents the most practical of all previous reduction methods, since it is designed to 

eliminate the number of sinusoidal components as the fidelity of the voice is maintained. The method employs 

a threshold based on magnitude, eliminating any peaks below this threshold value. Because each amplitude has 

a corresponding frequency and phase, this pruning process reduces not only the amplitude values, but also their 

frequency and phase, thus reducing the magnitude of all the parameters in the model. This process will have 

two direct benefits. The first benefit is a dramatic reduction in the amount of bandwidth that will be required 

for transmitting the signal. The second benefit is that the quality of the reconstructed waveform will improve, 

by removing components that contribute nothing to the voice other than random noise. The filtering will 

improve the clarity of the signal, but when establishing the threshold value, there needs to be careful 

consideration to avoid using a threshold that is too high and thus risks eliminating letter- and word-contained 

spectral components. Because of this, the threshold must be chosen carefully and will most often require a 

statistical determination of the range of values used to set the threshold. 

After the reduction, each primary frame has S amplitudes, S frequency components, and 0.5 S phases. 

This means that there are S peaks, S frequencies, and only half as many phases per frame. This implementation 

uses 6 bits for amplitude and frequency parameter values, while it records 4 bits for each phase parameter. The 

frame-specific data rate is calculated as (6 × (𝑆 + 𝑆) + 4 × (0.5 𝑆)) = 14 𝑆 𝑏𝑖𝑡𝑠/𝑓𝑟𝑎𝑚𝑒. The system’s 

overall data rate (R) is then derived as: 𝑅 = 14 𝑆 𝑏𝑖𝑡𝑠/𝑓𝑟𝑎𝑚𝑒 × 𝑁 𝑓𝑟𝑎𝑚𝑒𝑠/𝑠 = 14 𝑁𝑆 𝑏𝑝𝑠. The system may 

require additional bit allocation for control functions and error management. At this stage, the quantization 

process becomes crucial, carrying equal weight in ensuring efficient signal encoding and transmission. 

 

2.1.3. Modeling and encoding  

The quantization process divides the amplitude range of the signal into finite regions. The formula 

𝑊 = 2𝑏 is used to determine the number of quantization steps, where b is the number of bits and W is the 

number of quantization steps. The system subsequently maps the signal value to the nearest quantization step 

and then converts to its binary value according to pulse code modulation (PCM). For the system under 
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discussion, the amplitude, frequency, and phase components of each sinusoid undergo specific quantization 

procedures, which are elaborated in the following sections. 

a. Phase modeling and encoding 

The system optimizes phase component bit allocation through entropy reduction of phase values. This 

optimization utilizes differential prediction techniques, where future phase states are estimated from historical 

data. Rather than encoding absolute phase values, the system processes phase differentials, which 

characteristically exhibit reduced entropy compared to unprocessed phase data [27]. The predicted phase 

follows this mathematical relationship: 

 

 𝜙̂𝑙
𝑛 = 𝜙𝑙

𝑛−1 + Ω𝑙
𝑛𝑇 𝑙 = 1,2,…𝐿,  (2) 

 

where 𝑛 indicates frame position, represents the lth sinusoidal component, 𝑇 denotes frame duration, and 𝐿 

signifies the total sinusoidal count. The system then calculates phase differentials, or residues, using: 

 

Δ𝜙𝑙
𝑛 = 𝜙𝑙

𝑛 − 𝜙̂𝑙
𝑛 𝑙 = 1,2,…𝐿   (3) 

 

In this framework, initial phase values serve as the basis for computing phase differentials, which are 

fundamental to residue determination during encoding. 

b. Frequency encoding 

Following the conversion of speech segments to frequency representation via STFT, frequency 

components are expressed as integers. Consider a MATLAB implementation: within a 256-sample STFT 

frame, frequencies map to integer values (𝑆𝑛) from 1 to 256, corresponding to the physical frequency range 

(𝑓𝑛) of 0 to 4000 Hz. The relationship between these values follows: 

 

𝑓𝑛 =
(𝑆𝑛−1)×4000

𝑆𝑇𝐹𝑇 𝑓𝑟𝑎𝑚𝑒
   (4) 

  

In (4), 𝑆𝑛 represents the integer frequency value, with the dimension (such as 256) defining frequency 

resolution granularity. While conventional systems typically allocate 8 bits per frequency value (𝑓𝑛), this model 

achieves comparable results with just 6 bits. The system takes the previous refinement of bit allocation further 

based on the perceptual significance of individual frequency bands. In this system, lower frequency 

components are more affected by the first frequencies, while higher frequencies are affected by the last 

frequencies. Because higher frequencies contribute less to the overall perceptual quality of speech, the same 

bit allocation across all frequencies is not needed. Therefore, the system allocates less bits to the higher 

frequency components than to the lower frequency. The adaptive bit allocation to achieve a reduction in 

bandwidth while maintaining a similar quality of speech occurs as follows: First, the system normalizes the 

frequency components (𝑆𝑛) through division by the STFT frame dimension, yielding a normalized frequency 

vector (𝑧𝑛). Next, the system transforms these normalized frequencies (𝑧𝑛) into a compressed representation 

(𝑟𝑛) to minimize encoding bits per frequency value. This compression follows the relationship: 

 

𝑟𝑛 =
64 (log𝑒(1+4𝑧𝑛))

1.6
  (5) 

 

This transformation constrains the values to between 1 and 64, following a structure of a formula 

similar to the μ-Law compression method used in digital speech processing. All traditional processes are 

followed by the last part of the process: quantization, where the rounded values will be integers and binary for 

transmission. Thus, the compression of frequency values happens while retaining significant precision 

characteristics to decrease bandwidth usage, and adhere to the model’s design function. 

c. Amplitude encoding 

Sinusoidal amplitudes are crucial components that are highly sensitive to variations during the 

quantization process. To address this, we propose an advanced encoding technique that significantly enhances 

resolution by a factor of 6 to 12 compared to traditional PCM. Given the amplitude vector x𝑛 = [𝑥0𝑥1 … 𝑥𝑁−1], 
where 𝑁 represents the number of peaks, this technique systematically processes amplitudes to optimize their 

encoding:  

1. Logarithmic transformation: compute the base-2 logarithm of each amplitude (𝑥𝑛). 

2. Dynamic range adjustment: take the absolute value of the result from the previous step and multiply it by 

γ to map the values to a dynamic range of (1-64). 

3. Amplitude extraction and sorting: extract the amplitudes (𝑝𝑛) using (6) and arrange the (𝑝𝑛) values in 

ascending order, pairing them with their associated phases and frequencies as a set. 
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4. Binary conversion of initial amplitude: convert the integer part (floor value) of the first amplitude 𝑝0 into 

binary, denoted as 𝑏0. 

5. Difference encoding: for each amplitude 𝑝𝑛, calculate the difference (𝑞𝑛) by subtracting 𝑝𝑛 from the 

integer part of the preceding amplitude (⌊𝑝𝑛−1⌋). 

6. Resolution scaling: choose a scaling factor α in the range (6-12), and multiply it by the result of the 

previous step (𝑞𝑛). 

7. Quantization and binary conversion: take the floor of the scaled value and convert it into binary, denoted 

as bnb_nbn. 

8. Repeat the process: repeat steps (5–7) until all 𝑝𝑛 values have been processed. 

The logarithmic conversion of unity-bounded amplitudes generates negative values spanning from −1 

to −20, with 10-6 serving as the defined threshold. The system employs a scaling coefficient to modify this 

range and processes the differential between consecutive amplitude values, exploiting their characteristically 

small intra-frame variations. The algorithm then sequentially orders these amplitudes from lowest to highest, 

maintaining their phase and frequency associations to facilitate efficient encoding. This methodical process 

optimizes amplitude data transmission while preserving resolution and minimizing compression-induced 

information loss. The amplitude quantization general equations are given by: 
 

𝑝𝑛 = 𝛾 |log2(𝑥𝑛)|   (6) 
  
𝑏0 = Binary ⌊𝑝0⌋   (7) 
 

𝑏𝑛 = Binary ⌊𝛼 (𝑝𝑛 − ⌊𝑝𝑛−1⌋)⌋   (8) 

 

2.2.  Decoder stage 

The reconstruction process, depicted in Figure 2, employs a synthesis approach where the decoder 

regenerates speech segments through the superposition of sinusoidal components. Each sinusoid incorporates 

its unique combination of amplitude, frequency, and phase parameters, as specified by the encoded data stream 

from the earlier processing stage. 

 

 

 
 

Figure 2. Speech reconstruction process 

 

 

2.2.1. Decoding strategy 

The reconstruction process initiates with the conversion of binary-encoded parameters to decimal 

values. Signal restoration occurs across three distinct levels, addressing amplitude, frequency, and phase 

components separately. This layered approach minimizes reconstruction error between original and recovered 

parameters, enabling high-quality signal synthesis. 

a. Phase component reconstruction  

The phase recovery sequence involves: 

1. Applying dequantization to the encoded phase differential bits 

2. Computing predicted phase values from historical data using (2) 

3. Combining the dequantized phase differential with the predicted phase estimate 
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b. Frequency component reconstruction  

The frequency restoration follows this sequence: 

1. Converting frequency-encoded binary data into decimal representation (𝑟̂𝑛) 

2. Applying the following relationship to recover the normalized frequency vector (𝑧̂𝑛) from (𝑟̂𝑛): 
 

𝑧̂𝑛 =
 exp(0.025 𝑟̂𝑛 )−1

4
   (9) 

 

3. Implementing rounding on (𝑧̂𝑛) 

This process employs (9), which functions as the mathematical inverse of (5) from the encoding stage. 

c. Amplitude decoding 
The amplitude reconstruction process begins by transforming binary parameters [b0, b1,…, bN-1] into 

their decimal equivalents [p0, p1,…, pN-1]. These values undergo further processing through the following 

relationship: 
 

𝑑0 = 𝑝0  

𝑑1 = 𝑝0 +
𝑝1

𝛼
  

𝑑2 = 𝑝0 +
𝑝1

𝛼
+

𝑝2

𝛼
  

𝑑𝑛 = 𝑝0 + ∑
𝑝𝑖

𝛼

𝑛
𝑖=1   (10) 

 

where N represents the total peak count. Though this transformation introduces maximum error when n = 0, 

this deviation remains insignificant and doesn’t materially impact reconstruction fidelity. The final amplitude 

values (yn) are then recovered using: 

 

𝑦𝑛 = −2
(

𝑑𝑛
𝛾 

)
  (11) 

 

2.2.2. Advantages of the proposed Speech coding technique 

The analysis of the preceding methodology reveals several key benefits of this speech encoding 

approach: (i) incorporates highly efficient and effective encoding and decoding processes, (ii) delivers a 

reconstructed speech signal of exceptional quality at the receiver’s end, (iii) achieves a reduced data rate, 

ranging from 3.6 to 8 kbps, (iv) enhances the quality of the reconstructed signal, even in noisy environments, 

(v) functions independently of the fundamental pitch of the speech signal, (vi) demonstrates strong resilience 

to noise interference, (vii) significantly reduces power consumption and the bit rate required for transmission, 

and (viii) supports the integration of error detection and correction mechanisms for enhanced reliability. 

 

 

3. RESULTS AND DISCUSSION 

The implementation utilizes MATLAB for initial signal processing, where speech input undergoes 

compression and encryption before transfer to an Arduino platform. The Arduino interfaces with a LoRa 

transceiver, which employs CSS modulation techniques to facilitate extended-range signal propagation. The 

receiving system includes packet detection and acknowledgment protocols and returns acknowledgment when 

successful. This two-way acknowledgment protocol improves reconstructed speech quality while keeping the 

bandwidth at or below 8 kbps. The LoRa protocol is capable of transmission rates up to 22 kbps. In our needs, 

22 kbps should be more than sufficient. However, the system uses the principle of distance and tradeoffs by 

being able to use low transmission speeds that allows for better communication distances. The limitations of 

data rates maximize performance based on varying receiving and max transmission speeds based on adjustable 

spreading factors (SF) and bandwidth. The increased SF for example allows for better distances, but gives up 

transmission data transfer completely. Whereas wider bandwidth can increase transmission data but give up on 

range. The main goal of the system is to keep speech transmission rate below the 22 kbps rate, so the max 

distance can be achieved. The system will use a LoRa based SF to increase transmission range, especially when 

using emergency contact systems where it is important to ensure long distance and reliability. 

 

3.1.  System block diagram  

The block diagrams presented in Figure 3 illustrate the setup where the microcontroller is interfaced 

with both MATLAB and the LoRa module. The configuration on the transmitter side is identical to that of the 

receiver. While the transmitter and receiver share similar code structures, their functionalities are distinct: the 

transmitter as shown in Figure 3(a) is responsible for sending and analyzing the data, whereas the receiver as 

shown in Figure 3(b) focuses on receiving and synthesizing the communicated information. 
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(a)  

 
(b) 

 

Figure 3. System block diagram: (a) transmitter and (b) receiver 

 

 

3.2.  Printed circuit board  

Following the prototype phase on breadboard, development progresses to printed circuit board (PCB) 

fabrication for an individual LoRa transceiver unit, depicted in Figure 4. The implementation of MIMO 

capabilities would necessitate an alternate board design. The PCB layout illustrated in Figure 4 depicts a single 

module configuration, featuring integrated ground connectivity and designated connection points for each pin. 

Each connection point incorporates a copper pathway terminating in a through-hole, enabling versatile 

connectivity options via male or female connectors. The complete system architecture for MATLAB-Arduino 

communication is documented in Figures 5 and 6, which detail the transmitter and receiver circuitry 

respectively. 

 

 

  
  

Figure 4. Single LoRa PCB module Figure 5. Complete system architecture for transmitter 

 

 

 
 

Figure 6. Complete system architecture for receiver  
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3.3.  Encryption 

The coding methodology outlined in Section 2 achieved efficient data rate reduction, optimizing 

transmission requirements. The system processes data in 128-bit packet structures, with an example message m: 

 

𝑚 = 10100111 00110101 11010010 00111100 10101010 11001100 01011101 11110000 01110011 

10011010 11001101 00101011 11100001 00111100 10101011 01011101  (12) 

 

Using the encryption key k: 

 

𝑘 = 11001100 10101011 00111100 11001101 01011010 00111100 10101011 00110011 10011100 

01100111 10101010 11110000 00111100 11001101 01011010 10101100   (13) 

 

The encryption process combines m and k through XOR operations, producing the encrypted output y: 

 

𝑦 = 01101011 10011110 11101110 11110001 11110000 11110000 11110110 11000011 11101111 

11111101 01100111 11011011 11011101 11110001 11110001 11110001   (14) 

 

At the receiving end, applying the same key k from (13) to the encrypted message y from (14) via 

XOR operations recovers the original message: 

 

m = 10100111 00110101 11010010 00111100 10101010 11001100 01011101 11110000 01110011 

10011010 11001101 00101011 11100001 00111100 10101011 01011101  (15) 

 

In this system, m represents the initial message, k denotes the shared cryptographic key, and ⊕ symbolizes the 

XOR operation. The symmetrical nature of the XOR operation, combined with key reuse for encryption and 

decryption, ensures secure and accurate message recovery at the receiver. 

 

3.4.  Implementation  

Employing LoRa for voice communication is a novel approach to utilizing the technology beyond 

sensor data applications. The system mitigates bandwidth usage through advanced coding methods for speech. 

The system architecture starts with MATLAB for signal processing that includes encryption and compression 

stages prior to Arduino implementation. The architecture divides the captured processed data into packets using 

LoRa hardware, which with CSS modulation for data transmission. The receiver architecture includes a method 

for packet detection and acknowledgment to indicate receipt of the packets, following on with the Arduino 

implementing processing to reverse the original signal audio waveform. A PCB was developed to demonstrate 

the optimization of the system, concluding that LoRa viability for voice transmission has merit in voice 

applications. The transmission architecture discussed in section 2 consists of multiple processing stages that 

convert acoustic signals into encrypted binary streams. The discussed MATLAB environment provided the 

connection to acquire and process the signals without hardware adaptation. Initial development steps were to 

determine the level of bits needed for two-way communication. The system basic voice signals bandwidth 

requires compression algorithms as shown in Section 2 to ensure signals can be transmitted and reconstructed. 

This research overlaps with efforts in LoRa alliance and IoT. The primary aim of the project is to 

develop a reliable, adaptive speech coding and secure cryptographic protocols for the transmission of voice 

over LoRa. Implementation was undertaken to promote reliability, security, and access within the IoT 

environment by decreasing the data rate and encrypting the data. The main goal of a LoRa systems was focused 

on being cost-effective and utilizing resources effectively, demonstrated through the experiments. These forms 

of innovations will allow the capabilities of LoRa networks to be employed into a range of applications 

including municipal infrastructure, environmental sensor systems and health care systems. 

 

 

4. CONCLUSION  

The system architecture presents a new method for safe and also low-cost long-distance voice 

communication and is designed for the IoT ecosystem. It leverages the CSS modulation technique of LoRa 

technology, which is well known for its standard performance in maximizing distance with power. LoRa is 

limited in bandwidth and throughput is limited to a few kilobits per second. The system architecture implements 

speech encoding algorithms as part of the voice encoding process to minimize the bandwidth needed for voice 

data to accommodate the lower data transmission rates associated with LoRa. The secured voice 

communications made possible by the system architecture fall under a framework of integrated encryption-

decryption security for safeguarding the contents of the transmission. 
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